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SUMMARY

Classic models of attention suggest that sustained
neural firing constitutes a neural correlate of sus-
tained attention. However, recent evidence indicates
that behavioral performance fluctuates over time,
exhibiting temporal dynamics that closely resemble
the spectral features of ongoing, oscillatory brain ac-
tivity. Therefore, it has been proposed that periodic
neuronal excitability fluctuations might shape atten-
tional allocation and overt behavior. However, empir-
ical evidence to support this notion is sparse. Here,
we address this issue by examining data from
large-scale subdural recordings, using two different
attention tasks that track perceptual ability at high
temporal resolution. Our results reveal that percep-
tual outcome varies as a function of the theta phase
even in states of sustained spatial attention. These
effects were robust at the single-subject level, sug-
gesting that rhythmic perceptual sampling is an
inherent property of the frontoparietal attention
network. Collectively, these findings support the
notion that the functional architecture of top-down
attention is intrinsically rhythmic.

INTRODUCTION

A long-standing question in models of sensory perception is

whether perception is discrete or continuous (VanRullen,

2016a; VanRullen and Koch, 2003). Likewise, it has been

debated whether the allocation of ‘‘sustained’’ attention to one

cued location is actually sustained or instead waxes and wanes

over time (Buschman and Kastner, 2015). These considerations

raise the possibility that our seemingly continuous experience of

the world is actually constructed from a rapid, sequential sam-
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pling of the environment. Given that neuronal oscillations are

ubiquitous in neural recordings (Buzsáki and Draguhn, 2004), it

has been suggested that rhythmic brain activity might support

the periodic sampling of the environment (Bishop, 1932; Varela

et al., 1981; VanRullen and Koch, 2003). Hence, endogenous

oscillatory brain activity might shape our perception of the world

on a rapid timescale (Helfrich and Knight, 2016; Siegel et al.,

2012). In the past, the functional role of neuronal oscillations

has often only been inferred by assessing binary task contrasts,

e.g., attend versus non-attend, which integrated activity over

longer time windows (Buschman and Kastner, 2015; Siegel

et al., 2008). However, in order to establish a direct link between

ongoing brain activity and behavior (Thut et al., 2012), it is desir-

able to sample behavioral outcome on a fine-grained temporal

scale matching the timescale of endogenous brain activity (Van-

Rullen, 2016a).

Previous behavioral and scalp electroencephalogram (EEG)

studies reported evidence for periodicities in bottom-up

perception and top-down guided behavior (Fiebelkorn et al.,

2013; Fontolan et al., 2014; Helfrich et al., 2017; Henry et al.,

2014; Landau and Fries, 2012; Neuling et al., 2012; Spaak

et al., 2014; Wöstmann et al., 2016; Zion Golumbic et al.,

2013). For example, EEG studies have shown that the detection

of a close-to-sensory-threshold target can be linked to

neuronal oscillations in the range from 7–10 Hz (Busch and

VanRullen, 2010; Busch et al., 2009; Mathewson et al., 2009).

Behavioral studies have reported evidence of an ‘‘attentional

spotlight’’ mechanism, whereby attention alternately samples

two spatial locations at anti-phasic �4 Hz rhythms (Busch

and VanRullen, 2010; Fiebelkorn et al., 2013; Landau et al.,

2015; VanRullen et al., 2007). It remains unclear, however,

whether these theta rhythms originate in early visual cortex or

elsewhere (Busch and VanRullen, 2010; Dugué et al., 2015),

and behavioral and M/EEG data lack sufficient spatiotemporal

resolution to resolve the origins of rhythmic sampling during

attention (VanRullen, 2016a).

In particular, it is unclear which anatomical correlates consti-

tute the structural basis for rhythmic sampling in the human
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Figure 1. Task Design and Behavioral Re-

sults of Experiment 1

(A) Schematic task design. Participants initiated

the trial start by pressing a button. After a variable

delay, a brief spatial cue indicated the most likely

position of the upcoming target (72% validity).

Then, a variable cue-target-interval followed (500–

1,700 ms), before a close-to-sensory-threshold

target appeared at either the cued location, an

uncued location or was omitted. Participants

released the button when they detected the target.

(B) Left: time-resolved behavioral time course from

subject S7 (see also Figure S1). Note the waxing

and waning pattern over time. Right: FFT of the

behavioral time course (black). In order to disen-

tangle fractal 1/f and oscillatory components, we

estimated the background 1/f spectrum (red;

mean ± 3 SD) and only considered distinct peaks

that exceeded this distribution.

(C) Group level results after peak alignment to the

individual peak frequency (IPF). We detected a

peak in the theta-band with a mean of �4 Hz in

every participant (Figure S1).
brain. Furthermore, it is unresolved how rhythmic sampling is

functionally organized and distributed across cortical networks.

The limited spatiotemporal resolution of methods employed

in previous studies could not resolve whether behavioral

periodicities are a direct result of spontaneous, ongoing,

oscillatory brain activity, which is generated at the neuronal

population level. Finally, it remains unknown if rhythmic sampling

results from the inherent functional architecture of cortical

networks or if rhythmic sampling is instead task- and context-

dependent.

In the present study, we address these unanswered questions

by combining subdural recordings in humans with two different

attention tasks (Egly et al., 1994; Szczepanski et al., 2014) that

probed behavioral outcome on a rapid timescale. Electrocorti-

cography (ECoG) provides the spatiotemporal resolution neces-

sary to precisely track the ongoing brain dynamics that influence

instantaneous human behavior. We specifically tested the hy-

pothesis that low-frequency oscillations—previously observed

in behavioral time courses—are a direct result of periodic excit-

ability fluctuations in the same time range. We predicted that

cortical high-frequency band (HFB) activity, a proxy for cortical

excitability and population spiking in humans (Rich and Wallis,

2017; Watson et al., 2017), is modulated by low-frequency activ-

ity. We focused on HFB activity and not evoked narrow-band

gamma oscillations (Landau et al., 2015), because narrow-

band gamma oscillations do not predict local spiking activity or

cortical excitability (Ray and Maunsell, 2011; Watson et al.,

2017). We hypothesized that the phase of these low-frequency

oscillations would predict behavioral outcomes on a trial-by-

trial basis not only in V1 (Dugué et al., 2016; Landau et al.,

2015), but in widespread regions of the frontoparietal attention

network, facilitating interregional information transfer (Busch-

man and Kastner, 2015; Helfrich and Knight, 2016; Sellers

et al., 2016).
RESULTS

We recorded intracranial EEG from a total of 15 pharmaco-resis-

tant epilepsy patients (32.80 years ± 12.63, mean ± SD; 8 female)

who underwent pre-surgical monitoring with extensive electrode

coverage of frontal and parieto-occipital areas in left and right

hemispheres. The participants performed one of two spatial

attention tasks, where they were asked to covertly monitor a

cued location and indicate the appearance of a target after a

variable cue-target delay. This experimental design allowed us

to probe whether behavioral performance varied as a function

of the cue-target interval. We utilized two different behavioral

metrics. In experiment 1, participants (N = 7) performed a target

detection task where the target luminance was titrated to

perceptual threshold and detection accuracy was measured,

while participants in experiment 2 (N = 8) performed a reaction

time task where the target was presented above sensory

threshold in the cued visual field.

Covert Visual Attention Samples the Environment at a
Theta Rhythm
In the first experiment, participants performed a variant of an

object-based attention task (Fiebelkorn et al., 2013). We cued

participants to one of four possible locations (Figure 1A) and

asked them to indicate the appearance of a close-to-sensory-

threshold target after a variable cue-target-interval (500–

1,700 ms). We continuously adjusted the luminance of the target

to ensure that participants performed at �80% accuracy

(75.91% ± 11.80%, mean ± SD; t6 = �0.92, p = 0.3945). We

then assessed whether the hit rate varied as a function of the

cue-target-interval. We observed strong fluctuations of detec-

tion accuracy in the behavioral time course in every participant

(Figures 1B, left panel, and S1). In order to test whether these

fluctuations exhibited an intrinsic temporal profile, we utilized
Neuron 99, 854–865, August 22, 2018 855



Figure 2. High-Frequency Band Activity Is Nested in Cortical Theta Oscillations

(A) Overlap of all implanted electrodes in experiment 1 across all subjects (N = 7) overlaid on a standardized brain in MNI space. See Figure S1 for individual

electrode placement.

(B) Grand-average HFB time courses (mean ± SEM across subjects) of either cue-locked (left) or target-locked HFB activity (right). Note the apparent sustained

activity at cue-responsive (cue+; cue-unresponsive electrodes: cue�) electrodes in cue-target-interval (gray shaded), which was also spatially selective (Fig-

ure S3A).

(C) Three single trial examples from a cue+ parietal electrode. Upper: Note the response to the cue (black line). However, after the offset of the cue+ (gray line), the

HFB activity waxes and wanes and is not as static as Figures 2B and S3A suggested. Target onset is depicted by black dashed line and the response is depicted

in green. Note that trial 3 (lower panel) was a miss. Next, we detected all the HFB peaks (red asterisks) after cue offset (gray) and before target onset (black

dashed line).

(D) Peak-triggered average (±0.5 s; HFB peak at 0 s) of the same parietal electrode. Note that the HFB peak is nested in an ongoing 4 Hz oscillation (black depicts

the average, gray line a sine fit to the average).

(E) Subject-level results. Left: FFT spectra (mean ± SEM) across all cue+ and cue� channels. Note the peak at 4 Hz for cue-responsive electrodes, which was

again also spatially selective (Figure S3B) Center: grand-average peak-triggered average across all cue+ electrodes (mean ± SEM) can easily be approximated by

a 4 Hz sine fit (gray line) and reflects the peak in the power spectrum (Left). Right: note that no similar peak was detected at the cue� electrodes (red).

(F) Mean-normalized group-level results (error bars indicate bootstrapped 95% confidence intervals [CI] around the mean in red; black dots/gray lines depict

individual participants). All subjects exhibited enhanced theta-band power in the peak-triggered spectra at cue+ electrodes. The arrow indicates the example

subject (Figure 2E).
irregular resampling (Wen and Liu, 2016) to separate non-oscilla-

tory 1/f activity from the oscillatory component (Figure 1B, right).

Across participants, we found that the behavioral time courses

exhibited periodic fluctuations in the theta-band (3.99 Hz ±

0.88 Hz, mean ± SD; Figure 1C), where the observed spectrum

exceeded the 1/f estimate (mean + 3SD; p < 0.001; see Figures

1B and S1). We also utilized a more conventional permutation

approach, which confirmed that the time courses exhibit a

significant oscillation in the theta-band (Z = 2.20 ± 0.55

[mean ± SEM]; combined p < 0.0001; Figures S2A and S2B).

Furthermore, we observed the same effect when a different

method for the 1/f correction was utilized (Figure S2C) or the

averaging window was decreased to 50 ms. These findings sug-

gest that attention does not sample the cued location continu-

ously but periodically at �4 Hz.
856 Neuron 99, 854–865, August 22, 2018
Cortical High-Frequency Activity Is Nested in Theta-
Band Oscillations
We hypothesized that the 4 Hz rhythmic sampling that we

observed in individual behavioral time courses might be the

result of periodic fluctuations in cortical excitability. To test this

idea, we analyzed intracranial EEG data from a total of 614

artifact- and epilepsy-free electrodes (Figures 2A and S1) and

extracted the high-frequency band (HFB; 70–150 Hz) activity,

which has been shown to be a reliable proxy of population

spiking activity (Rich and Wallis, 2017). Based on an electrode’s

response to the cue (0–0.5 s), we classified electrodes into cue-

responsive (cue+) or cue-unresponsive (cue�; Figure 2B). We

found enhanced HFB activity at cue+ sites during the target in-

terval (0.5–1.7 s; grand-average across subjects; cluster-based

permutation test: p = 0.0010, d = 1.55), as well as after target



Figure 3. Theta Phase-Dependent Hit Rate

Modulation

(A) Analytical approach exemplified for a single

parietal electrode. Left: phase-resolved hit rates in

the range from 3–5 Hz. Note the non-uniform dis-

tribution across 50 bins (±45�). We calculated the

normalized Kullback-Leibler divergence against a

uniform distribution. Center: we then randomly

shuffled condition labels (correct/incorrect) and

repeated the analysis. The histogram shows the

distribution of KL values after 1,000 iterations. The

observed value is indicated in red and was then

Z scored relative to the mean and SD of the

surrogate distribution. Right: this analysis was

performed for 17 logarithmically spaced fre-

quencies ranging from 2–32 Hz. The gray shaded

area depicts the mean of the surrogate

distribution ±2 SD. The red line indicates observed

values. Note that only the 4 Hz phase significantly

predicted the hit rate, while no significant modu-

lation was detected at any other frequency bin.

(B) Same data as in (A), but now the hit rate is color-

coded and displayed as a function of phase and

frequency. Again, note themodulation around4Hz.

(C) Grand-average (mean ± SEM) across all elec-

trodes for this subject. Note that rhythmic sampling

isenhanced in lower frequenciesatcue+electrodes.

(D) Mean-normalized group-level results (in red:

error bars indicate bootstrapped 95% CI around

the mean; black dots/gray lines depict individual

participants). All subjects exhibited enhanced

rhythmic theta-band (�4 Hz) sampling at cue+

electrodes. The arrow indicates the example sub-

ject (Figure 3C).
presentation (cluster from 0–0.59 s; p = 0.0010, d = 2.55). Next,

we assessed themodulation of HFB during the selection process

at cue+ electrodes by contrasting activity at cued and uncued

locations. Averaging across trials revealed spatially specific

enhanced delay activity prior to the target onset at the cued loca-

tion (Figure S3A). However, this apparent enhanced delay activ-

ity did not reflect what we observed on single trials, where the

HFB activity waxed and waned during the cue-target-interval

(Figure 2C). In order to test whether the fluctuations in HFB

amplitude exhibited rhythmic modulations, we extracted all

HFB peaks from the cue-target interval, excluding peaks that

reflected cue- or target-evoked activity (i.e., peaks within 0.3 s

after cue presentation and before target presentation). Then,

we performed peak-triggered averaging of the raw, unfiltered

time series. Figure 2D depicts a single electrode example indi-

cating that HFB activity was nested in an ongoing 4 Hz oscilla-

tion. In order to quantify this effect, we spectrally decomposed

the peak-triggered averages by means of an FFT analysis

(±0.5 s) and again compared cue+ and cue� electrodes (see Fig-

ure 2E for a single subject example). We found that a theta-band

oscillation was present in the peak-triggered averages of cue+

but not of cue� electrodes (Figure 2F; permutation test: p =

0.0110, d = 0.26). In addition, we also tested if this process

was spatially selective (Figure S3B). Our results indicate that

the modulation of HFB activity by ongoing theta was stronger

at the cued than the uncued locations in all subjects. Further-

more, we utilized irregular resampling to confirm the presence
of oscillatory theta-band activity (Figure S3C), which was distinct

from cortical sources of alpha-band (8–12 Hz) activity (Fig-

ure S3D). We also utilized conventional cross-frequency

coupling metrics to confirm that this approach reliably detected

theta-gamma cross-frequency coupling (Figure S4). Taken

together, these findings provide evidence that cortical excit-

ability is rhythmically modulated by theta-band oscillations

(Canolty et al., 2006).

Theta Phase Predicts Target Detection Performance
In order to establish a direct link between behavioral fluctuations

and ongoing cortical theta-band dynamics, we computed low-

frequency phase-resolved behavioral time courses (Figure 3A).

We divided the underlying phases of 17 logarithmically spaced

frequencies (2–32 Hz) into 50 equally distributed bins and

computed the average hit rate for all trials within a 90� window

centered on every phase bin. We then calculated the normalized

Kullback-Leibler divergence of the observed distribution against

a uniform distribution (Figure 3A, left) to quantify how strongly the

observed distribution was modulated by the phase of the low-

frequency activity. We obtained a surrogate distribution by

randomly shuffling the condition labels (correct/incorrect; Fig-

ure 3A, center and right). This approach allowed us to investigate

which phase of a low-frequency oscillation predicted subse-

quent behavior (Figure 3B) and if such phase modulation

occurred differentially at cue+ and cue� electrodes (Figure 3C).

We found evidence for enhanced rhythmic sampling at cue+
Neuron 99, 854–865, August 22, 2018 857



Figure 4. Large-Scale Network Dynamics

Underlying Rhythmic Perceptual Sampling

(A) Left: topographical depiction of rhythmic

sampling in one example participant who was

implanted with bilateral grids. Note that multiple

regions contributed to the rhythmic sampling

including frontal regions (upper right), sensori-

motor regions (center right) and parietal regions

(lower right). See Figure S5 for data from all

participants. We seeded the electrode with the

strongest phase-dependent behavioral modula-

tion (lower right, located in IPS5).

(B) Then we calculated seed-based correlations

based on the phase-resolved behavioral data,

which indicated that parietal and frontal areas

exhibit the same preferred phase for optimal

behavior.
electrodes in every participant (Figure 3D; permutation test: p =

0.0091, d = 0.62). These findings demonstrate that the phase of

ongoing theta-band activity during the cue-target-interval pre-

dicted subsequent perception. Notably, this effect was not

confounded by differences in low-frequency oscillatory power

(Figure S3E) or event-related potentials (Figure S3F). Figure 4A

depicts the spatial extent of the observed effects for a single

subject (see Figure S5 for data from all participants), highlighting

comparable effects between left and right hemispheres. Across

subjects, we observed theta-band phase-dependent rhythmic

sampling in inferior parietal regions, in the intraparietal sulcus

and adjacent superior parietal areas as well as in frontal eye

fields (FEF) and adjacent regions in the frontal lobe. These find-

ings indicate that theta-mediated fluctuations in cortical excit-

ability in widespread cortical regions are behaviorally relevant

and predict visual detection performance.

Theta Phase-Resolved Behavior Delineates
Frontoparietal Network Interactions
Next, we aimed to assess how different nodes of the frontopar-

ietal network contributed to the functional organization of rhyth-

mic attentional sampling in the human brain. To address this, we

employed a seed-based functional connectivity approach,

where we defined the electrode with the highest normalized Kull-

back-Leibler divergence as a seed (Figure 4A, lower right) and

computed correlations to all other electrodes (Figure 4B). This

approach indicated that distant regions in the frontoparietal

network exhibit similar phase-behavior-relationships (see Fig-

ures S4C and S5 for data from all subjects).

Rhythmic Behavioral Sampling Is Independent of Task
Structure
In a second experiment, we investigated whether the observed

theta-mediated rhythmic sampling in experiment 1 is a funda-

mental feature of attention allocation implementation in the

frontoparietal network, or if the observed results were task-spe-

cific. To accomplish this, we utilized a reaction time task, where

subjects only had to monitor two, and not three, spatial locations

(Szczepanski et al., 2014). In addition, we presented the informa-
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tive visual field cue at fixation and not in the periphery. Partici-

pants (N = 8) were instructed to maintain fixation and were

cued to allocate their attention to either the left or right visual field

(Figure 5A). After a variable cue-target-interval (1,000–2,000ms),

the participants had to respond to a target that was embedded

among flickering visual distractors. Participants performed this

task with high accuracy (hit rate 97.21% ± 1.13%; mean ±

SEM) (Szczepanski et al., 2014). This approach allowed us to

assess the reaction time as a function of the cue-target-interval

(Figure 5B). We again separated oscillatory components and 1/f

background contributions by means of irregular resampling, as

employed in experiment 1, and found that the behavioral time

courses in every subject exhibited periodic fluctuations in the

theta band that exceeded the 1/f estimate by more than 3 SD

(p < 0.001; 4.14 ± 1.34Hz,mean ± SD; Figures 5C and S6). These

findings from two different attention tasks provide strong evi-

dence that human attentional allocation is not evenly distributed

across time but fluctuates as a function of endogenous oscilla-

tory brain activity. Thus, rhythmic sampling appears to be a

general property of spatial attention regardless of specific task

structure. Furthermore, we conducted a control experiment

in healthy participants who performed both tasks (Figures

S2D–S2F) and found that theta-band dynamics across tasks

were significantly correlated, explaining �35% of the behavioral

variance.

Neural Correlates of Rhythmic Attentional Sampling in
the Frontoparietal Network
To investigate the neural correlates of this behavioral effect, we

analyzed intracranial EEG from 758 electrodes (Figure 6A). We

extracted the HFB activity and observed enhanced delay activity

during the cue-target-interval (1 – 2 s; p = 0.0010, d = 1.05) and

after target presentation (cluster from 0–0.77 s; p = 0.0010,

d = 1.88), which as in experiment 1 did not reflect single trial

dynamics (Figure 6B) but showed strong spatial selectivity for

cued than uncued locations (cluster test: p = 0.0010). Peak-trig-

gered averaging and spectral decomposition revealed multiple

spectral peaks in the low-frequency range in which the HFB

activity was nested (Figure 6C). However, we only found a



Figure 5. Task Design and Behavioral

Results of Experiment 2

(A) Schematic task design. Participants fixated a

cross on a dynamic background with a number of

visual distractors (red), which were randomly

switched on or off. After a variable delay a centrally

presented spatial cue indicated the hemifield that

participants should covertly monitor. After variable

cue-target-interval (1,000–2,000ms) a blue square

was presented at the target and subject re-

sponded if the target was presented in the cued

hemifield.

(B) Left: time-resolved behavioral time course from

one example subject (see also Figure S6). Note the

waxing andwaning pattern over time. Right: FFT of

the behavioral time course (black) and the fractal

1/f component (red). Note the strong peak around

4–5 Hz.

(C) Group level results after peak alignment to the

individual peak frequency (IPF). We detected a

peak in the theta-band with a mean of �4.1 Hz in

every participant (Figure S6).
modulation at group level by a theta rhythm around 4 Hz (Fig-

ure 6D; permutation test: p = 0.0230, d = 0.21) and not in the

alpha-band (8–12 Hz; p = 0.8137). After irregular resampling

and discounting the 1/f background activity, we also observed

distinct sources of theta and alpha-band activity (Figure S3D),

which were comparable to the results obtained in the first

experiment.

Then, we tested the behavioral relevance of the theta-band

phase by calculating low-frequency phase-resolved behavioral

time courses and quantified the degree of non-uniformity by

calculating thenormalizedKullback-Leiblerdivergence (Figure6E)

against a surrogate distribution where reaction times were

shuffled. We observed evidence for a systematic relationship be-

tween theta-band phase and subsequent reaction times on the

single-electrode (Figure 6E), single-subject (Figures 6F and S7)

and group levels (Figure 6G; permutation test: p = 0.0069,

d = 0.46). Figure 7A highlights the spatial extent of the theta-

band phase-dependent sampling, which is in accordance with

the results from experiment 1. Functional network parcellation

again highlighted that the functional relationshipbetweenongoing

theta phase and perceptionwas similar across distant areas in the

frontoparietal network (Figures 7B, S4D, and S7).

Taken together, the results from experiment 2 confirm the

findings of experiment 1. The collective results suggest that

oscillatory brain activity, generated at the population level in

widespread cortical networks, shapes human perception and

behavior on a rapid timescale.

DISCUSSION

Our results demonstrate that rhythmic behavioral fluctuations in

humans during sustained attention at a cued location are the

direct result of endogenous oscillatory fluctuations in excitability,

as indexed by HFB activity. These fluctuations in excitability

shape both perception and behavioral performance on a sub-
second timescale. Our findings reveal that intrinsic theta-band

activity in the frontoparietal attention network samples the envi-

ronment rhythmically, even in states of ‘‘sustained’’ attention at

the cued location. We demonstrate that cortical excitability, as

indexed by HFB activity, is nested within ongoing theta-band

activity, which is being generated at the population level of

cortical networks. Crucially, our results from two independent

studies highlight that the observed effects are an inherent

characteristic of the functional organization of the frontoparietal

attention network, where theta oscillations support attentional

rhythmic sampling irrespective of task structure and context.

Visual Attention Samples Space Rhythmically and Not
Continuously
There is a long-standing debate whether perception is discrete

or continuous (VanRullen, 2016a). We perceive the world as

continuous, but several lines of research have provided indirect

evidence that perception and attention are not uniformly

distributed across time and space but exhibit intrinsic temporal

profiles that match the timescale of endogenous oscillatory

brain activity (Buschman and Kastner, 2015; Helfrich and

Knight, 2016; VanRullen, 2016a). This raised the intriguing hy-

pothesis that intrinsic brain activity shapes how we perceive

the world around us. For example, several groups reported

that tracking of different spatial locations or different object

varies as a function of a �4 Hz rhythm (Dugué et al., 2015,

2016; Fiebelkorn et al., 2013; Holcombe andChen, 2013; Landau

and Fries, 2012).

Why would the cortex operate in a rhythmicmode? It has been

argued that a rhythmic process might have functional advan-

tages and that endogenous phase-alignment, to external,

behaviorally relevant cues facilitates subsequent performance

(Calderone et al., 2014). Likewise, it has been proposed that

rhythmic sampling might be more energy efficient and that the

brain switches from a ‘‘continuous’’ to a ‘‘rhythmic’’ processing
Neuron 99, 854–865, August 22, 2018 859



Figure 6. Neural Correlates of Rhythmic Attentional Sampling in Experiment 2

(A) Overlap of all implanted electrodes in experiment 2 across all subjects (N = 8) overlaid on a standardized brain in MNI space. See Figure S6 for individual

electrode placement.

(B) Grand-average HFB time courses (mean ± SEM) of either cue-locked (left) or target-locked HFB activity (right).

(C) Upper: peak-triggered average (±0.5 s; HFB peak at 0 s; mean ± SEM) of all cue+ electrodes (blue) and an unconstrained sine fit (gray, �7 Hz). Lower: FFT

spectra of peak-triggered averages for cue+ (blue) and cue� electrodes (red). Note a peak around 3–4 Hz and around 7–8 Hz.

(D) Mean-normalized group-level results (error bars indicate bootstrapped 95% CI around the mean [in red]; black dots/gray lines depict individual participants).

All subjects exhibited enhanced �4 Hz power in the peak-triggered spectra at cue+ electrodes. This effect was not significant in the alpha-band. The arrow

indicates the example subject (Figure 6C).

(E) Left: observed (red) and surrogate (gray shaded; mean ± 2SD) phase-dependent reaction time modulation for one parietal electrode. Right: color-coded

reaction time as a function of phase and frequency from the same electrode.

(F) Grand-average (mean ± SEM) across all electrodes for this subject. Note that rhythmic sampling is enhanced in lower frequencies at cue+ electrodes.

(G) Mean-normalized group-level results (error bars indicate bootstrapped 95% CI around the mean (in red); black dots/gray lines depict individual participants)

reflecting enhanced rhythmic theta-band sampling at cue+ electrodes. The arrow indicates the example subject (Figure 6F).
mode in states when prior information is available (Schroeder

and Lakatos, 2009).

Another intriguing observation is that the rhythms observed

during covert attention exhibit theta-range temporal profiles

similar to overt behaviors, such as sniffing, whisking, or saccadic

eye movements (VanRullen, 2016a). Furthermore, there seems

to be a tight interplay between theta oscillations and micro-

saccadic eye movements, with these fixational eye movements

preferentially occurring at certain theta phase angles (Bosman

et al., 2009; Lowet et al., 2016). Importantly, several studies

have shown that rhythmic attentional sampling is not a micro-

saccade artifact (Fiebelkorn et al., 2018; Landau et al., 2015;

Spyropoulos et al., 2018). This leads to the hypothesis that

covert sampling of the environment informs subsequent overt

behavior, with the most salient event covertly selected from
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the visual environment for the next saccade (Bellet et al., 2017;

Helfrich, 2018) by e.g., the motor system as previously observed

in auditory attention studies (Morillon et al., 2014).

Currently, there is no consensus on how to implement spectral

analysis on sparse behavioral time course data (Helfrich et al.,

2017; Zoefel and Sokoliuk, 2014). Previous studies utilized surro-

gate distributions to infer if a certain frequency-band has more

power than expected by chance (Fiebelkorn et al., 2013). How-

ever, this approach does not explicitly test for the presence of

oscillations (Haller et al., 2018). Here, we used a novel approach

to disentangle oscillatory from aperiodic 1/f components (Wen

and Liu, 2016), which has not previously been applied to behav-

ioral data. This method yielded highly comparable results to the

more conventional permutation approach and indicated that

low-frequency oscillations were present in the behavioral time



Figure 7. Large-Scale Dynamics of Rhyth-

mic Perceptual Sampling in Experiment 2

(A) Topographical depiction of rhythmic sampling.

Note that the left and right hemispheres depict two

different subjects, but show a consistent pattern

with strong rhythmic sampling in parietal and

frontal areas. See also Figure S7.

(B) Seed-based functional network parcellation

highlights similar functional relationships between

the ongoing theta phase and behavior in parietal

and frontal regions.
course, despite inter-individual differences in the exact peak

frequency, which span multiple canonical frequency bands,

such as the delta (1–4 Hz), theta (4–8 Hz), and alpha band

(8–12 Hz). While there was variability in individual peak fre-

quencies, all analyses linking behavior to electrophysiology (for

individual spectra, see Figures S5 and S7) indicated a tight link

between theta oscillations and behavior.

RhythmicSynchronization in the Frontoparietal Network
Constitutes the Functional Architecture of Visual
Attention
Functional imaging results in humans as well as a multitude of

findings from invasive recordings in rodents and non-human

primates have linked attentional processing to the frontoparie-

tal network (Buschman and Kastner, 2015). While long-range

theta-band synchronization (Bastos et al., 2015; Sellers

et al., 2016) or theta-gamma cross-frequency coupling (Can-

olty et al., 2006; Szczepanski et al., 2014) was commonly

observed in the frontoparietal network, the behavioral rele-

vance was only indirectly inferred by e.g., comparing trials

with correct/incorrect or fast/slow responses. Furthermore,

the limited spatial resolution of scalp EEG pointed toward

frontal or parietal sources of rhythmic sampling (Busch

et al., 2009; Busch and VanRullen, 2010; Mathewson et al.,

2009), without assessing the functional interactions and

mutual dependencies. In addition, in several studies the spec-

tral content of the sensory input matched the endogenous

frequency (de Graaf et al., 2013; Spaak et al., 2014). This

hampers the interpretability of observed effects because sen-

sory-evoked effects masked intrinsically generated dynamics

(Breska and Deouell, 2017).

Our present findings clarify previous results by demonstrating

that multiple cortical sources in the frontal and parietal cortex

engage in rhythmic sampling of the environment. We sampled

behavior at a fine-grained temporal scale to highlight, on a

trial-by-trial basis, how the phase of ongoing theta oscillations

controls cortical excitability and shapes human perception and

behavioral outcome. Furthermore, our findings are in line with

the idea that low-frequency oscillations preferentially support
long-range cortico-cortical coupling (Hel-

frich and Knight, 2016; Siegel et al.,

2012), where theta organizes mainly

feedforward information flow from sen-

sory to association areas (Bastos et al.,

2015; Spyropoulos et al., 2018), possibly
through traveling waves (Zhang et al., 2018). One testable ques-

tion, which could be addressed in future studies involving pa-

tients with focal frontal or parietal lesion is how the disruption

of the frontoparietal network modulates rhythmic sampling pro-

cesses. Given that behavioral time courses exhibit multiple

spectral peaks, which might reflect distinct contributions (e.g.,

theta could primarily signal top-down components, while alpha

may signal bottom-up components) (Bellet et al., 2017; Helfrich

et al., 2017; Jia et al., 2017; VanRullen, 2016a), we speculate

that frontal and parietal lesions will exhibit differential spectral

signatures that may be observable in behavioral time courses.

It is unclear how nodes of the frontoparietal network are

synchronized to precisely time information transfer. One testable

hypothesis in animal models emerging from our findings is that

the pulvinar, a set of nuclei in the visual thalamus connected to

frontal and parietal areas, might orchestrate and coordinate

network activity (Halassa and Kastner, 2017; Saalmann et al.,

2012). Likewise, animal models are ideally suited to collect a

sufficiently high number of trials to study attention effects at

uncued locations, which cannot be achieved in patient popula-

tions given the limited time available for recordings in epilepsy

monitoring units.

Population Activity Might Determine the Timescale of
Cognition
Classic models of attention, decision-making or working mem-

ory are often characterized by persistent and not time-varying

neuronal activity (Stokes and Spaak, 2016). For instance, in the

case of working memory, persistent delay activity was though

to constitute a hallmark of how information is maintained online

(Christophel et al., 2017). However, recent advances revealed

that data averaged across hundreds of trials does not appropri-

ately reflect single trial dynamics (Lundqvist et al., 2016). While

background activity has often been considered to reflect

noise, novel high-resolution recordings indicate that single trial

dynamics carry information in a time-varying population code

(Stokes et al., 2013; Wolff et al., 2017).

In the present study, we show that sustained activity at the

cued location during ‘sustained’ attention did not reflect single
Neuron 99, 854–865, August 22, 2018 861



trial dynamics (Stokes and Spaak, 2016). Importantly, our pre-

sent results only reflect intrinsic, ongoing dynamics and are

not confounded by continuous sensory input during the rhyth-

mic sampling process, which might elicit narrow-banded

gamma oscillations (Landau et al., 2015). In contrast, we

observed (1) that HFB was nested in ongoing theta-band ac-

tivity and exhibited a waxing and waning pattern, not apparent

in grand averages, and (2) this theta-band activity was gener-

ated at the population level in the frontoparietal network and

predicted behavioral outcome on a rapid timescale. These

findings collectively suggest that the resulting behavior is

shaped by ongoing oscillatory brain activity. We speculate

that this rhythmic sampling at the cued location is the result

of monitoring several spatial locations simultaneously (three

in experiment 1 and two in experiment 2) and that attention

is rhythmically re-weighted between the different possible

locations. Hence, this implies that the underlying sampling

rhythm could be 2–3 times faster, in line with previous findings

that reported evidence for attentional rhythmic sampling in the

low alpha range around 7–10 Hz, which samples different

spatial locations sequentially (Busch and VanRullen, 2010;

Busch et al., 2009; Dugué et al., 2015; Fiebelkorn et al.,

2013; Helfrich et al., 2017; Landau and Fries, 2012; VanRullen,

2016a).

Comparative Electrophysiology to Bridge Different
Experiments
The present study was conducted with human epilepsy patients

who underwent pre-surgical evaluation, and all experiments

were performed on the epilepsy-monitoring unit. While direct

brain recordings in humans provide rare and valuable data, the

experiments have to be tailored to clinical circumstances and in-

dividual patient’s needs. In the present experiment, this resulted

in significantly lower trial numbers that can typically be gathered

from healthy participants, e.g., in case of experiment 1 we

collected an average of 190 trials per patient, which constitutes

a fraction of the trials (�11%) as compared to recent behavioral

studies (Fiebelkorn et al., 2013) who gathered 1,764 trials per

subject. Hence, we focused our analyses on the validly cue trials

(72%) and averaged trials over 100 ms time windows to have a

sufficient number of samples per time bin. Thus, we cannot

report on the time-resolved performance for invalidly cued trials

in experiment 1. Regardless, we observed strong evidence for

rhythmic sampling in the behavioral time courses in line with

recent findings (Fiebelkorn et al., 2013, 2018; Landau and Fries,

2012; Landau et al., 2015). Likewise, in experiment 2, subjects

were instructed to withhold their response when the target ap-

peared in the un-cued hemi field, which impedes time-resolved

behavioral analyses (Szczepanski et al., 2014). Studies in healthy

subjects (Fiebelkorn et al., 2013; Landau and Fries, 2012) and

primates (Fiebelkorn et al., 2018) are ideally suited to assess

performance over time for invalidly cued trials. Thus, our present

results need to be interpreted in the context of studies in healthy

human participants (Dugué et al., 2015; Fiebelkorn et al., 2013;

Helfrich et al., 2017; Henry et al., 2014; Jia et al., 2017; Landau

and Fries, 2012) as well as primates (Bellet et al., 2017; Fiebel-

korn et al., 2018), which jointly suggest that multiple rhythms

modulate behavior on a rapid timescale and that different
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neuronal populations exhibit anti-phasic relationships (Lakatos

et al., 2013; Landau et al., 2015).

In direct comparison to Fiebelkorn et al. (2018), it may appear

striking that we observed similar effects in the theta-band but not

e.g., in the beta-band (15–30 Hz). However, in the present study,

we used subdural grid electrodes, which span large portions of

the neocortex, but that primarily record from superficial cortical

layers (Parvizi and Kastner, 2018). In contrast, recordings span-

ning all cortical layers in primates indicate that the beta-band

rhythm emerges from deeper layers, which wemight not capture

using ECoG grids (Bastos et al., 2018) outside of motor cortex.

Hence, we conclude that a multimodal approach involving ex-

periments in several species and spanning several spatiotem-

poral scales can jointly elucidate the neural mechanisms under-

lying rhythmic attentional sampling.

Conclusions
Our findings reveal a fundamental neurophysiologic mechanism

involving the spatiotemporal organization of attention in the hu-

man brain. We demonstrate that population activity in the

theta-band predicts behavior on a sub-second timescale by

rhythmically adjusting cortical excitability in states of sustained

attention at the cued location. These findings have important im-

plications for how attention, a central construct in cognitive

neuroscience, is conceptualized and implemented in large-scale

neuronal circuits (Buschman and Kastner, 2015; Stokes and

Spaak, 2016). We propose that neural oscillations dynamically

allocate limited resources based on sensory information content

and endogenous priors.

The present results also add to the emerging notion that hu-

man behavior is supported by rhythmic neuronal populations

(Eichenbaum, 2017; Fusi et al., 2016). This consideration is in

line with evidence that HFB activity indexes cognitive processing

with a high spatiotemporal resolution in both human and non-

human primates and is modulated by rhythmic low-frequency

activity (Rich andWallis, 2017;Watson et al., 2017). Given similar

effects were observed in two independent experiments utilizing

different task structures, we suggest that this rhythmic sampling

is an inherent feature of the frontoparietal network that shapes

the individual experience of the world.

Our results have potential clinical relevance for neuropsychi-

atric disorders with increasing evidence of disordered network

activity (Calderone et al., 2014; Voytek and Knight, 2015). Atten-

tion is a distributed rhythmic process, which cannot simply be

modulated by changing the balance between excitatory and

inhibitory drive, but might benefit from interventions targeting

the underlying rhythmic architecture (Fröhlich, 2014). This sug-

gests that population activity might provide a novel target for

tailored interventions that engage neuronal oscillations, e.g., by

means of rhythmic non-invasive brain stimulation.
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IRASA Wen and Liu, 2016 https://purr.purdue.edu/publications/1987/1

SPM8 Penny et al., 2011 https://www.fil.ion.ucl.ac.uk/spm/

Freesurfer 5.3.0 Dale et al., 1999 https://surfer.nmr.mgh.harvard.edu/

ibootci Andrew Penn; MATLAB central http://mathworks.com/matlabcentral/fileexchange/52741-

ibootci
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Randolph

Helfrich (rhelfrich@berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
We obtained intracranial recordings from a total of 15 epilepsy patients who underwent pre-surgical monitoring with implanted grid

electrodes. Seven patients participated in study 1 (35.29 ± 12.42 years; mean ± SD; 5 female) and were recruited from the University

of California, Irvine Medical Center, USA (N = 6) and the California Pacific Medical Center (CPMC), San Francisco, USA (N = 1). In

study 2, we recruited 8 patients (30.63 ± 13.22 years; mean ± SD; 3 female) from Children’s Hospital in Oakland, CA, USA (N = 1),

Johns Hopkins Hospital in Baltimore, MD, USA (N = 1) and Stanford Hospital, CA, USA (N = 6). Electrode placement was exclusively

guided by clinical considerations and all patients provided written informed consent to participate in the study. All procedures were

approved by the Institutional Review Board at every site as well as by the Committee for Protection of Human Subjects at the

University of California, Berkeley (Protocol number: 2010-02-783) and conducted in accordance with the Declaration of Helsinki.

Patients were implantedwith either grid or strip electrodeswith 1 cm spacing. In one participant (S4), we included an additional 8 con-

tact depth probe that was inserted into occipital cortex. For the control experiment (Figures S2D–S2F), we recruited an additional

group of healthy volunteers who were paid for their participation (N = 14, 24.86 ± 5.55 years; mean ± SD; 6 female) from the University

of California, Berkeley.

METHOD DETAILS

Experimental Design and Procedure
Behavioral Tasks

All participants performed a spatial attention task. In experiment 1, participants performed a variant of the Egly-Driver task (Egly et al.,

1994; Fiebelkorn et al., 2013). Stimulus presentation was controlled with Presentation Software (Neurobehavioral Systems). Subject

sat �60 cm away from the laptop screen. Subjects initiated the trial start by pressing down the left mouse button. Then two bar ob-

jects appeared and were either vertically or horizontally oriented. After a variable delay (400 – 800ms), a brief spatial cue (100 ms) in

the periphery around one bar indicated the location where the target wasmost likely to occur (72% cue validity). This cue was equally

likely to appear at any of the four quadrants. After the cue, we introduced a variable cue-target-interval (500 – 1700ms) with a low

number of catch trials (10%) where no subsequent target was presented. Targets could randomly appear at any time point during

the cue-target-interval. Targets could also appear at uncued locations, which could either be part of the same object or not

(18%). If the target appeared at the different object, it was shown at a location equidistant from the cued location to avoid distance
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confounds. Participants indicated that they detected the target by releasing the mouse button and received auditory feedback on

whether they performed the trial correctly or not.We continuously tracked behavioral performance and adjusted the target luminance

in steps of one RGB value every 15 trials to achieve an overall accuracy of �80% correct. The experimenter monitored continuous

fixation, and the results from the patient cohort are similar to a previous study that probed the same task and used a cohort of healthy

adult participants whose eye movements were closely monitored (Fiebelkorn et al., 2013). All subjects responded with the hand

contralateral to the implanted grid. Participant S6 (bilateral grids) responded with the left hand. All participants were asked to perform

up to 5 blocks of 60 trials each (190 trials ± 67; mean ± SD). Note, we adjusted several parameters in comparison to a previous study

(Fiebelkorn et al., 2013) to accommodate the unique clinical setting in which were the present dataset was collected. In particular,

performance was titrated to 80% instead of 65% to keep the subjects engaged. To increase the yield of correct responses, we

adjusted the cue-target interval to 500-1700 ms instead of 300-1100 ms to minimize the ramp-up effect that Fiebelkorn et al.

observed in the time range from 300-500 ms.

In experiment 2 (Figure 5A), the participants performed a reaction time task and were either cued to the left or the right hemifield by

a central cue. Stimulus presentation was controlled with EPrime software (Psychology Software Tools). Subjects sat �60 cm away

from the laptop screen. Note, that in this experiment the cue was on the screen until the trial ended. Subjects were instructed tomain-

tain fixation and covertly shift their attention to the cued hemifield. After a variable cue-target-interval (1000 – 2000ms), a blue square

target appeared, which remained on the screen until the subject responded or the trial timed out after another 2000ms. Targets ap-

peared randomly during the cue-target-interval. Subjects responded to targets in the cued hemifield, but were instructed to withhold

a response to targets that were presented in the opposite hemifield. Six out of eight subject responded with the hand ipsilateral to the

grid. In addition, a number of the red distractors located anywhere on the screenwas randomly turned on or off to increase attentional

competition. Participants performed 6 blocks of 42 trials each. Eye movements were visually monitored and the experimenter

ensured that subjects maintained central fixation throughout the trials. A previous study demonstrated that eye movements in this

task were negligible and did not contribute to the observed theta-gamma interactions (Szczepanski et al., 2014).

ECoG Data Acquisition

Intracranial EEG data and peripheral data (photodiode) were acquired using a Nihon Kohden recording system (UC Irvine, CPMC and

Children’s Hospital, 128/256 channel, 1000/5000 Hz digitization rate), a Natus Medical Stellate Harmonie recording system (Johns

Hopkins, 128 channel, 1000 Hz digitization rate) or a Tucker Davis Technologies recording system (Stanford, 128 channel, 3052 Hz

digitization rate).

CT and MRI Data Acquisition

We obtained anonymized postoperative CT scans and presurgical MRI scans, which were routinely acquired during clinical care.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral Data Analysis
In experiment 1, we analyzed the hit rate at the cued location as a function of the cue-target-interval. We utilized a variant of the orig-

inal Egly-Driver task (Egly et al., 1994; Fiebelkorn et al., 2013). This task design was tailored to assess hit rates over time, which were

titrated to�80% correct in an adaptive procedure. We focused on the hit rates given that reaction time courses exhibited prominent

Hazard functions, since the probability for the target occurrence increased over the cue-target-interval.

To extract the behavioral time course, we shifted a 100mswindow in steps of 1ms from 500 – 1700ms and re-calculated the hit rate

across all validly cued trials in the respective time window. We used relatively long windows of 100ms, because some bins did not

contain behavioral estimates in some subjects with lower trial numbers if a window of e.g., 50 ms had been used due to the random

target presentation. The traceswere smoothed andmissing data points interpolated by using a 25-point boxcarmoving average. This

approach yielded a time course per participant at a sampling rate of 1000 Hz. We obtained spectral estimates from a Fast Fourier

Transform (FFT) after applying a Hanning window and zero padding the data to 10 s to increase the frequency resolution to

0.1 Hz. In order to estimate the 1/f background activity and disentangle oscillatory from fractal components, we utilized irregular re-

sampling (IRASA, see below) (Wen and Liu, 2016), based on a time window that had 75% length of the total signal and a step size of

0.05 s. Oscillatory peaks were defined as the strongest distinct peak that exceeded the 1/f distribution in the range from 2-10 Hz. In

order to obtain a better estimate of the individual peak frequency, the subsequent alignment was performed on the zero padded data.

We utilized the same approach in experiment 2, but calculated the reaction time as a function of the cue-target-interval. Trials

exceeding 2 SD above the median reaction time were excluded and only correct responses at the cued location were considered.

Given the shorter cue-target-interval (1 s duration), we also adjusted the slidingwindow for the irregular resampling procedure to 75%

total length. Again, we performed peak detection and alignment on the zero padded data to increase the frequency resolution and

improve peak frequency estimates.

EEG Data
Preprocessing: A neurologist manually inspected all intracranial EEG channels to identify channels with epileptiform activity and ar-

tifacts. Contaminated channels and epochs were removed prior to all analyses. Then the data were linearly detrended, demeaned,
Neuron 99, 854–865.e1–e5, August 22, 2018 e2



and notch filtered at 60 Hz and all harmonics aswell as re-referenced to a local common average (per grid or per strip/probe) in exper-

iment 1 using Fieldtrip. Data from experiment 2was already filtered and common average referenced as described previously (Szcze-

panski et al., 2014).

Trial definition: We extracted 8 s long, partially overlapping trials to facilitate subsequent filtering, spectral analyses and re-epoch-

ing to target onset given the long cue-target and response intervals. In experiment 1, trials were extracted from�3 to +5 s around cue

onset. In experiment 2, individual trials were extracted from �2 to +6 s around cue onset.

HFB analysis: We extracted the high-frequency band (HFB) activity by band-pass filtering the raw time courses in eight non-over-

lapping 10 Hz wide bins ranging from 70-150 Hz and applying a Hilbert transform to extract the instantaneous amplitude using

band-pass filtering with the default settings as implemented in Fieldtrip (ft_preprocessing). Then every trace was separately baseline

corrected by means of a z-score relative to a bootstrapped baseline distribution prior to cue onset (�0.2 s to 0 s, 1000 iterations)

(Flinker et al., 2015). Note that this approach accounts for the 1/f signal drop off in the high-frequency band with increasing fre-

quencies. Finally, we discarded the edges to avoid filter artifacts and extracted individual non-overlapping trials either relative to

cue onset (�0.5 to 3.5 s) or relative to target onset (�1.5 to 1.5 s).

Cue-responsive electrode classification: We classified an electrode as cue-responsive at a given location when the average HFB

response to the cue exceeded a z-score of 1.96 (corresponding to a two-tailed p value of 0.05) for at least 10% of consecutive sam-

ples in the cue period (0 – 0.5 s). Note that this approach separated the electrode selection time window from the test time window

(cue target interval experiment 1: 0.5 – 1.7 s, experiment 2: 1 – 2 s).

Peak-triggered averaging and spectral analysis: In order to test whether HFB activity was nested in ongoing oscillatory activity, we

utilized an approach that is similar to spike-triggered averaging used in single unit electrophysiology (Brown et al., 2004). This

approach allowed us to exclude multiple evoked transients that were present in the signal (e.g., cue onset, variable target onset,

response), which are known to give rise to spurious CFC (Aru et al., 2015; Cole and Voytek, 2017; Gerber et al., 2016), when additional

filtering is applied. Similar to spike-triggered averaging (Brown et al., 2004), we first detected all the HFB peaks in a given trial and at a

given channel after the evoked response (>0.3 s) and prior to the target onset, which varied on a trial-by-trial basis. Then we aligned

the raw unfiltered signal relative to the HFB peaks and epoched it in the range from�0.5 to 0.5 s around the HFB peaks. To assess the

spectral content of these 1 s long epochs, we transformed the data by means of a FFT after applying a Hanning window. We also

fit an unconstrained sine wave (using the fit function in MATLAB, with no specified parameters but the argument ‘sin1’: [curve] =

fit(x,y,’sin1’)) to the peak-locked average to highlight the presence of an ongoing oscillation in the raw, averaged traces. Note that

this approach is comparable with more traditional CFC analyses. In case of dataset 2, it had previously been reported that only

the 2-5 Hz phase significantly modulated HFB activity during attentional allocation (Szczepanski et al., 2014). We replicate and

extend this finding using the peak-triggered method. To demonstrate that our results are independent of the exact CFC metric,

four well-established CFC metrics were calculated on a one second time epoch prior to target onset between the theta-phase

and the high-frequency band amplitude. We tested the Modulation Index by Tort et al. (Tort et al., 2008), as well as the Canolty

Modulation Index (Canolty et al., 2006), the phase-locking technique (Helfrich et al., 2017; Szczepanski et al., 2014) as well as circu-

lar-linear correlations (Berens, 2009) as an intuitive metric of what CFC should capture. We utilized the Tort MI as a the reference

metric (Figure S4) given that it has been demonstrated that the Tort MI robustly detects CFC when data epochs are noisy and short

(Huelsemann et al., 2018).

Irregular resampling (IRASA): In order to disentangle true oscillatory components the prominent 1/f background activity, we utilized

irregular-resampling auto-spectral analysis (IRASA) (Wen and Liu, 2016). IRASA takes advantage of the fact that irregularly resam-

pling of the neuronal signals by pairwise non-integer values (resampling factor rf and corresponding factor rf*: e.g., 1.2 and 0.8)

slightly shifts the peak frequency of oscillatory signals by compressing or stretching the underlying signal. However, the 1/f compo-

nent remains comparable. This procedure was then repeated in small, overlapping windows (3 s, 0.5 s step size) and resampling was

always done in a pairwise fashion for factor h and the corresponding resampling factor rf* = 2 – r (resampling factors rf: 1.1-1.9 in 0.05

steps). For each window, we calculated the auto-power spectrum bymeans of a FFT after applying a Hanning window. Then all auto-

spectra were median-averaged to obtain the power spectrum of the 1/f component, where resampled oscillatory components were

averaged out. Finally, the resampled 1/f PSD is subtracted from the original PSD to obtain the oscillatory residuals.

Spectral analysis: For time-frequency decomposition of cue- and target-locked responses in the range from 2 – 32 Hz (33

logarithmically spaced bins), we utilized a 500ms sliding Hanning window, which we advanced in 50ms steps from �0.5 to 3.5 s

(cue-locked) or from�2.5 to 1.5 s (target-locked). Spectral estimates in the range from 32 – 256 Hzwe computed using themultitaper

method based on discrete prolate spheroidal sequences in 24 logarithmically spaced bins (Mitra and Pesaran, 1999). We adjusted

the temporal and spectral smoothing to approximately match a 250ms time window and ½ octave frequency smoothing. We base-

line-corrected the spectral estimates per frequency band by a z-score relative to a bootstrapped baseline distribution (�0.2 to 0 s

before cue onset).

Event-related potentials: We extracted the ERPs from the epoched data after 30 Hz low pass filtering and applying an absolute

baseline-correction (�0.2 to 0 s before cue onset).

Phase-dependent modulation of behavior: In order to test if the phase of the ongoing oscillatory activity significantly predicted

either the hit rate (experiment 1) or reaction times (experiment 2), we band-pass filtered the signal in 17 logarithmically spaced

bins from 2 – 32 Hz (±center-frequency / 4) using the function eegfilt.m with default settings as implemented in eeglab. Note we

filtered the aggregated trials to avoid edge artifacts and filtered the data front- and backward to minimize phase distortions (Delorme
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andMakeig, 2004). For experiment 1, we only utilized trials where the target appeared at the correctly cued location. In experiment 2,

only utilized trials where the target appeared at the cued location and was successfully detected were included. After filtering, we

applied a Hilbert transform and extracted the instantaneous phase angles. Then we binned the phase angles at target onset into

50 equally distributed bins and computed the average phase-resolved behavior per channel and frequency bin (experiment 1: hit

rate; experiment 2: reaction time) across all trials within a 90� window centered on every phase bin. Then we calculated the normal-

ized Kullback-Leibler divergence of the observed distribution P (Equation 1; phase-dependent behavior per channel and frequency

pair was normalized by its sum) against a uniform mean distribution Q to quantify how strongly the observed distribution was

non-uniformly distributed (Equation 2).

P=
behaviorCH;fðfÞP
behaviorCH;fðfÞ (1)
DKLðP;QÞ=
X

P � log
�
P

Q

�
(2)

Then we obtained a surrogate distribution Dsurr by randomly shuffling the condition labels 1000 times (experiment 1: correct/incor-

rect; experiment 2: reaction times). This approach allowed to us to investigate which low-frequency phase predicted subsequent

behavior. We normalized the Kullback-Leibler divergence by subtracting the mean and dividing by the standard deviation of surro-

gate distribution (Equation 3).

DKL norm:ðP;QÞ= DKLðP;QÞ �meanðDsurrðP;QÞÞ
stdðDsurrðP;QÞÞ (3)

Functional network parcellation and circular statistics: In order to delineate functional networks, we utilized a seed-based func-

tional connectivity approach. First, in every subject we defined the electrode as seed electrode that exhibited the highest normalized

Kullback-Leibler divergence in the theta-band (3-5 Hz). Then we calculated the Pearson correlation coefficient between the phase-

resolved behavior at the seed electrode and all other electrodes, which yielded a correlation map that was bounded at ± 1. In three

cases, the seed was in the sensorimotor network, while in all other subjects, the seed was in the frontoparietal network. In order to

have comparable color scales across all functional networks, we inverted the color scale in these subjects.

Electrode Localization
First, we transformed both the pre-implant MRI and the post-implant CT into Talairach space. Then we segmented the MRI using

Freesurfer 5.3.0 (Dale et al., 1999) and then co-registered the T1 to theCT. 3D electrode coordinates were determined using the Field-

trip toolbox (Oostenveld et al., 2011; Stolk et al., 2017) on the co-registered CT scan. We corrected for the brain shift that is often

observed after large craniotomies (Dykstra et al., 2012). Finally, wewarped the aligned electrodes onto a template brain inMNI space.

Electrode position was defined using the VTPM atlas (Wang et al., 2015). For all electrodes, where no label was assigned, we

repeated the process and assigned a label from the AFNI atlas (Lancaster et al., 1997). We manually verified and corrected the as-

signed atlas position after inspection of the electrode reconstruction in native Talairach space. In addition, we used a functional

criterion to confirm the location of FEF. Therefore, only electrodes in the Precentral Gyrus or Middle Frontal Cortex were considered

and we required that electrodes were cue-responsive and showed a stronger response to contralateral than ipsilateral presented

cues. Electrodes in the vicinity of the TPJ were manually assigned, because TPJ definitions were not included in the VTPM or the

AFNI atlas.

Statistical Analysis
Throughout, we report single subject data and highlight effects that generalize across the population and were observed in every

participant. Unless stated otherwise, we used cluster-based permutation tests for the electrophysiological data to correct formultiple

comparisons as implemented in Fieldtrip (MonteCarlo method; 1000 iterations; maxsum criterion; Maris and Oostenveld, 2007)

based on either paired or unpaired two-tailed t tests. Clusters were either formed in time (e.g., Figures 2B, 6B, and S3A) or in the

time-frequency domain (Figure S3E). Furthermore, we used two-tailed paired t tests (e.g., Figure 1C, 2F, 3D, 5C, 6D, and 6G) to infer

significance at group level. However, given that parametric tests are not designed for small N, we utilized a permutation approach to

infer significance by randomly shuffling subject labels and repeating the t test 10000 times. p values were then computed from the

observed t-value relative to the surrogate distribution. To reduce between subject variance in order to facilitate visualization, we

mean normalized the value pairs for every subject to a mean of 1. We included bootstrapped 95% confidence interval, which

were computed using a double-iterative procedure (ibootci by Andrew Penn; see Key Resources Table). In order to infer

significant rhythmic sampling we created a null distribution by randomly shuffling condition labels (experiment 1: correct/incorrect;

experiment 2: reaction times; Figures 3A and 6E), which were then submitted to the same spectral analysis (Figures S2A and S2B).

We then z-scored the observed distribution relative to the surrogate distribution. We obtained p values by either transforming

z-values into p values using the normal cumulative distribution function f or using the method by the method by Stouffer et al.
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(Stouffer et al., 1951; VanRullen, 2016b), which was also used to combine p values across different Spearman correlation values

comparing the different CFC estimates (Figure S4). Here, every p value is turned into an equivalent z-score using the inverse normal

cumulative distribution function f�1. Subsequently, we combined z-scores across observers and then turned the averaged z-scores

into a probability using the cumulative distribution function f according to the following formula:

pcombined = 1� f

 X
i=1:N

f�11� piffiffiffiffi
N

p
!

We furthermore used Pearson’s correlation coefficient to delineate functional networks (Figures 4B and 7B). Effect sizes were

calculated using Cohen’s d, the correlation coefficient rho or the resultant vector length. Circular statistics as the Rayleigh test (Fig-

ures S4C and S4D), which tests for circular non-uniformity were carried out using the CircStat toolbox (Berens, 2009).

DATA AND SOFTWARE AVAILABILITY

Freely available software and algorithms used for analysis are listed in the resource table. All custom scripts and data contained in this

manuscript are available upon request from the Lead Contact.
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Supplemental Information 
 
Figure S1 related to Figure 1 and 2A 
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Individual electrode placement and behavioral results of the target detection experiment 
(Left column) Individual electrode coverage in Talairach space. Note that only artifact- and 
epilepsy-free electrodes are displayed. (Center column) Individual hit rate time courses as a 
function of the cue-target-interval. Note, that periodic fluctuations were observed in every single 
participant. (Right column) Spectral decomposition of individual hit rate time courses (in black). 
Only frequencies below 10 Hz were considered for peak detection, given that we utilized a 100ms 
moving average to calculate the time-resolved behavior in light of the limited number of trials per 
participant. The red line reflects the estimated 1/f contributions (± 3 SD) as obtained from irregular 
resampling. The individual peak frequency (IPF) was defined as the strongest distinct peak that 
exceeded the normalized 1/f background activity.   
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Figure S2 related to Figure 1 and 5 and Results 
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Rhythmic sampling in behavioral time courses control analyses 
(A) 95% confidence interval (CI in red) of the power spectrum (single subject example). Observed 
PSD in black. Note the PSD exceeds the 95% confidence interval, which was created after 
randomly shuffling condition labels (correct/incorrect) and repeating the analysis procedure 1000 
times. In every subject we z-scored the observed PSD relative to the median and the SD of the 
surrogate distribution and then selected the highest z-value as the individual peak frequency 
(individual z-values: S1 z = 2.27; S2 z = 3.52; S3 z = 4.37; S4 = 2.49; S5 z = 0.17; S6 z = 0.83; 
S7 = 1.78). (B) Across the group, we again observed a peak around 4 Hz (3.96 Hz ± 1.18 Hz), 
which confirmed our initial observation. At the peak frequency, we observed a mean z = 2.20 ± 
0.55 (mean ± SEM), which corresponds to a one-tailed p-value of 0.0138. In addition, we utilized 
a second approach to estimate the p-value based on the individual observations, since a different 
number of trials was used per subject. Therefore, we first transformed the individual z-scores into 
p-values and then combined p-values, which yielded a combined p-value < 0.0001. Likewise, 
utilizing the same approach for experiment 2 also confirmed the presence of an oscillatory peak 
at around 4 Hz (4.09 Hz ± 1.15 Hz; mean ± SEM). (C) As an additional control, we utilized a 
different approach to select the strongest peak. Here, we first multiplied every value in the PSD 
with the respective value of the frequency bin (1/f method) and then selected the strongest peak. 
This again yielded a group average of ~4 Hz (3.76 Hz ± 1.08 Hz). A similar result was obtained 
when trials were averaged in 50ms and not 100ms bins (3.66 Hz ± 0.42 Hz). (D) We recruited an 
additional control group (N = 14, 24.9 ± 5.5 years; mean ± SD; 6 female) who performed both 
tasks. Task order was randomized. We observed comparable behavioral performances 
(experiment 1: hit rate: 71.72% ± 6.45%; experiment 2: hit rate: 96.03% ± 2.63%; mean ± SD). 
The three rows depict three individual subjects who performed both tasks. Left: Behavioral time 
course in experiment 1. Center-left: Corresponding FFT indicating clear peaks in the theta-band.  
Center-right: Behavioral time course in experiment 2. Right: Corresponding FFT. (E) Group-level 
results: Left: Group-averaged power spectrum (mean ± SEM) from experiment 1. Center-left: 
Data from experiment 1 aligned to the individual strongest z-scored peak relative to the surrogate 
distribution (mean ± SEM; see panel A). Center-right: Group-averaged power spectrum from 
experiment 2. Right: Corresponding z-scored FFT. In both experiments, we observed mean peak 
frequencies in the theta-band (experiment 1: 4.76 ± 0.79 Hz; experiment 2: 4.68 ± 0.76 Hz). (F) 
Left: We directly compared the results in the control experiment by correlating individual power 
values at every frequency bin between the two experiments and compared them to a surrogate 
distribution after randomly shuffling subject labels 1000 times (red). We observed a significant 
correlation around 4-5 Hz and at 2 Hz (see also right panel), thus, indicating that ~35% of the 
rhythmic sampling in the theta-band in experiment 1 can be explained by theta-band dynamics in 
experiment 2. 
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Figure S3 related to Figure 2B/E/F and 3B/C/D 
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Presence of oscillatory theta signatures and control analyses 
(A) Grand-average HFB time courses (mean ± SEM across subjects) of target-locked responses 
at the cued (blue) vs. the uncued (location) at cue-responsive electrodes. Note, we observed 
significantly elevated activity in states of sustained attention prior to target onset (cluster-based 
permutation test: p = 0.0010), indicating the spatial selectivity of the HFB response. (B) Mean-
normalized group-level results (error bars indicate bootstrapped 95% confidence intervals (CI) 
around the mean in red; black dots/grey lines depict individual subjects). We found enhanced 
theta-band power in all subjects in the peak-triggered spectra when contrasting cued vs. uncued 
spatial locations at cue+ electrodes (permutation test: p = 0.0007, d = 0.75), indicating that HFB 
was stronger coupled to the theta rhythm at a given electrode that exhibited spatial selectivity 
when attention was deployed to the preferred location.  (C) In order to establish the presence of 
oscillatory activity, we again used irregular resampling based on 3s long time windows (0.5 step 
size) to estimate the 1/f fractal components (red line), while the raw spectrum (black) contained 
both, fractal 1/f and oscillatory components. Oscillatory residuals were obtained by subtracting 
the fractal component from the PSD. Two representative electrodes that were located in 
immediate proximity of the intraparietal sulcus (IPS) are depicted. Note that the upper electrode 
has a clear theta peak (~5 Hz), while the lower electrode exhibits are clear alpha (~10 Hz) peak. 
Hence, observed theta signatures do not constitute subharmonics of the strong ongoing alpha 
activity. (D) This consideration is further corroborated given the distinct spatial distribution of theta 
and alpha signatures. The left column depicts a representative subject from experiment 1. Theta 
signatures (upper row) were mainly observed over frontal and anterior parietal regions, while 
alpha activity (lower row) arose from posterior parieto-occipital areas and was also observed over 
sensorimotor cortex, thus, reflecting the mu-rhythm. The right column depicts a representative 
subject from experiment 2, where a highly similar pattern was observed. Again, note that theta 
and alpha signatures exhibit minimal overlap. (E) Grand-average time-frequency representations 
of cue+ (upper row) and cue- (lower row) electrodes, which were either cue-locked (left column) 
or target-locked (right column). Cluster-based permutation statistics revealed that the only 
significant clusters were observed in the high frequency (> 30 Hz; cue-locked: p = 0.0080; d = 
1.00; target-locked: p = 0.0300; d = 0.66) and not the low frequency bands, such as in the theta- 
and alpha-band. Even when statistical cluster testing was restricted to frequencies below 32 Hz, 
we did not find any significant clusters (smallest p cue-locked = 0.1808; smallest p target-locked = 
0.1948). Thus, we concluded that our selection criterion did not bias the results based on the low 
frequency response profile. (F) Likewise, we tested if differences in event-related potentials could 
explain the observed differences in low-frequency phase-dependent behavioral modulations. 
However, neither cue-locked (cluster-based permutation test: p = 0.2498) nor target-locked ERPs 
(no clusters detected within 5% criterion) did differ significantly between cue+ and cue- 
electrodes. This is in line with previous findings that HFB activity and ERPs have distinct neuronal 
sources and only exhibit minimal overlap (Dürschmid et al., 2016; Kam et al., 2016).   
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Figure S4 related to Figure 2D/E, 4B, 6C and 7B 

 
Theta-gamma cross-frequency coupling can reliably be detected using different metrics 
(A) Single subject example: Black dots depict individual electrodes; the red line depicts the linear 
regression line. We calculated Spearman correlations on the individual subject level across 
electrodes between trial-averaged coupling metrics. Each of the 4 metrics (STA: spike-triggered 
average theta power; Canolty Modulation Index, Circular Linear Correlations and the PLV) was 
correlated against the average Tort Modulation Index at the same electrode, which has been 
utilized as the reference metric, because it performs well on short and noisy segments. We 
observed a positive linear correlation between all of the metrics. (B) Given that every subject had 
a different number of electrodes, we combined p-values across subjects using the method by 
Stouffer et al (see Material and Methods). We observed highly significant correlations at the group 
level across all metrics. (C) We tested whether different networks exhibit theta phase 
relationships that are predictive of behavior. In Experiment 1, we observed anti-phasic theta-
phase relationships in the frontoparietal and sensorimotor network (Figure 4B; -159.8° ± 17.4°, 
circular mean ± SD; Rayleigh test for circular non-uniformity z = 5.46, p = 0.0011, rvl = 0.95). (D) 
In experiment 2, functional network parcellation again clearly separated the parieto-occipital from 
the sensorimotor network, which preferentially operated in anti-phase (Figure 7B; -177.2° ± 19.0°, 
circular mean ± SD; z = 7.14, p < 0.0001, rvl = 0.94). 
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Figure S5 related to Figure 3 and 4A/B 
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Distribution of rhythmic sampling and functional network parcellation in experiment 1 
(Left column) Distribution of rhythmic perceptual sampling (normalized Kullback-Leibler 
divergence), indicating that regions in the around posterior parietal cortex, the temporo-parietal 
junction and prefrontal cortex exhibited a strong relationship between theta-phase and target 
detection performance. This analysis was not possible for subject S1 given that not a sufficient 
number of error trials was left after artifact rejection. (Center column) One representative parietal 
electrode per participant. Note, the examples were chosen based on their anatomical location and 
not based on the magnitude of the effect. The spectrograms depict the relationship between 
phase, frequency and hit rate. Note that the red solid line on the right-handed side exceeded the 
null distribution around ~4 Hz in all participants indicating a significant relationship between theta-
phase and subsequent behavior. This effect was frequency-specific and not observed in any 
other band. (Right column) Functional network parcellation based on phase-resolved behavioral 
time courses. Note the functional separation into the frontoparietal network (color scale towards 
yellow) and the sensorimotor network (color scale towards blue).   
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Figure S6 related to Figure 5 and 6A 
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Individual electrode placement and behavioral results in the reaction time experiment 
(Left column) Individual electrode coverage in Talairach space. Note only artifact- and epilepsy-
free electrodes are displayed. (Center column) Individual reaction times time courses as a 
function of the cue-target-interval. Note that periodic fluctuations were observed in every single 
participant. (Right column) Spectral decomposition of individual reaction times time courses (in 
black). Only frequencies below 10 Hz were considered for peak detection, given that we utilized a 
100ms moving average to calculate the time-resolved behavior in light of the limited number of 
trials per participant. The red line reflects the estimated 1/f contributions as obtained from 
irregular resampling (± 3SD). Individual peak frequency (IPF) was defined as the strongest 
distinct peak that exceeded the normalized 1/f background activity.   
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Figure S7 related to Figure 6E-G and 7 
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Distribution of rhythmic sampling and functional network parcellation in experiment 2 
(Left column) Distribution of rhythmic perceptual sampling (normalized Kullback-Leibler 
divergence), indicating that regions in the frontoparietal and sensorimotor network contributed to 
the observed behavioral periodicities. (Center column) One representative parietal electrode per 
participant. Note, the examples were chosen based on their anatomical location and not based on 
the magnitude of the effect. The spectrograms depict the relationship between phase, frequency 
and reaction time. Note that the red solid line on the right-handed side exceeded the null 
distribution around ~4 Hz in all participants indicating a significant relationship between theta-
phase and subsequent behavior. (Right column) Functional network parcellation based on phase-
resolved behavioral time courses again separated the results into the frontoparietal network (color 
scale towards yellow) and the sensorimotor network (color scale towards blue). 
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