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SUMMARY

The coupled interaction between slow-wave oscilla-
tions and sleep spindles during non-rapid-eye-move-
ment (NREM) sleep has been proposed to support
memory consolidation. However, little evidence in
humans supports this theory. Moreover, whether
such dynamic coupling is impaired as a consequence
of brain aging in later life, contributing to cognitive
andmemory decline, is unknown. Combining electro-
encephalography (EEG), structural MRI, and sleep-
dependentmemory assessment, we addressed these
questions in cognitively normal young and older
adults. Directional cross-frequency coupling ana-
lyses demonstrated that the slow wave governs a
precise temporal coordination of sleep spindles, the
quality of which predicts overnight memory retention.
Moreover, selective atrophy within the medial frontal
cortex in older adults predicted a temporal dispersion
of this slow wave-spindle coupling, impairing over-
nightmemory consolidation and leading to forgetting.
Prefrontal-dependent deficits in the spatiotemporal
coordination of NREM sleep oscillations therefore
represent one pathway explaining age-related mem-
ory decline.

INTRODUCTION

The precise temporal coordination of non-rapid-eye-movement

(NREM) sleep oscillations has been proposed to support the

long-term consolidation of memory (Diekelmann and Born,

2010; Walker and Stickgold, 2006). Within these theoretical

frameworks, temporal interactions between cortical slow oscilla-

tions (SOs; <1.25 Hz), sleep spindles (�12–16 Hz), and hippo-

campal ripples (�80–100 Hz) form a hierarchy that allows for

information transformation necessary for long-term memory

retention (Diekelmann and Born, 2010; Frankland and Bontempi,
2005; Latchoumane et al., 2017; Rasch and Born, 2013; Stare-

sina et al., 2015). In particular, the depolarizing ‘‘up-states’’ of

the SOs are proposed to facilitate sleep spindle and ripple

expression, with hippocampal ripples being temporally nested

into spindle troughs (Rasch and Born, 2013; Staresina et al.,

2015). The coupling of these NREM oscillations is thought to

support intrinsically timed information transfer across several

spatiotemporal scales underlying long-term memory (Diekel-

mann and Born, 2010).

There is, however, limited empirical evidence supporting this

oscillatory interaction model of hippocampal memory consolida-

tion. Non-invasive brain stimulation findings have demonstrated

that boosting SO power can indirectly co-modulate sleep spin-

dle activity (Ladenbauer et al., 2017; Marshall et al., 2006), while

SO-spindle coupling during a nap in young adults tracks offline

memory retention (Niknazar et al., 2015). Yet, the mechanistic

relationship of SO-spindle synchrony and how this determines

the success or failure of overnight hippocampal-dependent

memory consolidation remains unknown, as does the causal ne-

cessity of brain regions in supporting coupled NREM oscillation

dynamics and memory benefit.

Regarding the latter, there is growing evidence that aging

markedly disrupts sleep and overnight memory consolidation

(Mander et al., 2017). If sleep oscillatory coupling is compro-

mised in older adults, what is it about the aging brain that de-

grades interactive synchrony of NREMoscillations, thereby lead-

ing to memory impairment? This question is of special relevance

as it may reveal a currently under-appreciated mechanism

(impaired SO-spindle coupling) that contributes to memory

decline in later life and, if identified, would define a novel thera-

peutic target for clinical intervention (Ladenbauer et al., 2017).

Here, we address these unanswered questions by combining

structural MRI, polysomnography with full-head (19 channel)

scalp electroencephalography (EEG), and the assessment of

sleep-dependent hippocampal memory in young and older

adults. We specifically tested the hypothesis that the precise

temporal coupling of cortical NREM SOs and spindles, as pre-

dicted by theoretical models, facilitates overnight memory reten-

tion in young adults and whether older adults have a temporal

un-coupling of these oscillations, leading to impaired overnight
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memory.Moreover, based on evidence in young and older adults

demonstrating that the structural gray matter (GM) morphology

of the medial prefrontal cortex (mPFC) is associated with the

quality of SO (Mander et al., 2013; Saletin et al., 2013), and

that this same mPFC region is an EEG source generator of SO

linked to spindles (Murphy et al., 2009), we further tested the hy-

pothesis that structural GM integrity of mPFC predicts the de-

gree of compromised SO-spindle dynamic coupling in older

adults.

We implemented unique non-linear directional cross-fre-

quency coupling (CFC) analyses, together with phase-depen-

dent correlation measures, to capture complex neural dynamics

underlying SO-spindle synchrony relationships (Helfrich and

Knight, 2016). Based on theoretical accounts of oscillation-

based timed memory transfer (Diekelmann and Born, 2010;

Rasch and Born, 2013), we tested the hypothesis that the exact

timing between SOs and spindles supports memory consolida-

tion. Building on the prediction that SOs orchestrate sleep-

dependent memory processing (Steriade, 2006), we imple-

mented methods for assessing the temporal directionality of

this SO-spindle interaction (Jiang et al., 2015) and examined

whether this directionality predicted memory consolidation suc-

cess in young and older adults. Finally, we tested whether

regional GM atrophy within the mPFC, relative to other control

regions, provided a structural correlate associated with the

age-related degradation of SO-spindle coupling and associated

memory decline in older adults.

RESULTS

Cognitively normal older (n = 32; age: 73.8 ± 5.3; mean ± SD) and

young (n = 20; 20.4 ± 2.0 years) participants performed a sleep-

dependent episodic memory test (Mander et al., 2013, 2015)

before and after a full night of sleep (Figure 1A; Tables S1–S3).

During encoding, all participants were trained to 100% criterion

before initial recognition testing (short delay; after�10min). After

the short delay test, participants underwent polysomnography in

the lab and were given an 8 hr sleep period starting at their

habitual bedtime. They performed the second recognition test

(long delay; after �10 hr) the next morning. Then, structural

MRI data to assess GM intensity were obtained. Memory reten-

tion was quantified as the difference between recognition perfor-

mance at the long delay and performance at the short delay.

Consistent with existing reports (Mander et al., 2013, 2017),

overnight memory retention was impaired in older adults relative

to young adults (t46 = �3.85, p = 0.0004, d = 1.19). Building on

this finding, we next sought to determine differences in NREM

oscillatory dynamics that may underlie these age-associated

memory impairments.

Oscillatory Dynamics of Sleep in Old and Young Adults
We first assessed EEG power differences between older and

young adults by means of cluster-based permutation tests

across all frequencies and channels during NREM sleep (Fig-

ure 1B; with all figures displaying data from electrode Cz due

to the spatial distribution of SO and spindle power, unless stated

otherwise). Oscillatory power was significantly lower in older

adults from 0.5 to 8.5 Hz (p = 0.0020, d = 1.71), as well as
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between 10.5 and 15 Hz (p = 0.0080, d = 1.28), in all recorded

channels (Figure 1B).

Next, we detected SO (0.16–1.25 Hz) and sleep spindle

(12–16 Hz) events based on established algorithms (Mölle

et al., 2011; Staresina et al., 2015). Analysis of inter-spindle inter-

vals indicated that sleep spindles exhibited non-Poisson-like

behavior andwere preferentially separated by 1.13–2.78 s during

NREM sleep (Figure S1A), which is in accordance with the idea

that <1 Hz SO controls sleep spindle timing and separates

them by at least 1–3 cycles.

Detection of SO and sleep spindle events reliably tracked

spectral sleep signatures over a full night of sleep (Figures 1C

and 1D for representative old/young subjects; numbers of de-

tected events are superimposed in white; see also Table S2).

For every participant, we determined the SO phase during the

peak of the detected sleep spindle events. Significant non-uni-

form circular distributions were identified in 29/32 old adults

and in 20/20 young adults. Of note, differences in oscillatory

power can distort CFC estimates. This issue was addressed by

z-normalizing individual events in the time domain to alleviate

amplitudedifferencesprior to all subsequent analyses (Figure 2A;

Table S4). Note that this normalization avoids spurious coupling

that has been recently pointed out as a potential confound in

cross-frequency analysis (Aru et al., 2015; Cole and Voytek,

2017; Gerber et al., 2016). To further address this concern, we

also employed a validated stratification approach (Aru et al.,

2015), confirming our main findings (Figures S1B and S1C).

Aging Affects Prefrontal SO-Spindle Coupling
Following normalization, SO trough-locked time-frequency spec-

trograms were first calculated separately for older and young

adults and then compared using a cluster-based permutation

approach. Multiple significant clusters were observed in the sleep

spindle range (Figure 2B; p = 0.0160, d = 1.73). Interleaved

patterning in the spindle range (white dashed box, Figure 2B)

demonstrated that the timing of sleep spindles relative to the

SOs was different between older and young adults. Specifically,

spectrograms illustrated that sleep spindles peaked before,

rather than in time with, the SO peak in older relative to young

adults (Figure 2C, inset; Figure S2A).

Mean sleep spindle activity was nested just after the SO peak

in young adults but was misaligned in older adults, occurring

earlier in the rising flank of the SO (see Figures 2B and 2C). Sig-

nificant non-uniform distributions were present for both older

(Rayleigh z = 23.24, p < 0.0001) and young (Rayleigh z = 18.55,

p < 0.0001) adults. However, the mean coupling direction

differed significantly between groups (Figure 2D; older adults:

�46.3� ± 31.2�; young adults: 3.6� ± 15.5�; circular mean ± SD;

Watson-Williams test: F1,50 = 41.34; p < 0.0001; h2 = 0.44).

That is, spindles in young adults were maximal just after the

SO peak, while sleep spindles in older adults were misaligned,

prematurely peaking earlier on the rising phase in the SO

cycle. This effect was not confounded by differences in

spindle onset phase angles or differences in spindle duration

(Figures S1D–S1F).

Next, we assessed differences in coupling strength between

groups using two complimentary analyses: (1) an event-locked

coupling approach that extracted the resultant vector length



Figure 1. Memory Task and Oscillatory Signatures of Sleep

(A) Episodic word-pair task. Participants learned 120 word-nonsense word pairs. Nonsense words were 6–14 letters in length, derived from groups of common

phonemes. During encoding trials (top left), word pairs were presented for 5 s. Participants completed the criterion training (top right) directly after encoding and

received feedback after every trial. Recognition trials (bottom) were performed after a short delay (10 min, 45 trials) and again after a full night of sleep (10 hr, 135

trials).

(B) EEG power spectra during NREM sleep at electrode Cz for older (blue) and young (red) adults (mean ± SEM). Gray shaded areas indicate significant dif-

ferences in low and sleep spindle frequency ranges. Insets depict topographical distribution of SO (<1.5 Hz; upper topographies) and sleep spindle (12–16 Hz;

topographies on the right) power. Note that older subjects exhibited significantly reduced oscillatory power across the whole head.

(C) Top left: hypnogram (MT, movement time) from one exemplary of older subject and full-night multi-taper spectrogram at Pz (bottom left) with superimposed

number of detected SO and sleep spindle events (white solid lines; 5min averages). Top right: normalized circular histogram of detected spindle events relative to

the SO phase. Note the peak in the right lower quadrant. Bottom right: peak-locked sleep spindle average across all detected events in NREM sleep (black). Low-

pass filtered events (red) highlight that the sleep spindles preferentially peaked prior to the SO ‘‘up-state.’’ See also Figure S1A.

(D) Exemplary young subject. Same conventions as in (C). Note that the sleep spindle amplitude is maximal after the SO peak.
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per subject for all SO-spindle events at every electrode and (2) a

data-driven approach based on the modulation index and

screening of a wide range of phase-amplitude pairs.

For the first analysis, significant cluster difference in frontal

topography was identified in older and young adults (p =

0.0120, d = 0.76), indicating that SO-spindle coupling was

most impaired over fronto-central sensors (Figure 2E). The

second, data-driven analysis confirmed that this fronto-central

cluster effect was specific to the SO range between the

0.5–2 Hz and the 12–16 Hz range (p = 0.0150, d = 0.92), indi-
cating that stronger coupling in young adults was limited to the

SO-spindle range (Figure 2F; Figure S2B). Both approaches

were highly correlated (rho = 0.7645, p < 0.0001), and effects

were not simply driven by differences in the number of oscillatory

events (Figures S1G and S1H).

Cortical Slow Oscillations Coordinate Spindle Activity
Having established differences in SO-spindle coupling between

young and older adults, and building on our hypothesis and past

theoretical models of SOs driving spindle coordination, we next
Neuron 97, 1–10, January 3, 2018 3



Figure 2. SO-Spindle Interactions in Old and Young Adults

(A) Left: trough-locked SO grand average for old (blue) and young (red) adults. Note the prominent differences in amplitude. Right: we normalized the SO

amplitude for every subject prior to all other analyses to alleviate spurious effects, which could be the result of prominent power and signal-to-noise differences

(mean ± SEM).

(B) Statistical map of SO-locked power differences across time between older and young subjects. Note the interleaved patterning in the sleep spindle range

(12–16 Hz; white dashed box). As reference, the mean SO is superimposed (black; rescaled). See also Figure S2A.

(C) Left: peak-locked spindle grand averages for old adults with superimposed low-pass filtered signal (black). Right: peak-locked sleep spindle grand average for

young adults. Top: averaging mean coupling phase and SD on schematic SO (cosine).

(D) Top: mean SO phase where sleep spindle power peaks. Red dots depict individual subjects. Note that sleep spindle power in older adults peaks prior to the

SO positive peak (0�), while sleep spindle power in young subjects peaks around 0�. Bottom: grand-average normalized spindle amplitude binned relative to the

SOphase (mean ± SEM). Again, note the non-uniform distribution, which peaks around 0� for young adults, but earlier for older adults. See also Figures S1D–S1H.

(E) Top: SO-spindle coupling strength (resultant vector length) topography for old (left) and young (right) adults. Bottom: a statistical difference map (center)

indicates that the coupling strength was significantly reduced for fronto-central EEG sensors, while parieto-occipital estimates did not differ (* denotes cluster-

corrected two-sided p < 0.05).

(legend continued on next page)
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investigated directional influences between SOs and sleep spin-

dles by means of the phase slope index (PSI).

A cluster-based permutation test revealed that the directional

influence of SOs on sleep spindle activity was impaired in older

relative to young adults over frontal and parieto-occipital regions

(Figure 2G; p = 0.0010, d = 0.81). However, while parieto-occip-

ital directional CFC was markedly reduced in older adults, it was

still above zero (Figure S2C). This demonstrates that the parietal

physiologic SO-spindle coupling was partially intact in older

adults.

To examine directionality, we tested whether the PSI predicted

howmuchtime thesleepspindledeviated fromtheSOpeak.Asig-

nificant frontal cluster was identified over fronto-central sensors,

indicating that larger PSI values predicted a smaller deviance—

that is, a sleep spindle peak closer to the up-state in young relative

to older adults (p = 0.012, mean rho = �0.3367; older adults:

205.07 ± 18.68 ms; young adults: 60.24 ± 8.26 ms; mean ± SD).

This PSI analysis establishes two findings: (1) the SO phase pre-

dicts spindle timing over frontal sensors, rather than the converse,

as postulated by theoretical models that SO triggers spindle

events, and (2) the timing precision was misaligned, since direc-

tional influences were reduced in older relative to young adults.

SO-Spindle Coupling Predicts Overnight Memory
Consolidation
Having characterized the oscillatory dynamics of SO-spindle

coupling and identified impairments in these dynamics in older

relative to young adults,we tested our hypothesis that these oscil-

latory dynamics predicted overnight memory retention success

and associated age-related differences. Note that traditional

linear correlation analyses were not applicable given that phase

is a circular metric. Cluster-corrected circular-linear correlation

analyses (see STARMethods) were used to assess the non-linear

relationship between optimal coupling phase and behavior.

A significant positive cluster was identified over frontal regions

(p = 0.0010, mean rho = 0.4353), peaking at electrode F3 (rho =

0.5699; Figure 3A). To further delineate and visualize this non-

linear relationship, we binned the average memory retention

scores relative to the individual mean coupling direction

(10 bins, overlap: ±1 bin; gray shaded; Figure 3A). The resulting

distribution followed an inverted u shape, demonstrating that the

success of overnight memory consolidation was achieved when

the spindle event occurred most proximal to the SO up-state

peak. When spindles occurred further from that up-state peak,

the predictive influence on overnight memory retention success

declined. Note that this finding was not confounded by demo-

graphic or sleep architecture differences (Table S5).

No other significant EEG clusters were identified when SO-

spindle coupling strength was correlated with the degree of

overnight memory retention across all subjects (Figure 3B). To

assure that these results were robust against differences in oscil-
(F) Statistical map of a data-driven comodulogram. The black-circled area high

confined to the SO-spindle range. See also Figure S2B.

(G) Cross-frequency directionality analyses. Values above zero indicate that SOs

activity in young, but not older, adults (electrode Fz; mean ± SEM), while pariet

(bottom; Pz; Figure S2C). However, this effect is pronounced for young adults. Th

influences are reduced in older relative to young adults. Note that this effect was
lation power and peak frequency (Table S4), we corrected for

sleep spindle peak and amplitude distribution confounds (Fig-

ure 3C; Figure S3) by detecting the individual sleep spindle

peak frequency for every SO event. A significant positive cluster

was observed (p = 0.0040, mean rho = 0.3790), which peaked at

electrode C4 (Figure 3D, rho = 0.4705), indicating that the

coupling phase robustly predicted overnight memory retention.

Importantly, this effect peaked in both older and young adults

at neighboring electrodes (C4 in older adults: rho = 0.5725; Cz in

young adults: rho = 0.5678). This result demonstrates that, even

though older adults showed a reduction in SO-spindle coupling

and lower overnight memory retention than young adults, the

same predictive functional relationship between SO-spindle

coupling and memory consolidation success was observed in

both groups.

Performance for older and young adults was binned, allowing

the expression of the quadratic fits to highlight the inverse

u-shaped relationship indicated by the circular-linear correla-

tions (Figure 3D). These findings confirmed that after correcting

for power and peak frequency differences, the degree of over-

night memory retention success was still predicted by the timing

of the coupled relationship between the SO and the spindle

(Figure 3D). Therefore, memory consolidation success was

most accurately predicted by sleep spindle amplitude peaking

just after the SO up-state peak.

Age-Related Gray Matter Atrophy Predicts Coupling
Deficits
Collectively, the above analyses (1) establish that the oscillatory

dynamics of SO-spindle coupling demonstrate impairments in

these dynamics in older relative to young adults and (2) identify

that the spatiotemporal precision of SO-spindle coupling

predicts the degree of overnight memory retention success

and, when impaired in older adults, predicts greater overnight

forgetting.

Finally, we sought to determine a potential underlying patho-

logical mechanism accounting for why older adults suffer these

impairments. We focused a priori on mPFC GM, based on the

prominent role of themPFC in SO oscillatory generation (Murphy

et al., 2009; Saletin et al., 2013). Specifically, we tested the hy-

pothesis that mPFC GM atrophy predicts the degree of compro-

mised SO-spindle dynamic coupling.

To rule out age-related confounds, we corrected all structural

metrics by the total intracranial volume, which were correlated

(rho = �0.2919, p = 0.0358). We then utilized cluster-based per-

mutation correlation analyses to assess whether the GM volume

in any region of interest (ROI) predicted directional SO-spindle

coupling as measured by the PSI. Consistent with the hypothe-

sis, GM volume in mPFC positively correlated with directional

coupling (Figure 4A; p = 0.0080, mean rho = 0.3321), indicating

that as GM volume in mPFC decreases, directional phase
lights the significant difference between older and young adults, which was

drive sleep spindle activity. Top: we found that frontal SOs drive sleep spindle

o-occipital SO predicts sleep spindle activity in both older and young adults

e topography (middle) depicts the spatial extent where directional SO-spindle

independent of the chosen window length (Figure S2D).
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Figure 3. Timing of SO-Spindle Interactions

Predicts Memory Retention

(A) Top: cluster-corrected circular-linear correlation

analysis between the individual mean SO-spindle

coupling phase and overnight memory retention

after correction for power differences (* indicates

significant sensors). The strongest effect was

observed at electrode F3. Bottom: blue dots indi-

cate older adults; red dots young adults.Webinned

the mean behavioral performance relative to the

coupling phase in ten overlapping bins to highlight

the u-shaped, non-linear relationship.

(B) No significant correlation was observed be-

tween coupling strength (resultant vector length)

and memory retention (same conventions as in A).

(C) Sleep spindle frequency relative to SO cycle at

a frontal (left) and parieto-occipital (Pz; right)

electrode (mean ± SEM). Frontal sleep spindles

are slower than posterior sleep spindles. Their

frequency only varies as a function of the SO

phase over frontal regions, where it is significantly

lower for older adults (top).

(D) Cluster-corrected circular-linear correlations

after correcting for differences in power distribu-

tions and sleep spindle frequencies (see also

Figure S3; same conventions as in A). Importantly,

memory retention was coupling phase dependent

in older and young adults. Overall, the best per-

formance was observed when the sleep spindles

peak just after the SO peak. Blue dots depict older

adults. Dark gray bars indicate mean binned

memory performance; black solid line depicts

a quadratic fit to approximate the non-linear,

u-shaped relationship. Conversely, red dots, light

gray bars, and the dashed black line reflect young

adults.
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coupling between SOs and sleep spindles is weakened. Note

that the results were comparable when we corrected for total

brain volume (rho = 0.29, p = 0.0343). In addition, we partialled

out age from the cluster-based correlation test (see STAR

Methods) and again obtained a significant frontal cluster (p =

0.0490; mean rho = 0.25).

While our results confirmed the key role of SOs in the coupling

dynamics and associated memory consolidation benefit, sleep

spindles, which are grouped by the SOs, are anatomically recog-

nized to be thalamo-cortical-mediated events (Steriade et al.,

1987; though spindles have also beenmeasured in the hippocam-

pus; De Gennaro and Ferrara, 2003; Staresina et al., 2015). Given

these findings, we performed additional post hoc analyses to

examine whether GM volume in these spindle-associated regions

also predicted impairments in SO-spindle coupling.

GM volume was extracted for all ROIs where sleep-related

oscillations are thought to emerge: hippocampus and the thal-

amus, in addition to the neighboring lateral orbitofrontal cortex

(OFC) or dorsolateral PFC (DLPFC) and several control ROIs

(occipital, precuneus, posterior cingulate cortex, and posterior

parietal cortex), but no significant effects were observed for

these other eight ROIs (Figure 4B). These results confirmed the

key role of mPFC in altered SO-spindle coupling—an anatom-

ical-physiological relationship that was not observed for other

likely candidate regions.
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DISCUSSION

Together, our results provide the first demonstration that (1) the

precisely coordinated timing between the cortical NREM SO up-

state and the sleep spindle predicts successful hippocampus-

dependent memory consolidation; (2) temporal disruption of

this coordinated NREM oscillation coupling in older relative to

young adults predicts impaired hippocampus-dependent over-

night memory consolidation; and (3) one pathological mecha-

nism associated with impairment in spatiotemporal coupling of

the cortical SOs with sleep spindles in older adults is the severity

of mPFC GM atrophy.

The Oscillatory Hierarchy of Sleep-Dependent Memory
Consolidation
A long-standing proposal in models of sleep-dependent, hippo-

campus-dependent memory consolidation involves the timed

interactive coupling between SOs and sleep spindles (Rasch

and Born, 2013). Indirect evidence to date has involved demon-

strating that individual properties of SOs and sleep spindles

are linked to successful overnight memory retention (Niknazar

et al., 2015; Mander et al., 2013; Gais et al., 2002; Mander

et al., 2014; Mölle et al., 2002). Seminal intracranial EEG

studies have further highlighted the hierarchical coupling of

cortical SOs, cortico-thalamic sleep spindles, and hippocampal



Figure 4. Directional SO-Spindle Coupling

Depends on Prefrontal Gray Matter Volume

(A) Top right: definition of the mPFC ROI on cor-

onal, sagittal, and axial slices. Top left: topo-

graphic map of cluster-corrected correlation

analysis between graymatter (GM) volume and the

directional CFC (PSI), which revealed that direc-

tional influences were stronger when subjects had

more GM volume. Bottom: scatterplot of signifi-

cant correlation at electrode Fz. Hence, age-

related GM atrophy contributes to a breakdown of

SO-mediated spindle coupling. Note that GM

volume was corrected for age-related total intra-

cranial volume.

(B) This significant relationship was limited to

mPFC and was not observed in other select re-

gions, including the hippocampus, thalamus,

adjacent regions, such as the OFC and DLPFC, or

in any of additional control regions (occipital,

precuneus, posterior cingulate, and posterior

parietal).

Please cite this article in press as: Helfrich et al., Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting,
Neuron (2017), https://doi.org/10.1016/j.neuron.2017.11.020
ripples (Clemens et al., 2007; Mak-McCully et al., 2017; Stare-

sina et al., 2015). However, no assessment of memory was per-

formed in these studies, leaving the functional relevance of these

coupled NREM oscillation relationships unclear. Moreover, no

direct assessment of the directionality of the coupling of these

events has been reported.

Here, we address these issues using directional CFC analyses

(Helfrich and Knight, 2016) and determine how SOs modulate

sleep spindle timing, amplitude, and peak frequency. Our

results reveal a unique spatiotemporal profile of the coupling

relationship between SOs and sleep spindles in young adults,

such that sleep spindle amplitude peaked around the cortical

up-state.Moreover, this precise temporal relationship was espe-

cially pronounced over centro-parietal regions—of topograph-

ical relevance as it may be considered the anatomical conver-

gence zone between the known frontal dominance of the SOs

(Murphy et al., 2009) and the parietal dominance of broad-range

(11–16 Hz) spindles (De Gennaro and Ferrara, 2003; Riedner

et al., 2011).

A second key finding revealed by the current study is that the

normally precise spatiotemporal coordination of the SO-spindle-

coupled event is impaired in older adults. Unlike young adults, in

which spindle events expressed a strong coincidence with the

cortical SO up-state, spindle oscillations in older adults arrived

significantly further away from the depolarizing upswing of the

SO cycle, occurring prior to it rather than just after the depolari-

zation envelop. In addition, this phase coupling was more

dispersed over SOs in older adults. These findings provide evi-

dence that the aging brain loses the neurophysiological ability

to coordinate the two dominant oscillations of NREM sleep, in

stark contrast to the precise spatiotemporal coupling expressed

in young adults. However, these data alone do not necessarily

establish that this dynamic coupling profile is of functional

benefit in young adults and whether coupling impairments in

older adults is detrimental for older adults. We address this

issue next.
SO-Spindle Coupling and Overnight Memory
Consolidation
System consolidation theory suggests that new memories are

transiently more dependent on the hippocampus and then grad-

ually transform to becomemore prefrontal dependent (Frankland

and Bontempi, 2005; Kitamura et al., 2017). Endogenous NREM

oscillatory activity is thought to provide the key functional sub-

strate of timed information transfer between cortical regions

(Buzsáki and Draguhn, 2004). In particular, neocortical SOs are

thought to orchestrate thalamo-cortical sleep spindle and hippo-

campal ripple activity during NREM sleep to facilitate the infor-

mation transfer between neocortical and hippocampal circuits

(Buzsáki, 1998; Isomura et al., 2006; Sirota et al., 2003). This

nesting of multiple frequency bands constitutes an oscillatory hi-

erarchy, providing the precise intrinsically generated timing to

route information from the hippocampus to neocortical areas

at times of high excitability, which in turn facilitate long-term stor-

age (Born and Wilhelm, 2012; Diekelmann and Born, 2010).

Several studies have inferred a role of the phase of the SO in

determining the success of memory consolidation using indirect

measures (Batterink et al., 2016; Papalambros et al., 2017). In

addition, brain stimulation studies have established that entrain-

ment of SOs can have reciprocal effects on sleep spindles and

vice versa (Lustenberger et al., 2016; Marshall et al., 2006).

Most recently, it has been suggested that shifts in the exact

SO-spindle timing could give rise to the behavioral benefits of

electrical stimulation observed in rodents, which may also be

beneficial in cognitively impaired older individuals (Ladenbauer

et al., 2017; Latchoumane et al., 2017; Niknazar et al., 2015).

Our results provide the first direct evidence that the exact timing

of SOs and sleep spindles in the healthy, human brain predicts

the success of overnight hippocampus-dependent memory

retention (Diekelmann and Born, 2010; Mander et al., 2017).

A further discovery of the current study is the demonstration

that the precise temporal interplay of SOs and sleep spindles

is disrupted in older adults, wherein sleep spindles were
Neuron 97, 1–10, January 3, 2018 7
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misaligned (often occurring too early in the SO cycle) relative to

the precise timing in young adults. The process of human brain

aging appears to weaken the otherwise robust NREM oscillatory

hierarchy, reducing the optimal SO-spindle phase timing, and, in

doing so, predicts impaired memory consolidation. Two points

are of relevance in this regard. First, the finding that the mem-

ory-SO-spindle coupling relationship was significant in older

adults, but at an earlier phase, demonstrates that both SOs

and sleep spindles were still expressed in older adults. However,

the mechanism that couples them in time is impaired, with spin-

dles systematically arriving too early within the SO cycle. Sec-

ond, it establishes that this impaired SO-spindle temporal

coupling diminished themagnitude of overnight memory consol-

idation benefit.

Neurophysiological Correlates of Age-Related Memory
Decline
A multitude of studies demonstrated that aging affects sleep ar-

chitecture and memory (Mander et al., 2017). However, no

neurophysiological mechanism has been identified that function-

ally links age-related changes in sleep physiology to impaired

memory retention, beyond quantitative reductions in the amount

of oscillatory activity. Here, we provide evidence that addresses

this mechanistic gap in understanding, demonstrating that the

loss of temporal SO-spindle coupling over specific topograph-

ical regions explains the degree of failed memory consolidation.

Interestingly, when only focusing on the basic phase measure,

sleep spindles lock as precisely to the rising flank of the SOs in

older adults as they do young adults, as we show in Figures

2C and 2D. However, our directional phase analyses revealed

the existence of a clear age-related deficit. Specifically, inspec-

tion of SO-spindle interactions, shown in Figure 2G, demon-

strated that the directional influence of SOs on sleep spindle

timing was diminished in older adults relative to young adults, re-

sulting in a misaligned arrival of the spindle relative to the SO.

Moreover, we found that this age-related impairment was not

equivalent across all brain regions but was expressed most

significantly over prefrontal cortex sensors and less strongly

over parieto-occipital regions (Figure 2G; Figure S2C). These re-

sults further establish that, in later adult life, the human adult

brain experiences a decline in the ability to precisely coordinate

SOs with cortico-thalamic sleep spindles. Specifically, spindles

occur more often at unfavorable SO phases in older adults,

arriving too early to confer optimal hippocampus-dependent

memory consolidation benefits.

One testable hypothesis in animal models emerging from our

findings is that the impaired coordination of temporal SO-spindle

coupling over prefrontal cortex does not trigger hippocampal rip-

ples as effectively and that the magnitude of that failure should

predict the consequential degree of impaired rather than suc-

cessful sleep-dependent memory consolidation (Rosanova and

Ulrich, 2005).

Prefrontal Atrophy, SO-Spindle Coupling, and Aging
Beyond impairments in memory-relevant SO-spindle coupling in

older relative to young adults, we further established at least one

pathological alteration contributing to the severity of this age-

related coupling dysfunction—GM atrophy within the mPFC.
8 Neuron 97, 1–10, January 3, 2018
GM volume of the mPFC predicts inter-individual differences in

the quality of SOs in both young (Saletin et al., 2013) and older

(Mander et al., 2013) adults. Moreover, high-density EEG evi-

dence has defined a role for the mPFC in the generation of

slow waves (Murphy et al., 2009).

Our findings advance this anatomical-neurophysiological

connection. We show that the decrease in structural integrity

of themPFC accounts for the qualitative degree of impaired tem-

poral phase coupling between the SOs and sleep spindles. Thus,

mPFC atrophy, in addition to reducing SO incidence and inten-

sity (Mander et al., 2013; Saletin et al., 2013), contributes to

misalignment of the timing of sleep spindles relative to the SO

phase. This effect is greatest over frontal EEG derivations, indi-

cating that the mPFC may play a particularly important role in

the regulation of the coordinated timing of NREM sleep

oscillations.

The results reveal that the structural integrity of mPFC is one

factor determining the capacity of the human brain to precisely

and optimally coordinate the timed arrival of sleep spindles

with the SOs and, in doing so, dictate the success or failure of

hippocampus-dependent memory consolidation. Intracranial

studies taking advantage of invasive recordings from multiple

ROIs in concert, such asmPFC, the hippocampus, and thalamus

(Clemens et al., 2007; Mak-McCully et al., 2017; Nir et al., 2011;

Staresina et al., 2015), will help to clarify the directional influ-

ences of cortical-subcortical interaction not possible with scalp

EEG recordings. Such recordings occurring combined with

sleep-dependent memory tasks would further our current under-

standing of the coordinated interactions between the mPFC,

thalamus, and hippocampus that occurs during NREM sleep os-

cillations as well as their necessity and sufficiency in supporting

long-term memory retention.

Conclusions
Our findings reveal a fundamental neurophysiologic mechanism

involving the spatiotemporal coupling between the SO and the

sleep spindle and demonstrate that this temporal synchrony is

functionally and behaviorally relevant for the success of over-

night memory consolidation. We further show that this same

neurophysiological oscillatory dynamic is impaired in older rela-

tive to young adults, leading to imprecise sleep spindle expres-

sion in relationship with the depolarizing up-state of the SO.

Moreover, our findings reveal that age-related prefrontal GM at-

rophy represents one neuropathological substrate explaining the

attenuation of this oscillatory control mechanism, which thus im-

pairs hippocampus-dependent memory consolidation.

Our results are of potential clinical relevance in two ways.

First, they document the presence of an under-appreciated

pathway—impaired temporal precision of sleep oscillation

coupling—that contributes to memory decline in later life. Sec-

ond, they help define sleep oscillatory synchrony as a novel ther-

apeutic target for modulation of hippocampus-dependent mem-

ory consolidation in older adults and potentially in thosewithmild

cognitive impairment (Ladenbauer et al., 2017) and Alzheimer’s

disease (Mander et al., 2017). This may be achieved using non-

invasive entrainment by means of acoustic, electric, or magnetic

brain stimulation (Helfrich et al., 2014; Papalambros et al., 2017),

aiming to restore the temporally precise SO-spindle coordination
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(Marshall et al., 2006) closer to that of young adults, helping

reduce the impact of cognitive decline in aging.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
32 healthy older (mean age: 73.7 ± 5.3; mean ± SD) and 20 younger adults (20.4 ± 2.0 years) participated in the study (see Table S1

for demographic details). All participants provided written informed consent according to the local ethics committee (Berkeley

Committee for Protection of Human Subjects Protocol Number 2010-01-595) and the Declaration of Helsinki. Data from a subset

of participants has been reported previously (Mander et al., 2013, 2014, 2015).

METHOD DETAILS

Experimental Design and Procedure
All participants were trained on the episodic word-pair task in the evening and performed a short recognition test after 10 min. Then,

participants were offered an 8 hr sleep opportunity, starting at their habitual bedtime. Polysomnography was collected continuously.

Participants performed a long version of the recognition test approximately 2 hr after awakening. Subsequently, we obtained struc-

tural MRI scans from all participants. Two older adults did not complete behavioral testing, and two young adults failed to achieve

criterion at encoding. Thus, these four subjects were excluded from behavioral analyses, but were included in all electrophysiological

and imaging analyses.

Behavioral Task
We utilized a previously established sleep-dependent episodic memory task (Figure 1A), where subjects had to learn word-nonsense

word pairs (Mander et al., 2013). In brief, words were 3-8 letters in length and drawn from a normative set of English words, while

nonsense words were 6-14 letters in length and derived from groups of common phonemes. During encoding, subjects learned

120 word-nonsense pairs. Each pair was presented for 5 s. Participants performed the criterion training immediately after encoding.

Thewordwas presented alongwith the previously learned nonsense word and two new nonsensewords. Subjects had to choose the

correctly associated nonsense words and received feedback afterward. Incorrect trials were repeated after a variable interval, and

were presentedwith two additional new nonsensewords to avoid repetition of incorrect nonsensewords. Criterion training continued

until correct responses were observed for all trials.

During recognition, a probe word or a new (foil) probe word was presented along with 4 options: (1) the originally paired nonsense

word, (2) a previously displayed nonsense word, which was linked to a different probe (lure), (3) a new nonsense word or (4) an option

to indicate that the probe is new. During the recognition test after a short delay (10 min), 30 probe and 15 foil trials were presented. At
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the long delay (10 h), 90 probe and 45 foil trials were tested. All probe words were presented only once during recognition testing,

either during short or long delay testing.

Sleep Monitoring and EEG Data Acquisition
Polysomnography (PSG) sleepmonitoringwas recorded on aGrass TechnologiesComet XL system (Astro-Med), including 19-channel

electroencephalography (EEG) placed using the standard 10-20 system as well as Electromyography (EMG). Electrooculogram (EOG)

was recorded the right and left outer canthi. EEG recordings were referenced to bilateral linkedmastoids and digitized at 400 Hz in the

range from0.1–100Hz.Sleepscoringwasperformedaccording tostandardcriteria in30sepochs (RechtschaffenandKales, 1968) (see

Table S2 for sleep stagemetrics for each group). Slowwave sleep (SWS) was defined as NREM stages 3-4, while NREM sleep encom-

passed stages 2-4. Given that stage 2 does not always exhibit pronounced SO activity (Figures 1C and 1D), we focused on SWS for all

correlational analyses.

MRI Data Acquisition
Scanning was performed on a Siemens Trio 3T scanner with a 32-channel head coil. We obtained two high-resolution T1-weighted

anatomical images, which were acquired using a three-dimensional MPRAGE protocol with the following parameters: repetition time,

1900 ms; echo time, 2.52 ms; flip angle, 9�; field of view, 256 mm; matrix, 256 3 256; slice thickness, 1.0 mm; 176 slices. MPRAGE

images were co-registered, and the mean image was used to perform optimized voxel-based morphometry (VBM) to examine gray

matter volume within specified regions of interest (ROI) as described below.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral Data Analysis
Memory recognition was calculated by subtracting both the false alarm rate (proportion of foil words, which subjects’ reported as

previously encountered) and the lure rate (proportion of words that were paired with a familiar, but incorrect nonsense word) from

the hit rate (correctly paired word-nonsense word pairs). Memory retention was subsequently calculated as the difference between

recognition at long minus short delays.

EEG Data
Preprocessing: EEG data were imported into EEGLAB and epoched into 5 s bins, which were visually inspected for artifacts. Then the

continuous data was exported to FieldTrip for further analyses.

Spectral Analysis

(1) To obtain the average power spectra (Figure 1B), the raw data was epoched into non-overlapping 15 s segments and epochs

containing artifacts were rejected. Data was tapered with a Hanning window and spectral estimates were calculated from 0.5 to

50 Hz in 0.5 Hz steps and averaged per subject and channel for all epochs in NREM sleep. (2) To obtain a continuous time-frequency

representation of a whole night of sleep (Figures 1C and 1D), we utilized multitaper spectral analyses (Mitra and Pesaran, 1999; Pre-

rau et al., 2017), based on discrete prolate slepian sequences. The raw data was epoched into 30 s long segments, with 85%overlap.

Spectral estimates were obtained between 0.5 and 30 Hz in 0.5 Hz steps. We utilized 29 tapers, providing a frequency smoothing

of ± 0.5 Hz.

Event Detection

Event detection (Figures 1D, 2A, and 2C) was performed for every channel separately based on previously established algorithms

(Mölle et al., 2011; Staresina et al., 2015). (1) Slow oscillations: In brief, we first filtered the continuous signal between 0.16 and

1.25 Hz and detected all the zero crossings. Then events were selected based on time (0.8 – 2 s duration) and amplitude (75%

percentile) criteria. Finally, we extracted artifact-free 5 s long segments (±2.5 s around trough) from the raw signal. (2) Sleep spindles:

We filtered the signal between 12-16 Hz and extracted the analytical amplitude after applying a Hilbert transform. We smoothed the

amplitude with a 200 ms moving average. Then the amplitude was thresholded at the 75% percentile (amplitude criterion) and only

events that exceeded the threshold for 0.5 to 3 s (time criterion) were accepted. Artifact-free events were then defined as 5 s long

sleep-spindle epochs (±2.5 s), peak-locked. Given that we observed prominent power differences between young and older adults

(Figure 1B), we normalized events per subjects by means of a z-score prior to all subsequent analyses, unless stated otherwise

(Figure 2A). Themean and standard deviation were derived from the unfiltered event-locked average time course of either SO or spin-

dle events (e.g., Figures 1C and 1D, lower right) in every participants. Z-scores were then computed for all trials and time points.

Event-Locked Spectral Analysis

Time-frequency representations for artifact-free normalized SO (Figure 2B) were calculated after applying a 500msHanning window.

Spectral estimates (0.5 - 30 Hz; 0.5 Hz steps) were calculated between�2 and 2 s in steps of 50ms and baseline-corrected bymeans

of z-score relative to a bootstrapped baseline distribution that was created from all trials (baseline epoch �2 to �1.5 s, 10000 iter-

ations; Flinker et al., 2015).

Event-Locked Cross-Frequency Coupling

For event-locked cross-frequency analyses (Dvorak and Fenton, 2014; Staresina et al., 2015), we first filtered the normalized SO

trough-locked data (Figures 2D and 2E; spindle-locked in Figures 1C and 1D) into the SO component (0.1 - 1.25 Hz) and extracted
e2 Neuron 97, 1–10.e1–e4, January 3, 2018



Please cite this article in press as: Helfrich et al., Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting,
Neuron (2017), https://doi.org/10.1016/j.neuron.2017.11.020
the instantaneous phase angle after applying aHilbert transform. Thenwe filtered the same trials between 12-16Hz and extracted the

instantaneous amplitude from the Hilbert transform. We only considered the time range from �2 to 2 s to avoid filter edge artifacts.

For every subject, channel, and epoch, we now detected the maximal sleep spindle amplitude and corresponding SO phase angle.

The mean circular direction and resultant vector length across all NREM events were determined using the CircStat toolbox. In addi-

tion, we divided the SO phase into 17 linearly spaced bins and calculated the mean sleep spindle amplitude per bin. We normalized

the individual sleep spindle amplitude distribution by the mean across all bins.

Data-Driven Cross-Frequency Coupling

We calculated a comodulogram on 15 s artifact-free long non-overlapping z-normalized segments during NREM sleep. We calcu-

lated the modulation index (Canolty et al., 2006) between lower (0.5 – 6.5 Hz; 0.5 Hz steps) and faster frequencies (8-40 Hz; 1 Hz

steps). For the low frequency, we utilized a window of ± 1 Hz, which was adjusted for the lowest frequencies. For faster frequencies,

the window was adjusted to capture the side peaks. Hence, the window at a given frequency was always defined as the low center

frequency + 1Hz, i.e., at 15 Hz, the window to assess coupling to the 3 Hz phase was ± 4 Hz; while at 5 Hz the windowwas ± 6 Hz. The

modulation index was normalized by a bootstrapped z-score relative to a distribution that was obtained by random-point block-

swapping (200 iterations).

Cross-Frequency Directionality Analysis

To determine whether low frequencies components drive sleep spindle activity during SWS or vice versa, we calculated the cross-

frequency phase slope index (Jiang et al., 2015; Helfrich et al., 2017) between the normalized signal and the signal filtered in the sleep

spindle range (12-16 Hz). To avoid edge artifacts, we restricted this analysis to ± 2seconds around the SO trough. Hence, these 4 s

long segments include at least 3 cycles of the SO oscillation (�0.75 Hz), in accordance with previous reports (Jiang et al., 2015). We

considered frequencies between 0.5 and 4 Hz (0.5 Hz steps; 0.25 Hz bandwidth) after applying a Hanning window and extracting the

complex Fourier coefficients. Significant values above zero indicate that SO drive sleep spindle activity, while negative values indi-

cate that sleep spindles drive SO. Values around zero indicate no directional coupling. We repeated this analysis based on 15 s long

segments, which were then averaged across all available NREM events to demonstrate that the findings are not confounded by the

chosen window length (Figure S2D).

Detection of SO and Spindle Frequency Peaks

(1) SO peak frequency (related to Figure 1B): In order to disentangle the true oscillatory SO component from the prominent 1/f slope,

we utilized irregular-resampling auto-spectral analysis (IRASA; Wen and Liu, 2016). We analyzed non-overlapping 15 s segments of

continuous artifact-free data during NREM sleep and assessed frequencies between 0.1 and 30 Hz. IRASA takes advantage of the

fact that irregularly resampling of the neuronal signals by pairwise non-integer values (resampling factor rf and corresponding factor

rf*: e.g., 1.1 and 0.9) slightly shifts the peak frequency of oscillatory signals by compressing or stretching the underlying signal. How-

ever, the 1/f component remains stable. This procedure is then repeated in small, overlapping windows (window size: 5 s, sliding

steps: 1 s; resampling factors rf: 1.1-1.9 in 0.05 increments). Note resampling was always done in a pairwise fashion for factor h

and the corresponding resampling factor rf* = 2 - rf. For each segment, we calculated the auto-power spectrum by means of a

FFT after applying a Hanning window. Then all auto-spectra were median-averaged to obtain the power spectrum of the 1/f compo-

nent, with the idea being that resampled oscillatory components are averaged out. Finally, the resampled 1/f PSD is subtracted from

the original PSD to obtain the oscillatory residuals on which we performed the individual peak detection (SO range: peak < 2 Hz; spin-

dle-range: 9-17 Hz).

(2) In addition to IRASA, which provides a mean sleep spindle peak frequency, we also utilized a linear de-trending approach to

assess spindle frequencies as a function of the SO phase (Figure 3C), where we investigated whether SOmodulates additional sleep

spindle features besides the amplitude on a fine-grained temporal scale. Therefore, we screened every artifact-free normalized SO

event (�1.25 to 1.25 around trough) at every channel separately for oscillatory activity in the sleep spindle range. First, we zero-

padded every trial to 10 s to increase the frequency resolution (0.1 Hz), then applied a Hanning window and obtained spectral esti-

mates between 8 and 16 Hz. The resulting power values were log transformed. The sleep spindle peak for every SO was detected

after subtraction of linear fit to the spectrum to remove the 1/f component. Second, every trial was filtered at the trial-specific peak

frequency (±2 Hz) and the instantaneous amplitude was extracted from aHilbert transform before we performed event-related cross-

frequency coupling analyses. In addition, we only considered SO that contained sleep spindle events that exceeded the 75%percen-

tile of sleep spindle amplitudes to ensure comparability for correlation analyses. This approach effectively corrected for differences in

sleep spindle peak frequencies and spectral power distributions prior to correlation with behavior. To obtain time-resolved sleep

spindle peak frequency estimates, we detected the sleep spindle peak as described above in a 500 ms sliding window approach.

We shifted the window in 25ms steps relative to the SO events (�1 to 1 s; ± 250 ms) and recalculated the sleep spindle peak fre-

quency. Finally, we smoothed the resulting traces with a 100ms moving average.

Structural MRI Data Analysis
To measure gray matter volume, optimized voxel-based morphometry (VBM) was performed using SPM8 (Penny et al., 2011)

(Wellcome Department of Imaging Neuroscience) with the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm.html) and the Diffeo-

morphic Anatomical Registration through Exponentiated Lie algebra (DARTEL) toolbox in order to improve registration of older brains

to the normalized MNI template (Mak et al., 2011; Mander et al., 2013). To enhance signal to noise ratio, two T1-weighted MPRAGE

images were first co-registered and averaged. Averaged images were then segmented applying the Markov random field approach
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(Rajapakse et al., 1997) and then registered, normalized, andmodulated using DARTEL. Greymatter andwhitematter segmentations

were inputted into DARTEL and utilized to create a study specific template, which was then used to normalize individual brains into

MNI space. Modulated gray matter maps were then smoothed using an 8 mm Gaussian kernel.

Measures of total intracranial volume (TIV) for each participant were estimated from the sum of gray matter, white matter, and

CSF segmentation, and then used to adjust gray matter volumetric measures to account for differences in head size. Given that

slow oscillations, sleep spindles, and ripples depend on the interaction between prefrontal cortex, thalamus, and hippocampus re-

gions, the Anatomical Automatic Labeling repository (Tzourio-Mazoyer et al., 2002) within the Wake Forest University PickAtlas

toolbox (Maldjian et al., 2003) was used to generate anatomically-based ROIs for the hippocampus, thalamus, medial prefrontal cor-

tex, and orbitofrontal cortex, as well as all other control ROIs. Mean voxelwise gray matter volume within anatomically defined ROIs

were extracted using the Marsbar toolbox (Brett et al., 2002) and used in analyses relating gray matter volumetric measures with

sleep and memory variables.

Statistical Analysis
Unless stated otherwise, we used cluster-based permutation tests (Maris and Oostenveld, 2007) to correct for multiple comparisons

as implemented in FieldTrip (Monte Carlo method; 1000 iterations; maxsize criterion). Clusters were formed in time/frequency

(e.g., Figures 2B and 2F) or space (e.g., Figures 2E and 2G) by thresholding independent t tests (e.g., Figures 2E–2G), circular-linear

(e.g., Figures 3A and 3D) or linear correlations (Spearman, e.g., Figure 4A) at p < 0.05. Correlation values were transformed into

t-values. A permutation distribution was then created by randomly shuffling labels. The permutation p value was obtained by

comparing the cluster statistic to the random permutation distribution. The clusters were considered significant at p < 0.05 (two-

sided). Bonferroni-correction was applied to correct for multiple cluster tests (e.g., Figure 4B).

Circular statistics were calculated using the CircStat toolbox. Circular non-uniformity was assessedwith Rayleigh tests at p < 0.01.

Effect sizes were quantified by means of Cohen’s d, the correlation coefficient rho or h2 in case of repeated-measures ANOVAs or

Watson-Williams-tests (circular ANOVA equivalent). Circular-linear correlations were calculated according to the following formula:

r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2xs + r2xc � 2 � rxs � rxc � rcs

1� r2cs

s

where rxs, rxc and rcs were defined as

rxs = corrðx; sinðalphaÞÞ
rxc = corrðx; cosðalphaÞÞ
rcs = corrðsinðalphaÞ; cosðalphaÞÞ
with x being the linear and alpha being the circular variable. In order to control for confounding variables, we utilized partial correla-

tions, where c was partialled out of x, sin(alpha) and cos(alpha) before computing the multiple correlation using the regression

residuals. We utilized a threshold of 10% to define clusters following partial correlations, which were then again tested at a

cluster alpha of 0.05 (Maris and Oostenveld, 2007). To obtain effect sizes for cluster tests, we calculated the effect size separately

for all channel, frequency and/or time points and averaged across all data points in the cluster. Repeated-measures ANOVAs were

Greenhouse-Geisser corrected.

DATA AND SOFTWARE AVAILABILITY

Freely available software and algorithms used for analysis are listed in the Key Resources Table. All custom scripts and data con-

tained in this manuscript are available upon request from the Lead Contact.
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Supplemental Information 
 
Table S1 related to Figure 1A and Results 
Demographic and Neuropsychological Measures (mean ±  SD) 
 
Variable Young (n = 20) Older (n = 32) 
Age (yr) 
Sex 
Mean prestudy bed time 
Mean prestudy wake time 
Mean prestudy time in bed (hr) 
Mean prestudy sleep time (hr) 
Mean prestudy sleep latency (min) 
Mean prestudy sleep efficiency (%) 
MMSE 
 
Neuropsychological Measures 
CVLT (long delay, # free recalled) 
WMS (visual reproduction %) 
Trailmaking B (seconds) 
Stroop (# correct in 60 seconds) 

20.4 ± 2.0 
12 Female 
0:20 ± 0:53 
8:27 ± 0:52 
8.11 ± 0.58 
7.75 ± 0.61 
15.7 ± 9.2 
95.6 ± 3.4 
29.6 ± 0.9 
 

73.8 ± 5.3*** 
22 Female 
22:50 ± 1:14*** 
7:14 ± 1:11*** 
8.39 ± 0.74 
7.13 ± 0.95* 
34.9 ± 41.7* 
85.3 ± 11.3*** 
29.4 ± 0.9 
 
 
11.1 ± 3.0 
75.0 ± 16.8 
72.8 ± 34.1 
50.1 ± 14.0 

*denotes P<0.05, ** P<0.01, ***P<0.001 
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Table S2 related to Figure 1C/D and Results 
Sleep statistics (mean ±  SE) 
 
Variable Young (n = 20) Older (n = 32) 
Total Recording Time (min) 
Total Sleep Time (min) 
Sleep Latency (min) 
Wake After Sleep Onset 
Stage 1 (min) 
Stage 2 (min) 
Slow Wave Sleep (min) 
Rapid Eye Movement Sleep (min) 
Sleep Efficiency (%) 

480.4 ± 0.2 
431.6 ± 6.1 
16.6 ± 2.8 
27.9 ± 5.8 
14.3 ± 1.6 
201.1 ± 6.7 
117.9 ± 7.1 
98.3 ± 6.1 
90.8 ± 1.3 

479.5 ± 0.6 
340.3 ± 11.8*** 
22.4 ± 4.6 
115.1 ± 10.9*** 
22.3 ± 1.4*** 
192.6 ± 10.0 
60.9 ± 6.4*** 
64.4 ± 5.4*** 
71.3 ± 2.5*** 

*denotes P<0.05, ** P<0.01, ***P<0.001 
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Table S3 related to Figure 3A and Results 
Learning, bedtime and retrieval time 
 
Variable Young (n = 20) Older (n = 32) 
Encoding time 
   Encoding to bedtime (min) 
 
Duration of criterion training (min) 
Immediate test time 
 
Wake time 
   Wake to retrieval time (min) 

19:30h ± 41min 
4.03h ± 40min 
 
27:39 ± 4:03min 
20:17h ± 39min 
 
7:31h ± 30min 
2:31h ± 55min 

19:10h ± 56min 
3:23h ± 36min 
 
39:09 ± 11.27min 
20:03h ± 1:04h 
 
6:34h ± 1:06h 
2:19h ± 40min 
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Table S4 related to Figure 3C/D 
Individual SO and spindle features (mean ± SEM) 
 

Event type and feature Young (n = 20) Older (n = 32) 
   
SO   
   
   Number of events [N] 4350 ± 113 3263 ± 162*** 
   Duration [s] 1.11 ± 0.01  1.12 ± 0.01 
   Amplitude uncorrected [µV] 109.19 ± 5.52 49.35 ± 2.10*** 
   Amplitude normalized [z] 5.46 ± 0.06 5.65 ± 0.11 
   Frequency [Hz] 0.80 ± 0.03 0.71 ± 0.04 
   
Spindles   
   
   Number of events [N] 3391 ± 132 1636 ± 127*** 
   Duration [s] 0.87 ± 0.02 0.71 ± 0.01*** 
   Amplitude uncorrected [µV] 45.44 ± 2.68 27.44 ± 2.76*** 
   Amplitude normalized [z] 12.51 ± 0.5 17.95 ± 2.94 
   Frequency [Hz] 12.58 ± 0.17 11.75 ± 0.11*** 
*denotes P<0.05, ** P<0.01, ***P<0.001 
 
Number of detected events in NREM sleep at electrode Fz. Average median event duration. 
Peak-to-peak amplitude uncorrected and after z-normalization (see also Figure 2A). Note that z-
normalization corrected for the pronounced SO amplitude differences (uncorrected: p < 0.0001; 
normalized: p = 0.1968) as well as for pronounced spindle power differences (uncorrected: p < 
0.0001; normalized: p = 0.1536). We corrected for differences in the total number of spindle 
events by bootstrapping coupled events (Figure S1G/H). We accounted for differences in event 
duration by a stratification approach (Figure S1D-F) and corrected for differences in spindle peak 
frequencies by filtering in individual frequency bands (Figure 3C/D and Figure S3). 
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Table S5 related to Figure 3A 
Partial circular-linear correlation results 
 
 rho p value 
Original observation (Figure 3A) 0.57 0.0004*** 
   
Factors partialled out:   
   
Age 0.37 0.0366* 
Mean prestudy bed time 0.45 0.0074** 
Mean prestudy wake time 0.47 0.0055** 
Mean prestudy time in bed (hr) 0.60 0.0002*** 
Mean prestudy sleep time (hr) 0.57 0.0005*** 
Mean prestudy sleep latency (min) 0.55 0.0007*** 
Mean prestudy sleep efficiency (%) 0.54 0.0009*** 
MMSE 0.57 0.0004*** 
   
Total Recording Time (min) 0.54 0.0008*** 
Total Sleep Time (min) 0.53 0.0013** 
Sleep Latency (min) 0.57 0.0004*** 
Wake After Sleep Onset 0.52 0.0015** 
Stage 1 (min) 0.54 0.0009*** 
Stage 2 (min) 0.58 0.0003*** 
Slow Wave Sleep (min) 0.57 0.0004*** 
Rapid Eye Movement Sleep (min) 0.56 0.0006*** 
Sleep Efficiency (%) 0.53 0.0012** 
*denotes P<0.05, ** P<0.01, ***P<0.001 
 
In order to account for the differences in various sleep parameters (Table S1 and S2) on the 
group differences in memory retention, we partialled out the confounding linear variables from the 
circular-linear correlations. We found that the relationship between coupling phase and behavior 
remained unchanged. Thus, differences in sleep architecture do not significantly contribute to the 
observed differences in memory retention.   
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Figure S1 related to Figure 1C/D and 2A/C/D/E 

 
SO-spindle coupling features and control analyses 
(a) Histogram of normalized mean inter-spindle intervals. A Poisson process implies that the 
inter-event interval grows exponentially. However, sleep spindles exhibit a non-Poisson like 
distribution. Sleep spindle expression and/or generation, just like single neurons, exhibits 
refractory periods and rhythmic modulations, which might arise from endogenous network 
dynamics. The histogram indicates that two detected sleep spindle events never immediately 
followed each other (values below 0.225 seconds are 0). We detected the first two maxima of the 
distribution (at 1.13 and 2.78 seconds), which is in accordance with a rhythmic modulation by a < 
1 Hz process, where subsequent sleep spindles are separated by 1-3 SO cycles. Note the 
majority of events during NREM sleep was detected in the range < 5 seconds. Individual 
distributions were mean normalized to account for differences in absolute event numbers 
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between subjects. In accordance with this finding that SO peak frequencies were below 1 Hz, and 
did not differ between subject groups (see also Table S4).  
(b) Stratification of power differences. Left: We observed prominent low frequency (<4 Hz) power 
differences before stratification (electrode Cz; t50 = -9.00, p < 0.0001, d = 2.26). Right: We utilized 
a FFT to transform the SO trough-locked raw time series into the frequency domain and then 
stratified the power distributions between old and young subjects based on 1000 bins and 10000 
iterations. This approach effectively removed all power differences between groups (t50 = -1.35, p 
= 0.1835, d = 0.38; right side). However, this approach removed as much as 98.9% of all trials in 
some subjects, given the pronounced power differences (left panel; note the differences in scaling 
of the y-axis).  
(c) We then repeated the event-locked cross-frequency coupling analyses. We found significant 
non-uniform distributions in both, older (Rayleigh z = 23.01, p < 0.0001) and younger adults 
(Rayleigh z = 13.33, p < 0.0001), which differed significantly (Watson-Williams test: F1,50 = 34.65; 
p < 0.0001; η2 = 0.38) and confirmed the main coupling direction results (Figure 2D; older adults: 
-49.1° ± 31.6°; young adults: 10.3° ± 34.7°; circular mean ± SD). 
(d) Spindle onset and duration analyses. We tested whether differences in sleep spindle onsets 
or duration could explain any of the observed coupling differences (electrode Cz). We first 
detected the spindle onset per subject based on their average spindle waveform. We first band-
pass filtered the spindle-locked average in the range from 12-16 Hz and normalized it by a z-
score. We then detected all the peaks and defined the onset of the spindle as the first peak that 
exceeded 5% of the largest peak. Following this we extracted the corresponding SO phase from 
the Hilbert transform. We found that spindles started around the SO ‘down-state’ in both old and 
young adults (older adults: Rayleigh z = 21.2, p < 0.0001; -178.5° ± 35.0°; younger adults: 
Rayleigh z = 16.62, p < 0.0001; -175.2° ± 24.1°; circular mean ± SD). The onset did not differ 
between older and younger adults (Watson-Williams test: F1,50 = 0.13, p = 0.7205, η2 = 0.002).  
(e) To address spindle duration differences between groups, we defined the spindle duration as 
the time that the individual spindle exceeded detection threshold. The analysis was based on the 
individual spindle peak frequencies (Table S4). Left: Spindles were of a significantly longer 
duration in younger adults (t50 = -6.64, p < 0.0001, d = 1.86); a finding that may explain why 
spindles peak significantly later in the SO cycle relative to older adults. Right: We then stratified 
the old and young groups based on the spindle duration (50 bins, 10000 repetitions) until no 
significant group differences were detected (t50 = -0.08, p = 0.9401, d = 0.02).  
(f) We repeated the event-locked cross-frequency coupling analyses based on the stratified 
distributions and again observed significant non-uniform distributions in both, older (Rayleigh z = 
12.44, p < 0.0001) and younger adults (Rayleigh z = 15.67, p < 0.0001). The groups differed 
significantly (Watson-Williams test: F1,50 = 8.30; p = 0.0058; η2 = 0.12), confirming the main 
coupling direction results (older adults: -22.4° ± 49.7°; young adults: 15.4° ± 27.4°; circular mean 
± SD). 
(g) Bootstrapped coupling estimates account for different event counts. Coupling estimates are 
easily distorted by differences in amplitude and event numbers. Younger adults exhibited more 
detected SO during NREM sleep than older adults (t50 = -4.7804, p < 0.0001, d = 1.46; Table S4). 
Here we normalized all time series prior to subsequent analyses. In order to control for 
differences in event numbers, we employed a random resampling approach. On 100 iterations, 
we recalculated the coupling strength and direction for 1000 randomly sampled SO events and 
found that the result remained unchanged (resultant vector length: Spearman rho = 0.9986, p < 
0.0001; average deviation: -0.0008 ± 0.0020; coupling direction: circular-circular rho = 0.9995, p < 
0.0001; average circular deviation -0.11° ± 0.96°; mean ± SD). Thus, differences in event 
numbers were statistically unlikely to explain the reported group differences, with sufficient 
number of events detected in each group to reliably estimate cross-frequency coupling in an 
unbiased manner. Single subject example. Data from one representative older adult is displayed. 
Left: black dots indicate 100 resampled mean directions, while the red line indicates the observed 
direction when all available events (n = 3733) were considered. The deviation observed deviation 
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was less than 1°. Right: Distribution of resampled resultant vector length (black) and the observed 
(red) value. Again, the deviation was negligible (< 0.01).  
(h) Left: Circular-circular correlation between the observed and bootstrapped coupling direction. 
The mean deviation was -0.11° ± 0.96° (circular mean ± SD) and the correlation was nearly 1. 
This indicates that every participant exhibited a sufficient number of events to reliably estimate 
the mean coupling direction and strength. Therefore, differences in event number are negligible 
and did not alter the results. Right: Linear correlation between observed coupling strength and 
resampled coupling strength. The average deviation was -0.0008 ± 0.0020 (mean ± SD) and the 
correlation approached 1.  
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Figure S2 related to Figure 2B/C/F/G 

 
Grand-average spectrograms, comodulograms and directionality analyses 
(a) Baseline-corrected grand-average SO-locked time-frequency representations underlying 
Figure 2B for older (left) and young (right) participants. The normalized and rescaled 
corresponding average SO event is superimposed in black. Dashed black lines depict the two 
largest SO peaks. Note that activity in sleep spindle range (12-16 Hz) peaks before the dashed 
line in older adults, while their occurrence coincides in younger adults.  
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(b) Grand-average normalized comodulogram underlying Figure 2F for older (left) and young 
(right) adults. Note the strongest effect was observed in the SO-spindle range in both older and 
young adults, but the magnitude was increased in young adults. 
(c) Directional SO-Spindle Cross-Frequency Coupling. We assessed whether SO predicted 
spindle activity separately for young and older adults. Therefore, we tested the PSI at every 
electrode against zero. We found than older adults exhibited two clusters, one fronto-polar (p = 
0.0070, d = 0.75) and one over parieto-occipital sensors (p = 0.0070, d = 0.73). Crucially, 
directional SO-spindle influences were attenuated over fronto-central sensors. Young adults only 
exhibited one large widespread significant cluster, indicating the SO mediated sleep spindle 
timing in multiple cortical regions (p = 0.0010, d = 1.05). Note that this cluster overlapped with the 
anterior cluster in older adults in two electrodes (F7/8), but not at electrodes Fp1 and Fp2 
(anterior electrodes). This was due to increased variance at electrodes Fp1/2 in younger adults 
caused by one outlier value (SD older adults: 0.0091; SD younger adults: 0.1092). After removal 
of that subject, PSI values were also above zero in younger adults (0.0034 ± 0.0149; mean ± SD; 
though not significantly different from zero, t18 = 1.01, p = 0.3277, d = 0.33). 
(d) We assessed the cross-frequency directional coupling (CFD) in an event-like character, 
centered on detected SOs (± 2seconds; Figure 2G and Figure S2C). Four seconds is sufficient 
to capture 3 cycles of the low frequency component (SO peak frequency ~0.75 Hz; see also 
Table S4). We also repeated the analysis based on a continuous 15 second segments (see 
Figure 1B) during NREM sleep to rule out that the 4 second signal length confounded PSI 
estimates. We again observed that SO-spindle directional cross-frequency coupling was reduced 
in older as compared to younger adults (left; p = 0.001; d = 1.26). The main differences were 
observed in < 1 Hz range (right panel). This result confirmed that SO drive spindle activity in 
younger adults and that this is reduced in older adults. 
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Figure S3 related to Figure 3C 

 
SO phase dependent spindle features 
Summary of SO-dependent spindle features in NREM sleep (electrode Fz).  
Left column: Spindle frequency as a function of the SO phase (related to Figure 3C).  
Center column: SO-phase dependent spindle amplitudes were determined after testing if 
individual SO events contained an oscillatory component in the spindle range (peak in the linearly 
de-trended power spectrum to correct for the 1/f bias). Note that this approach also captures 
spindle activity that would remain below detection threshold, using traditional spindle event 
detectors (amplitude criterion). Here we observed that older and younger adults have similar 
spindle amplitude distributions relative to the SO phase. While the overall power is reduced in 
older adults, the distributions are similar with overall higher values observed between 0 and +pi 
(SO peak to trough = falling flank), while lower values were observed between –pi and 0 (SO 
trough to peak = rising flank). Therefore, the relative 75% percentile amplitude criterion skewed 
the frequency and amplitude distribution-corrected average coupling phase angles in Figure 3D 
towards values > 0°. 
Right column: Note that this approach based on detecting spindle signatures in SO biases the 
spindle duration towards short-lasted events, given the nesting within the SO cycle (event 
criterion: 0.8 to 2s). Therefore, we extracted the median duration per subject from the detected 
spindle events and then assessed the respective SO phase distribution.  
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