Contextual cues and prior evidence guide human goal-directed behavior. To date, the neurophysiological mechanisms that implement contextual priors to guide subsequent actions remain unclear. Here we demonstrate that increasing behavioral uncertainty introduces a shift from an oscillatory to a continuous processing mode in human prefrontal cortex. At the population level, we found that oscillatory and continuous dynamics reflect dissociable signatures that support distinct aspects of encoding, transmission and execution of context-dependent action plans. We show that prefrontal population activity encodes predictive context and action plans in serially unfolding orthogonal subspaces, while prefrontal-motor theta oscillations synchronize action-encoding population subspaces to mediate the hand-off of action plans. Collectively, our results reveal how two key features of large-scale population activity, namely continuous population trajectories and oscillatory synchrony, operate in concert to guide context-dependent human behavior.