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Summary

Novel methods for neuronal entrainment [1–4] provide the
unique opportunity to modulate perceptually relevant brain

oscillations [5, 6] in a frequency-specific manner and to
study their functional impact on distinct cognitive functions.

Recently, evidence has emerged that tACS (transcranial
alternating current stimulation) can modulate cortical oscil-

lations [7–9]. However, the study of electrophysiological
effects has been hampered so far by the absence of con-

current electroencephalogram (EEG) recordings. Here, we
applied 10 Hz tACS to the parieto-occipital cortex and

utilized simultaneous EEG recordings to study neuronal
entrainment during stimulation. We pioneer a novel

approach for simultaneous tACS-EEG recordings and suc-

cessfully separate stimulation artifacts from ongoing and
event-related cortical activity. Our results reveal that 10 Hz

tACS increases parieto-occipital alpha activity and synchro-
nizes cortical oscillators with similar intrinsic frequencies to

the entrainment frequency. Additionally, we demonstrate
that tACS modulates target detection performance in a

phase-dependent fashion highlighting the causal role of
alpha oscillations for visual perception.
Results

In order to study the immediate electrophysiological effects
of transcranial alternating current stimulation (tACS), we
analyzed simultaneously recorded electroencephalogram
(EEG) in 14 participants (Figure 1E). We employed a well-
established visual oddball paradigm (Figure 1A) in order to
retrieve highly predictable event-related potential (ERP) com-
ponents [12]. To study phase-dependent effects, we delivered
the visual stimulus relative to four different phase angles of the
tACS wave (Figure 1B). A sham session always preceded the
stimulation session to avoid carryover effects (Figure 1C). All
participants received 1,000 mA stimulation intensity at 10 Hz
for 20 min. Based on a previously published finite-element
model of the current flow (Figure 1D) [11], we predicted that
our tACS layout should induce the highest current densities
in medial parieto-occipital cortex.
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We pioneered a novel approach for artifact removal (Supple-
mental Experimental Procedures available online) to remove
the tACS artifact, which ideally would be removed by sub-
tracting a constant sine wave fitted to the recordings. How-
ever, due to slight signal variations this approach did not
yield satisfactory results. In order to account for the non-
stationary characteristic of the recordings, we utilized a
two-step procedure. First, an artifact template, comprising
several adjacent artifact segments, was subtracted from
every artifact segment (moving average approach). In a sec-
ond step, remaining artifacts were captured by principal
component analysis (PCA; Figure S1). In order to assess the
impact of the artifact removal approach on the true EEG sig-
nals, we introduced a simulation approach (Supplemental
Experimental Procedures) by adding a constant 10 Hz sine
wave with similar characteristics to the sham data (Figure 2A,
II). In order to quantify the impact of the artifact rejection on
ongoing power, we compared the mean spectral power
after fast Fourier transform (FFT) of the baseline sham condi-
tion (Figure 2A, I) to the artifact-corrected sham data for
three frequency bands of interest (delta/theta: 1–6 Hz, alpha:
8–12 Hz, beta: 13–30 Hz). We found that the first correction
step was insufficient to recover the original data in the
alpha band because cleaned data and original data were
significantly different (Figure 2A, III; t13 = 28.56, p < 0.0005,
paired t test), but it was successful after the second step
(Figure 2A, IV; t13 = 0.5, p = 0.6). Subsequently, we applied
the same approach to the tACS-EEG data (Figure 2B, I)
and obtained an artifact-cleaned recording (Figure 2B, III).
The comparison to the alpha power in the baseline sham
condition (t13 = 23.74, p < 0.005) indicated that neuronal
activity was modulated in the alpha band and was not related
to residual stimulation artifacts. Our results also suggest that
true brain activity was recovered in the delta/theta band
(cleaned sham: t13 = 0.58, p = 0.57; cleaned stimulation
data: t13 = 22.02, p = 0.06) and the beta band (cleaned
sham data: t13 = 21.14, p = 0.28, cleaned stimulation data:
t13 = 21.15, p = 0.27). In addition, we also retrieved ERPs
and their respective topographies (Figures 2C and 2D; Sup-
plemental Experimental Procedures).

Power of Ongoing Activity Is Modulated by 10 Hz tACS
Although the power spectrum in the alpha band was broadly
distributed during sham (Figure 3A), the peak (Figure 3B)
and shape (Supplemental Experimental Procedures) were
clearly modulated by stimulation. We analyzed the absolute
power values with a three-way repeated-measures ANOVA
(Greenhouse-Geisser corrected) with the factor condition
(sham or stimulation), frequency (delta/theta: 1–6 Hz, alpha:
8–12 Hz, beta: 13–30 Hz), and time (pre, ISI [interstimulus
interval] 6500 ms around T0 [Figure 1B], post). We found
a significant influence of the factor frequency (F1.3,16.2 =
68.03, p < 0.0005), along with a significant effect of the
factor time (F1.2,16 = 5.06, p < 0.05). The factor condition
was not significant (F1,13 = 0.06, p = 0.8). However, the crucial
interactions of condition 3 frequency (F1.5,19.7 = 33.54,
p < 0.0005), time 3 frequency (F2,26.5 = 5.3, p < 0.05), and
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Figure 1. Experimental Setup and Procedure

(A) Oddball stimulus. Subjects were asked to

fixate an LED that displayed the target color

(red or green, counterbalanced across subjects)

in 20% of all trials and the standard color in the

remaining 80%. Subjects indicated the appear-

ance of targets and standards by pressing

different buttons.

(B) Every visual stimulus was presented for 25ms

at different phase angles of the 10 Hz tACS

wave to cover the maximum, the minimum and

both zero crossings followed by a variable

interstimulus interval (w2,100 to w3,900 ms). All

trials were pseudorandomized, resulting in 100

trials per phase angle. A tACS trigger at T0 was

recorded every 30 cycles (=3,000 ms; during

sham a faked trigger was inserted to mimic the

time course of the experiment). The visual stim-

ulus was presented following a variable onset

asynchrony (800–800 ms) after T0.

(C) Experimental procedure. The sham block

always preceded the simulation block to avoid

carryover effects of the tACS, which can outlast

stimulation offset by over 30 min [10]. Each

session was initiated and closed with 1 min

of resting-state EEG during fixation of the

disabled LED.

(D) The result of a finite-element model simulation

of current flow from a recent publication [11],

revealing the highest current flow in parieto-

occipital cortex. Stimulation electrodes were

positioned over Cz and Oz (international 10/20

system).Reprintedwithpermissionof theauthors.

(E) EEG and tACS electrode placement on the

scalp.
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condition3 frequency3 time (F2.6,33.5 = 35.3, p < 0.0005) were
significant, but not condition 3 time (F1.2,14.9 = 2.7, p = 0.12).
During stimulation as compared to prestimulation, we found
increased alpha power compared to theta- (F1,13 = 76.1, p <
0.0005, planned contrast) as well as compared to beta-band
power (F1,13 = 68.2, p < 0.0005; Table S1).

Outlasting effects of the stimulation on the alpha band (Fig-
ures 3C and 3D) were assessedwith a two-way repeated-mea-
sures ANOVAwith the factors condition (shamand stimulation)
and time (pre and post). We found a highly significant influence
of the factors condition (F1,13 = 19.08, p < 0.005) and time
(F1,13 = 20.24, p < 0.005). Importantly, their interaction was
also significant (F1,13 = 8.5, p < 0.05; Figures 3C and 3D), indi-
cating that the alpha power increase was amplified during
stimulation. We did not find any outlasting effects in adjacent
frequency bands (all p > 0.05; Supplemental Experimental
Procedures).

Figure 3E indicates that the peak of the alpha band is shifted
during stimulation toward the stimulation frequency of 10 Hz
(Levene’s test for equality of variances between the sham
and stimulation: F1,26 = 29.6, p < 0.0005).

In addition, we found a significant correlation between the
alpha power during stimulation and the relative increase in
alpha power after stimulation (r = 0.58, p < 0.05), but not
with power before sham (r = 0.07, p = 0.8, Figure 3F) or
before stimulation (r = 0.38, p = 0.17), indicating that the
tACS-induced power enhancement did outlast stimulation
offset (Figure 3G). Furthermore, we evaluated whether
participants with a presham individual alpha frequency (IAF)
of 10 Hz exhibited the strongest poststimulation power
increase but did not find any evidence for this consideration
(Figures 3H and S2).
tACS Effects on the Phase of Ongoing Activity

Neuronal entrainment as the basis for the increase in parieto-
occipital alpha power (Figures 3A and 3B) would require the
direct interaction between the external oscillatory source and
an internal oscillator through synchronization [2]. Therefore,
weanalyzedphase-locking values (PLVs;Supplemental Exper-
imental Procedures) between the tACS signal and ongoing
brainactivity in the interstimulus intervals (Figure4A).We found
a significantly increased phase locking in the alpha band (t13 =
22.78, p < 0.0167, paired t test, Bonferroni-corrected), but not
in the delta/theta band (t13 = 21.70, p = 0.11) or the beta band
(t13 = 21.67, p = 0.12). Synchronization to the external driving
force should lead to more regular network dynamics during
stimulation [2, 13]. We observed that the instantaneous phase
angle during the upward zero crossing of the external 10 Hz
wave every 3 s (T0; Figure 1B) across all trials was significantly
nonuniformly distributed during stimulation (Rayleigh’s test;
p < 0.05, binomial test), but not during sham (Table S2), indi-
cating that network dynamics followed the external rhythm.
We tested whether the increased phase consistency was also
preserved throughout the trialsbyanalyzing theaveraged inter-
trial coherence (ITC; Supplemental Experimental Procedures)
before visual stimulus onset (Figure 4C) with paired t tests.
We found a significant increase in ITC in the alpha band (t13 =
22.95, p < 0.0167, Bonferroni corrected), but not in the delta/
theta band (t13 = 0.8, p = 0.44) or the beta band (t13 = 20.9,
p = 0.37). Because the ITC after visual stimulus onset is modu-
lated by prestimulus alpha phase [14, 15], we sorted the data
into four phasebins of theongoing alphaoscillation (Figure 4E).
Planned contrasts analysis revealed a relative ITC increase in
the alpha band (Figures 4D and 4E) after stimulation when
compared to the ITC in the theta (F1,13 = 54.1, p < 0.0005) and



Figure 2. Retrieval of EEG Activity during tACS

(A) Verification of the artifact rejection algorithm. (I) EEG time course for 6000 ms (two trials of one subject) at electrode POz. (II) Same data segment

after addition of a constant 10 Hz sine wave. (III) Artifact removal step 1: a moving average template was subtracted from the data revealing that in

some trials (e.g., before 3,000 ms), residual artifacts remain. (IV) Step 2: residual artifacts were captured by a PCA and subsequently removed. Plots on

the right depict the power spectra for (I)–(IV) across all trials and all subjects (color conventions as in I–IV). The enlarged spectrum on the top right indicates

that a residual artifact is still present in the data after the moving average subtraction. After PCA, spectral power is slightly over corrected (green), but the

overcorrection did not reach significance. The topography of the typical artifact component is shown below the power spectra.

(B) (I)–(III) depict the same approach for the stimulation data and indicate that the tACS artifact was successfully removed from the recording. Spectral power

for (I)–(III); the same color conventions as in (A) apply. The dashed line highlights the spectral peak amplitude of the alpha band in (A).

(C) Grand average ERPs for targets and standards during the sham session along with topographies for the major components: P1, N1, and the P3 at

Pz/POz. Values are mean 6 SEM.

(D) Grand average ERPs and topographies during stimulation after rejection of the 10 Hz tACS artifact.

See also Figure S1.
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the beta band (F1,13 = 212.1, p < 0.0005). Additional results can
be found in the Supplemental Information (Table S2).

Behavioral Results

Behavioral data were grouped into four phase bins (specified
above, Figure 4E). Target detection accuracy (Figure 4F) was
analyzed in a two-way repeated-measures ANOVA with the
factors condition (sham or stimulation) and phase (four bins).
We found a significant effect of condition (F1,13 = 5.79, p <
0.05) and no effect of the factor phase (F2.2,28.1 = 0.2, p =
0.8). However, the interaction of condition 3 phase was sig-
nificant (F2.2,28.5 = 3.37, p < 0.05; Figure 4G), indicating that
tACS most likely modulates behavioral performance in a
phase-dependent fashion. We found no learning or reaction
time effects of the stimulation (all p > 0.05; Supplemental
Experimental Procedures).



Figure 3. Entrainment of Ongoing Alpha-Band Activity

(A) Grand mean power spectra across all subjects during the sham session (electrode POz). One minute of pre- and postmeasurements were subdivided

into 60 segments of 1 s each; the resulting spectra after FFTwere averaged. The same procedure was applied to the 400 ISIs (fragmented into 1 s segments).

The inset depicts the topography of the alpha-band power (dashed line) during sham.

(B) Grand averages of power spectra during 10 Hz tACS along with pre- and poststimulation measurements (electrode POz).

(C) Average alpha power before, during, and after sham (mean 6 SEM) at POz. Values are normalized to the presham baseline power in each subject. The

400 interstimulus interval segments were grouped into six equally distanced grand averages, each containing 60 consecutive spectra sorted with respect

to their occurrence during the session. The 40 remaining spectra were discarded. The topography indicates the alpha power change in the postsham

measurement relative to the presham baseline.

(D) Average relative alpha power before, during, and after 10 Hz tACS (mean 6 SEM). The topographies correspond to the prestimulation and post-

stimulation condition and reveal the spatial specific alpha power enhancement after 10 Hz tACS. Note that the power enhancement effect during stimulation

outlasts the stimulation period.

(E) Spectral peak analysis of all 14 subjects with a mean IAF of 9.86 Hz 6 0.4 (mean 6 SEM). During 10 Hz tACS, the spectral peak is at 10.07 Hz 6 0.1.

A Levene’s test for equality of variances revealed that the assumption of homoscedasticity was not met during stimulation.

(F) Linear correlation analysis of the absolute alpha power values during presham baseline and the relative poststimulation enhancement in the alpha band

revealed no significant interaction. Black dots depict individual subjects.

(G) Linear correlation analysis of the absolute alpha power value observed during stimulation and the relative poststimulation alpha power enhancement

revealed a significant interaction.

(H) The IAF was defined as the spectral peak or maximal power value in the presham measurement in the range from 8–12 Hz. The results indicate that the

relative alpha power increase after stimulation was not related to the peak frequency before stimulation.

See also Figure S2 and Table S1.
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Figure 4. Effects of tACS on Task-Related Responses

(A) Grand mean (6SEM) phase-locking values (PLVs) between the externally applied 10 Hz tACS wave, and the ongoing activity at electrode POz are

depicted. For sham, a random 10 Hz sine wave (Figure 2A, II) was used for computation. The gray-shaded area highlights the significant difference

(paired t test). The topography on the upper right confirms the spatial specificity of the phase locking increase to parieto-occipital brain areas.

(B) Distribution of instantaneous phase angles at POz in one representative subject across all trials after Hilbert transformation at T0 (Figure 1B) during the

sham (left) and stimulation (right). Single trial data are depicted in blue, the resulting sum vector in red.

(C) Grand mean (6SEM) intertrial coherence was calculated for 2500 ms to 2200 ms before visual stimulus onset during sham (blue) and during stim-

ulation (red) for four phase angles (see below) separately and then averaged across time points and phase angles. The gray-shaded area delineates the

significant difference in the alpha band (paired t test). The topography on the upper right indicates that the ITC increase is confined to parieto-occipital

areas.

(D) Poststimulus intertrial coherence (100–200 ms). Grand mean averages (6SEM) for sham and stimulation are depicted. The same conventions

as in (C) apply.

(E) Mean (6SEM) poststimulus alpha-band intertrial coherence is depicted for the four phase angles of the underlying alpha oscillation (first bin:20.75 p to

20.25 p; second bin: 20.25 p to 0.25 p; third bin: 0.25 p to 0.75 p; fourth bin: 0.75 p to 20.75 p; Tick labels depict the center of the respective phase bins)

highlighting that alpha ITC is modulated by instantaneous alpha phase. Note that this phase dependency was also present during sham, although ITC was

increased during 10 Hz tACS.

(F) Target detection accuracy (mean6SEM, phase sorting as in E) results relative to the different phase angles for sham (blue) and stimulation (red) revealing

higher values during stimulation in three phase bins.

(G) The accuracy modulation (stimulation – sham) was calculated for every subject and every phase bin. Black dots represent individual subjects; the

gray line highlights the mean accuracy modulation and is superimposed by a sine wave (black line) indicating the phasic modulation of target detection

performance.

See also Table S2.
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Discussion

Here, we demonstrate that human oscillatory brain activity
as recorded with EEG can be entrained by simultaneous
application of tACS. In particular, we show that stimulation
at 10 Hz enhances alpha power in the parieto-occipital
cortex synchronizes oscillations and modifies behavioral
outcome.
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Artifact Rejection
The crucial factor in tACS-EEG experiments is the distinction
between physiological brain activity and stimulation-induced
artifacts, because the frequency of interest is usually equal
to the stimulation frequency. We verified our artifact removal
approach with a simulation, which strongly supports a suc-
cessful artifact rejection. (1) Spectral power after artifact
rejection on the sham data did not differ significantly from
the original sham data (Figures 2AI and 2AIV). (2) Alpha topog-
raphies were highly similar during sham and stimulation
(Figures 3A, 3B, and S2), indicating that cortical sources of
alpha activity were modulated during stimulation. (3) Alpha
power during stimulation was significantly correlated with
poststimulation power increase (Figure 3G). (4) Increments of
power (Figure 3D), phase locking (Figure 4A), and intertrial
coherence (Figure 4C) were mainly confined to parieto-occip-
ital areas and the alpha band. (5) The physiological phase-
dependent response to the visual stimulus was still present
(Figures 4D and 4E; also see evoked power analysis in the
Supplemental Experimental Procedures). If residual artifacts
were the underlying cause for the phase locking and power
increase, a physiological modulation would have been highly
unlikely. (6) ERP waveforms and topographies were restored
successfully. (7) PCA revealed distinct artifact components
(Figure S1).

Physiological Efficacy of tACS

Intracranial recordings in animals demonstrated that spiking
activity could be synchronized to different driving frequencies
[16] and synchronized to the phase of externally applied alter-
nating currents [17]. So far, electrophysiological evidence in
humans was limited to EEG recordings after stimulation
[18, 19]. Our data now suggest that (1) 10 Hz tACS increased
oscillatory power in the alpha band; (2) the alpha power
increase was based on synchronization to the external driving
force [2]. (3) 10 Hz tACS transiently shifts the individual alpha
peak toward 10 Hz (Figure 3E). This finding has been demon-
strated in a modeling study for a 3 Hz network in a frequency
range from 2–4.5 Hz [13, 20]; (4) effects of stimulation at
10 Hz are confined to the alpha band. These results agree
with a modeling study [21] predicting tACS effects on EEG
electrodes and brain activity. However, it remains unresolved
whether neuronal entrainment [2] and mechanisms of neural
plasticity [19] are the only factors contributing to the outlasting
power effect [20]. Importantly, our results reveal that neither
baseline power nor the IAF (Figures 3F and 3H) were reliable
predictors whether entrainment through 10 Hz tACS was
successful (Figure 3G). Complementary modeling approaches
will be necessary to individually tailor electrode features (e.g.,
size or location) and stimulation parameters (e.g., frequency,
intensity, phase delay, offset, waveforms [11]) to overcome
current limitations of tACS such as the low spatial specificity
and the unclear cortical current distribution.

Role of Alpha Oscillations for Visual Perception
In general, alpha is assumed to be a rhythm that can actively
suppress processing of irrelevant sensory information and
therefore direct information flow to task-relevant neuronal
structures (gating by inhibition hypothesis, reviewed in
[22–24]). Specifically, it has been demonstrated that high pres-
timulus alpha power is predictive of decreased visual detec-
tion performance in a phase-dependent fashion [15, 25, 26].
Here, we observed a phase-dependent enhancement of target
detection performance in states of exogenously boosted alpha
activity. Under the assumption that tACS can only entrain
cortical oscillators operating close to the driving frequency
[2], our results suggest that we successfully modulated the
inhibitory alpha network. Furthermore, states of increased
alpha phase alignment are predictive of improved memory
performance [14] and might facilitate recall performance in
an oddball task. In line with the above, previous rTMS experi-
ments on exogenous alpha enhancement described either
facilitation [27] or impairment [28] of task performance in
different cognitive paradigms. Taken together, our findings
imply that exogenously enhanced alpha power reflects in-
creased inhibition of task-irrelevant sites through augmented
cortical alpha synchronization.
An unequivocal confirmation on entrainment would be the

demonstration that behavioral performance cycles at different
frequencies before and after stimulation. However, in contrast
to previous reports [29, 30] we did not find a phasicmodulation
in behavior. A potential confound is the preceding sham
session and the slow alpha power increase throughout the
task. However, a significant interaction between condition
and time demonstrated that the increase was stronger
during stimulation (Figure 3D). Outlasting changes after tACS
(>30 min [10]) impede an inverse experimental procedure.
Relation to Previous Studies and Implications for Future
Studies

Our results extend previous findings and suggest neuronal en-
trainment as the putative mechanism, which may underlie the
previously observed stimulation effects on visual [19, 31–34],
somatosensory [35], auditory [18], motor [9, 36–38], and mem-
ory systems [7, 39]. This is the first study that combines simu-
lated current flow predictions with electrophysiological and
behavioral evidence to demonstrate the efficacy of the stimu-
lation. Our results show that the externally applied electric field
does directly influence cortical oscillators in a frequency-spe-
cific manner and indicate that tACS can be a powerful tool
to investigate neuronal oscillations involved in perceptual
and cognitive processing. In the future, tACS might prove to
be useful for the clinical application in disorders associated
with disturbances of oscillatory signals such as Parkinson’s
disease [37] or neuropsychiatric disorders [40, 41].
Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, two figures, and two tables and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2013.12.041.
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39. Marshall, L., Helgadóttir, H., Mölle, M., and Born, J. (2006). Boosting

slow oscillations during sleep potentiates memory. Nature 444,

610–613.

40. Herrmann, C.S., and Demiralp, T. (2005). Human EEG gamma oscilla-

tions in neuropsychiatric disorders. Clin. Neurophysiol. 116, 2719–2733.

41. Uhlhaas, P.J., and Singer, W. (2010). Abnormal neural oscillations and

synchrony in schizophrenia. Nat. Rev. Neurosci. 11, 100–113.


	Entrainment of Brain Oscillations by Transcranial Alternating Current Stimulation
	Results
	Retrieval of EEG Activity and ERP Components
	Power of Ongoing Activity Is Modulated by 10 Hz tACS
	tACS Effects on the Phase of Ongoing Activity
	Behavioral Results

	Discussion
	Artifact Rejection
	Physiological Efficacy of tACS
	Role of Alpha Oscillations for Visual Perception
	Relation to Previous Studies and Implications for Future Studies

	Supplemental Information
	Acknowledgments
	References


