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ScienceDirect
Which neural mechanisms provide the functional basis of top-

down guided cognitive control? Here, we review recent

evidence that suggest that the neural basis of attention is

inherently rhythmic. In particular, we discuss two physical

properties of self-sustained networks, namely entrainment and

resonance, and how these shape the timescale of attentional

control. Several recent findings revealed theta-band (3–8 Hz)

dynamics in top-down guided behavior. These reports were

paralleled by intracranial recordings, which implicated theta

oscillations in the organization of functional attention networks.

We discuss how the intrinsic network architecture shapes

covert attentional sampling as well as overt behavior. Taken

together, we posit that theta rhythmicity is an inherent feature of

the attention network in support of top-down guided goal-

directed behavior.
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Introduction
Neurophysiological recordings reveal the ever-changing

nature of brain activity. But how does time-varying (i.e.

non-constant), non-stationary (i.e. changing statistical

properties, such as mean, variance or autocorrelation)

neuronal activity support our seemingly continuous and

stable perception of the world [1,2]? At the population

level, rhythmic activity patterns dominate neuronal

recordings [3]. Decades of research linked these periodic

activity fluctuations to specific canonical computations

[4] and indicated their pivotal role for network organiza-

tion and inter-areal information transfer [2,5]. However,

the direct link between endogenous, spontaneously

generated (in contrast to task evoked) brain activity
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and moment-to-moment behavioral fluctuations remains

to be determined.

For perception and attention, a basic concept is that

‘spontaneous’ rhythmic activity might index moments,

in which a given neural circuit is more or less efficient in

performing its computation [1,2,5]. In particular, certain

phases of the oscillatory cycle are associated with better

performance than others [6–8]. While other oscillatory

features, such as amplitude and frequency, also impact

neuronal excitability [9], we mainly focus on phase-

dependent effects, which, unlike power modulations,

capture behavioral fluctuations on a millisecond time

scale. Recently, several studies promoted the relevance

of neuronal oscillations for behavior by demonstrating

periodicities in behavioral time courses relative to an

external reference event. Notably, the observed periodi-

cities in behavior closely matched the timescales of

rhythmic brain activity [1]. For instance, several reports

showed that visual perception cycles as a function of

parieto-occipital alpha phase (8–12 Hz; [7,10��,11–13]),
while higher cognitive functions, such as attention and

predictions exhibit slower delta/theta signatures (3–8 Hz;

[14–16]). Crucially, observing oscillations in behavioral

time courses, which are often constructed across several

hundred trials, implies that there is an underlying neuro-

nal process that exhibits a constant phase relationship

relative to a reference event, for example a sensory cue,

across all trials. Previous studies indicated that this across-

trial phase organization could be induced when ongoing

cortical rhythms become ‘phase-aligned’ relative to the

reference external event.

Here we review recent findings that clarify the neural

basis of perceptual and attentional cycles in behavior. We

discuss two concepts that have often been used to explain

such cycles, namely entrainment and resonance, both

grounded in non-linear systems theory, but lacking a clear

definition in cognitive neuroscience. We further make-

specific predictions about the properties of the observed

spectral signatures and explore the question how the

brain might utilize its inherent physical structure to

support top-down guided allocation of attention.

What constitutes neuronal entrainment?
A common scenario, in which periodicities in behavior

can be observed at a consistent frequency occurs after

exposure to a (quasi-) periodic stimulus stream, where

performance is typically better at on-beat times relative to

off-beat times [8,17–19]. The prevalent mechanistic
www.sciencedirect.com
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explanation for observed cyclic behavioral patterns is the

concept of neural entrainment, most commonly defined

in cognitive neuroscience as phase alignment of ongoing

oscillations to a (quasi-) periodic stimulus stream [20].

Consistent with this model, exposure to a rhythmic

stream leads to increased phase locking of neural activity

at the stream frequency [18,21,22]. In the field of atten-

tion research, oscillatory entrainment is considered a

powerful neural mechanism to maximize the predictabil-

ity of future events and precisely time the allocation of

resources [18].

However, entrainment as defined by dynamical systems

theory [23] can only be considered if several pre-requi-

sites are met. In particular, neuronal entrainment always

requires two oscillators, one in the input stream and one

neural oscillator, which interact through directed synchro-

nization. The challenge to entrainment models is that

phase locking during presentations of a periodic stream

can stem from other, non-oscillatory sources making it

questionable whether an existing intrinsic oscillator is

being entrained. One such pattern is the evoked response

that is triggered by the entraining stream (Figure 1a).

Given that temporal and spectral changes are inherently

correlated, any evoked response will appear as an align-

ment of phases in the frequency domain [24–26].

Even when the impact of evoked responses is reduced

by using close-to-threshold stimuli [27�] or comparing
Figure 1
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to aperiodic streams [28], a recent study showed that

phase locking can be fully explained by repeated ramp-

ing activity, driven by the temporal predictability that is

inherent to the periodic stream ([29��]; Figure 1b). This

was based on observing similar phase-locking metrics in

a stream that was substantially less periodic, but was as

predictable as a rhythmic stream. Therefore, phase

locking during stream presentation cannot be taken

as evidence or an indicator or a pure entrainment

process [30,31].

An additional defining property of true neural entrain-

ment entails that phase consistency outlasts the stimula-

tion offset by several cycles, reverberating at the

entrained frequency at predictable phases before disper-

sion ([23,29��,32]; Figure 1c). Several recent studies have

observed reverberation, accompanied by corresponding

periodicities in behavioral time courses, in a range of

frequencies from delta to alpha bands [10��,33]. Such

findings corroborate that exposure to a periodic stream

creates attentional cycles in a bottom-up (i.e. sensory

driven) manner, possibly mediated by entrainment of

endogenous rhythms.

However, recent observations have questioned that peri-

odic stimulation generates attentional cycles in a purely

bottom-up manner. One study demonstrated that obser-

vers can voluntarily orient their attention to the ‘gaps’ in

the entraining stream, leading to facilitated performance
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to off-beat relative to on-beat targets [34]. This implies a

voluntary process and not an automatic bottom-up driven

response, despite similar neural signatures [29��]. In line

with this finding, another recent study modulated both

the rhythmicity and the cognitive content of a preceding

visual stream [10��]. The authors demonstrated that bot-

tom-up entrainment was only effective when the stream

was presented rhythmically and no additional top-down

information was available (Figure 2). However, top-down

information (reflecting cognitive priors, i.e. expectations

and predictions) altered bottom-up, purely sensory

driven, entrainment effects in behavior. Importantly, in

addition to visual perception varying over time at the

frequency of the sensory rhythm, this study revealed that

the ability to utilize top-down information also fluctuates

as a function of a low-theta rhythm. Hence, this observa-

tion strongly suggests that theta is an intrinsically gener-

ated rhythm that only emerges when top-down attention

is deployed. Collectively, these studies indicate a com-

plex interaction between bottom-up entrainment and

top-down attention, which operates at its own intrinsic

timescale and might be oscillatory in nature.
Figure 2
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Network resonance of the neural attention
circuitry
A different property of dynamical systems that can lead to

phase-consistent behavioral and neural periodicity is the

concept of resonance, which is closely related to entrain-

ment, but differs in several important ways [23]. In

contrast to entrainment, resonance does not require an

oscillator in the input stream (Figure 1d). Even a singular

event might trigger a frequency-specific response, which

dampens over several cycles as the network returns to its

baseline state. Several studies demonstrated this princi-

ple and described periodic patterns in behavior following

a single transient sensory event independent of a periodic

stimulus stream [15,16,35��,36��].

Recently, two comparative intracranial studies in maca-

ques [35��] and in humans [36��] revealed that rhythmic

behavioral sampling is directly related to activity pat-

terns in the fronto-parietal attention network (Figure 3).
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Figure 3
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Theta rhythmicity in the fronto-parietal attention network.

(a) Schematic of context-dependent network reconfigurations: different network configurations might exhibit characteristic frequency-specific

response when input into the system is provided (solid lines indicate observations; dashed lines indicate suspected network motifs). Responses

often decay over time or are terminated by another network reconfiguration. (b) Single trial example of a intracranial electrode placed over parietal

cortex: after a cue-evoked response, high frequency band activity, a surrogate for multi-unit spiking activity, fluctuated at a theta frequency. This

rhythmicity was terminated after target presentation and subsequent overt response. (c) Topographical depiction of theta rhythmic sampling. Note

parietal, frontal, and motor areas contribute significantly to the behavioral rhythmic sampling. Lower right: behavior-phase relationships are

coherent in the fronto-parietal attention network and can be delineated from the sensorimotor network. The graphs in (b)–(c) are reproduced with

permission from Ref. [36��].
target, which appeared at varying cue-target-intervals

[15]. These two studies, as well as a recent study in

ferrets [37], demonstrated prominent theta oscillations

coupled to high frequency or spiking activity during the

cue-target-interval, which directly predicted behavioral

outcome on a trial-by-trial basis. Notably, these theta

signatures were transient and most pronounced during

the covert sampling of the visual display. Distant areas in

the fronto-parietal attention network exhibited similar

phase-behavior dependencies supporting a common

functional network organization. Given that attentional

theta signatures can be observed in behavior and

electrophysiological recordings across species in several
www.sciencedirect.com 
sustained attention tasks, theta oscillations may be an

inherent feature of the self-organization of the attention

network and may reflect its eigenfrequency, defined as

the preferred intrinsic resonance frequency, arising from

physical constraints [38�].

The observations of periodic neural and behavioral pat-

terns following a single cue raise another potential chal-

lenge for rhythmic entrainment models. Repeated input

into a resonating network can give rise to a pattern that

closely resembles a truly entrained response (Figure 1e)

at both the neural and the behavioral levels. If no addi-

tional input is provided, the initial response will be
Current Opinion in Psychology 2019, 29:82–89
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dampened, leading to markedly reduced amplitudes after

several cycles (Figure 1d), hence, diminishing the impact

of the instantaneous phase on subsequent behavior [6].

Therefore, it is possible that behavioral and neural per-

iodicities, which were observed after exposure to periodic

streams and were attributed to neural entrainment, in fact

reflect resonance phenomena.

A related issue that is currently unclear is whether the

network always resonates at its preferred eigenfrequency,

or whether the precise resonance frequency is under top-

down control. For instance, could the same network

resonate at different frequencies depending on the cog-

nitive content or previous sensory input? We speculate

that the resonance frequency could change depending on

the instantaneous network configuration. Hence, the

same network could resonate at different frequencies

depending on its current configuration and task require-

ments ([39]; Figure 3a), that is exhibit state-specific

spectral signatures that modulate behavior [4]. Methods

recently employed to illuminate hidden-states in working

memory might prove beneficial to dissect the functional

basis of attention. In line with this, spontaneous oscil-

latory bursts might precisely index the current network

state [40�], and activity at the eigenfrequency might be

amplified when ‘pinged’ by a non-informative supra-

threshold stimulus [41] providing an instantaneous read-

out of the current network configuration.

The emergence of theta rhythms in attention
Notably, behavioral and neural periodicities during top-

down guided attention exhibited prominent theta signa-

tures, irrespective of whether they followed a single

attentional cue [18,35��,36��] or a preceding entraining

stream [10��]. Previously, theta oscillations (3–8 Hz) have

been mainly associated with hippocampus-dependent

processing [2,3]. Hence, it is surprising that the same

spectral signatures are also prevalent in attention tasks.

Several scenarios could give rise to theta fluctuations. One

idea is that a supra-threshold stimulus phase-aligns ongo-

ing activity [42]. However, theta oscillations are not

commonly observed during rest [2,4], making it less likely

that this is the case. Another possibility is that the theta

signatures index the engagement of the underlying atten-

tion network, which might resonate at its preferred eigen-

frequency in the theta range. Currently, it remains

unclear whether theta signatures reflect a ‘active’ sam-

pling mechanism by which the brain discretely explores

the environment [1] or whether theta resonance consti-

tutes a ‘passive’ network property, which constrains the

environmental exploration [38�].

One direct question arising from the first consideration is

which structure could implement such a distributed scan-

ning process? Recently, it has been speculated that the

pulvinar, a nucleus of the visual thalamus, does not consti-

tute a passive relay station, but might actively orchestrate
Current Opinion in Psychology 2019, 29:82–89 
attention networks [43]. Direct thalamic recordings in

humans, monkeys and ferrets provide further support for

this consideration: Thalamo-cortical theta synchrony [44]

is increased during attentional engagement [45,46��].
Importantly, theta synchrony precisely indexes attentional

states and mediates feed-forward influences from the

thalamus to the cortex [46��,47]. This cascade where theta

indexes feed-forward signaling was also apparent for

cortico-cortical connections from V1 to V4 [48]. While

theta modulations have been observed as early as in

V1 [42], it is less clear where these modulatory signals

emerge. Both, frontal [10��,35��,37] as well as thalamic

[43,46��,47,49] regions have been implicated in the long-

range control of parieto-occipital activity in states of top-

down attention deployment. However, it is uncertain how

these structures interact.

Evidence for the latter consideration stems from a recent

study that introduced a framework to explain the emer-

gence of behaviorally relevant theta oscillations from

balanced interactions in local circuits [38�]. This study

reported that behaviorally relevant theta modulations can

also arise from competing receptive field interactions in

cortical area V4 [38�]. Here, intrinsic time constants of the

dynamic interplay of excitation and inhibition are sug-

gested to give rise to theta rhythmicity. It is currently

unclear whether similar constraints give rise to theta

activity in thalamo-fronto-parietal networks, or how affer-

ent inputs [48] into V4 shape the local [38�] and long-

range [35��,36��] theta interactions and their relationship

to behavior.

In summary, theta signatures constitute an important

physiological feature of attention networks. Future

research must address if the exact network features,

such as for example peak frequencies varying as a

function of cognitive states or rather if they reflect a

trait-like hardwiring of the underlying anatomical struc-

tures determining the resolution of the attention system.

This distinction is also relevant for rhythms and entrain-

ment theories, as resonance at the network eigenfre-

quency cannot explain observations of behavioral and

neural periodicities across several canonical frequency

bands, such as delta/theta (3–8 Hz), alpha (8–12 Hz) and

beta (13–30 Hz). However, resonance with varying peak

frequencies (Figure 3a) could provide a parsimonious

explanation to behavioral and neural reverberation after

stream termination, without relying on a pre-existing

oscillator (Figure 1e).

How does covert rhythmic sampling support
overt behaviors?
The reviewed evidence here established that covert

rhythmic sampling behaviors can arise from endogenous

oscillatory processes, which do not depend on the exis-

tence of periodicities in the sensory input stream. It is

currently unclear if similar dependencies exist between
www.sciencedirect.com
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ongoing oscillations and overt rhythmic sampling beha-

viors, such as (micro-) saccadic eye movements or whisk-

ing movements in rodents [50,51]. Furthermore, it poses

the question if and how oscillations support the transfor-

mation of covertly sampled information into overt

behaviors.

Recent findings indicated covert rhythmic sampling is

actually diminished during overt behaviors such as

(micro-) saccadic eye movements [35��,48]. One possible

mechanistic explanation is that oscillations can also be

phase-reset relative to other reference events besides

external sensory stimuli, for example by motor output

[15,16]. Support for this consideration stems from two

recent observations: First, it has been demonstrated that

microsaccades phase-reset cortical rhythmic sampling

[52�]. This was reflected in prominent behavioral fluc-

tuations only emerging when behavioral performance

was assessed relative to the microsaccade, but not to

the external reference event [52�,53]. This is in line with

the notion that the most significant changes within the

oculo-motor system occur �100 ms around a (micro-

saccade), that is within a single theta cycle (�5 Hz

[54]). Similar effects were observed relative to a button

press in human subjects, again, being associated with

prominent theta rhythmicity in behavioral time courses

[55]. In addition, neuronal response gain was found to be

enhanced before an eye movement [54,56], that is, at a

time when the targeted location has already been

covertly sampled.

Jointly, these findings raise the intriguing possibility that

covert and overt processes are not independent but

exhibit a reciprocal relationship that is mediated by

neural rhythms. An external sensory event might trigger

the covert rhythmic sampling, which subsequently

informs overt behavior. The movement execution then

restarts this cycle, that is, covert sampling of the envi-

ronment selects the most salient stimulus for the next

(micro-) saccade. This consideration implicates the

(oculo-) motor system, including the visual thalamus

[43,45,47] as well as the superior colliculus [57,58], in

organizing the network to coordinate covert and overt

behaviors.

Conclusions
The evidence we reviewed here collectively demon-

strates that spontaneous network activity shapes and

constrains allocation of attention. We argue that periodi-

cities in human behavior directly reflect the underlying

frequency-specific network organization, which is surpris-

ingly well preserved across species (ferrets, macaques and

humans) and preferentially operates at a theta timescale

(3–8 Hz). Future research will have to determine whether

theta rhythmicity constitutes a voluntary active-sampling

process or theta reflects the intrinsic biophysical structure
www.sciencedirect.com 
of the brain directly determining covert and overt

behaviors.

The concept of entrainment as a mechanism to extract

important temporal regularities from the environment has

gained popularity in recent years. Here, we define the

limitations of this concept and highlight the similarities of

and differences from pure network resonance. With this,

we overcome discrepancies in the entrainment literature

and directly link periodicities as observed in behavior to

large-scale network organization. We reviewed recent

evidence that suggests that distinct network configura-

tions exhibit distinct resonance phenomena at their

eigenfrequency, which decays over time or when the

network configuration is changed. Taken together, the

endogenous network architecture concept could consti-

tute the functional unit of cognition [59,60], and might be

readily visible in the behavioral outcome when probed on

a fine-grained temporal scale.
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