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Cognitive neurophysiology: Event-related potentials
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st0010 Abstract

Event-related potentials (ERPs) are one of the most commonly used tools to assess cognitive processing
with a high temporal resolution. We provide an updated view of the cortical origins of evoked responses
and discuss potential mechanisms contributing to ERP generation. In particular, we focus on the relation-
ship between evoked and ongoing oscillatory activity and discuss the differences between ERPs and
cortical activation as indexed by high-frequency activity in human intracranial electroencephalography
(EEG). We highlight several possibilities for how ERPs can precisely index human perception and behav-
ior in nontraditional approaches, such as neuronal entrainment through steady-state evoked potentials,
multivariate decoding, and cross-frequency correlations. We argue that analyses of time-locked responses
are beneficial to assess nonlinear and nonsinusoidal neuronal activity on a fine-grained temporal scale,
since analyses in the time domain are less susceptible to artifacts than spectral decomposition techniques.
Taken together, the current review provides a state-of-the-art overview of ERPs and their application in
cognitive and clinical neurophysiology.

s0010 50 YEARS OF EVENT-RELATED
POTENTIALS IN COGNITIVE

NEUROSCIENCE

p0010 The first few years of electroencephalography (EEG)
mainly focused on oscillatory activity in the alpha
(8–12Hz) and beta (13–30Hz) ranges. About 35 years
after the initial discovery (Berger, 1929), the first evoked
responses, which were about 10–100 times smaller than
background EEG activity, were characterized: the con-
tingent negative variation (CNV) was first published in
1964 (Walter et al., 1964), the readiness potential (RP)
in 1965 (Kornhuber and Deecke, 1965), the same year
visual evoked potentials (VEPs) and the P300 component
were first described (Cooper et al., 1965; Sutton et al.,
1965). These discoveries initiated a very fruitful phase
for human electrophysiology in the 1970s–2000s, when
event-related analyses became virtually synonymous
with EEG analyses. Several additional components were
discovered: the mismatch negativity (MMN) was first
described in 1978 (N€a€at€anen et al., 1978), the N400 in
1980 (Kutas and Hillyard, 1980), the N2pc in 1994

(Luck and Hillyard, 1994), and the N170 in 1996
(Bentin et al., 1996). However, most of the findings
were descriptive and most components were labeled
according to their polarity, latency, and scalp distribution
(Luck, 2014).

p0015While ERPs serve as a precise index of cortical activity
with a temporal resolution in the millisecond range, they
do not provide amechanistic understanding of brain phys-
iology. With the discovery of synchronized gamma-band
oscillations (Gray et al., 1989), the focus started to shift
away from ERPs. Over the last 10–15 years several influ-
ential studies highlighted the role of rhythmic brain
activity for high-level cognitive functions (Engel et al.,
2001; Salinas and Sejnowski, 2001; Varela et al., 2001;
Fries, 2005; Siegel et al., 2012). Notably, oscillatory ana-
lyses are more susceptible to artifacts than analyses in the
time domain. Specifically, the current debate includes
gamma-band activity (Brunet et al., 2014; Hermes et al.,
2015a,b; Ray and Maunsell, 2015) as well as the concept
of cross-frequency coupling (Aru et al., 2015; Gerber
et al., 2016; Cole and Voytek, 2017), which implies that
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cortical communication is multiplexed across temporal
scales that dynamically interact by selective synchroniza-
tion (Canolty and Knight, 2010).

p0020 Recent evidence suggests that some of these findings
might be caused by nonsinusoidal signal characteristics
as well as sharp evoked transients (Aru et al., 2015;
Gerber et al., 2016; Cole and Voytek, 2017; Cole
et al., 2017), which were readily visible in the time
domain (Vaz et al., 2017). Hence, time domain analyses
have regained importance for understanding cortical
physiology. A recent review argued that the discovery
of the fundamental cardiac physiology and ECG (elec-
trocardiogram) would have never been possible in the
frequency domain (Cole and Voytek, 2017). Only
inspection in the time domain clearly delineated the
P-wave from the QRS-complex and the T-wave, which
in turn could be related to distinct stages of one heart-
beat. Importantly, the polarity of these waves contained
all the information to infer directionality and spread
along predefined anatomical structures.

p0025 In this chapter, we provide an updated perspective on
the physiologic basis ofERPs.Wediscuss the origin, func-
tion, and clinical applicability of two exemplary compo-
nents, the MMN and the P300. In addition, we highlight
several studies that demonstrated howERPs could be used
to index top-downcontrol and howERPs relate to ongoing
brain dynamics and cortical activation. Therefore we dis-
cuss different mechanisms of ERP generation and review
evidence regarding where ERPs are being generated in
the cortex. Crucially, we highlight several methodological
limitations and provide an updated perspective on how
ERPs can be used in cognitive and clinical neurophy-
siology. We focus on recent methodological develop-
ments, such as neuronal entrainment by steady-state
evoked potentials, multivariate decoding, and event-
related cross-frequency correlations.We believe that these
techniques are likely to gain importance in light of several
constraints of spectral analyses. Hence, ERPs combined
with state-of-the-art methodology will likely remain one
of the essential tools in cognitive neurophysiology to
elucidate cortical physiology and behavior.

s0015 TYPICAL ERPs AND THEIR
ALTERATIONS IN NEUROPSYCHIATRIC

DISORDERS

p0030 Evoked potentials are used in a variety of clinical con-
texts (Walsh et al., 2005; Lascano et al., 2017). For exam-
ple, visual evoked potentials (VEPs) are informative in
diagnosing optic neuritis and multiple sclerosis; TMS-
evoked motor potentials (MEPs) provide insights for
motor neuron diseases and spinal cord conduction; and
brainstem auditory evoked potentials (BAEPs) reliably

assess auditory pathways. It has been hypothesized that
ERPs that are typically observed in cognitive experi-
ments might be useful as biomarkers to detect early
stages of neuropsychiatric diseases and index disease
progression (Duncan et al., 2009; Morlet and Fischer,
2014; Kappenman and Luck, 2016; Kremláček et al.,
2016; Michie et al., 2016; Seer et al., 2016). In theory,
high temporal resolution and low operating expenses
make scalp EEG an ideal tool to screen for neuropsychi-
atric diseases. Despite substantial effort in these areas, no
definitive relationship between cognitive ERPs and
neuropsychiatric diseases has been established to date.
Here, we focus on two of the most widely studied
components, the mismatch negativity (MMN) and the
P300, to illustrate the classic ERP findings in cognitive
and clinical neurophysiology. Please note that there are
many more components that might be useful in clinical
contexts, including the N170 for face processing
(Feuerriegel et al., 2015; Yovel, 2016), the event-related
negativity (ERN) for error detection (Wessel, 2012;
Ullsperger et al., 2014), or the N400 (Kutas and
Federmeier, 2011;Mohammad andDeLisi, 2013), which
indexes word processing and semantic memory.

s0020Mismatch negativity

p0035The MMN was first described in the auditory domain
(N€a€at€anen et al., 1978), but can also be observed in other
sensorymodalities and constitutes an automated slow cor-
tical response to infrequent deviant stimuli (Fishman,
2014; Sussman and Shafer, 2014). The MMN is normally
assessed as the difference wave of deviant and standard
stimuli over fronto-central EEG leads and peaks around
150–250ms (N€a€at€anen et al., 1978, 2014). Converging
intracranial evidence located theMMN to primary sensory
as well as inferior frontal areas (Edwards et al., 2005;
Rosburg et al., 2005). Functionally, the MMN is highly
context dependent and might reflect a deviation from a
template-matching process to a memory trace (Fishman,
2014; N€a€at€anen et al., 2014; Bartha-Doering et al.,
2015). The MMN constitutes a reflexive response that
can be elicited largely irrespective of the current cognitive
state, whichmakes it ideal for passive screening in clinical
environments (Duncan et al., 2009). For example, a
reduced MMN has repeatedly been observed in schizo-
phrenic patients and in neurodegenerative disorders such
as Alzheimer’s disease (Todd et al., 2013; Bartha-Doering
et al., 2015; Michie et al., 2016). In addition, the presence
of an MMN in coma patients has been shown to be a rea-
sonably good predictor of recovery of consciousness
(Morlet and Fischer, 2014). Previously, only auditory
and somatosensory evoked potentials, which peaked at
around !20–30ms, had been used for coma diagnoses.
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However, the MMN and passive auditory oddball para-
digms, which include a higher cognitive component,
might prove beneficial in prediction of coma outcome
given that their generation involves more complex,
long-range, top-down network interactions (Brown
et al., 2011). For example, coma awakening is well corre-
lated with the presence of a clear P300 or an MMN
response and might provide a signal that the cortical
network architecture is still intact (Morlet and Fischer,
2014). In contrast, early-evoked potentials, such as the
N20, can only index the function of primary sensory areas
and bottom-up signaling to some extent (Boly et al., 2011;
Rosanova et al., 2012), but do not allow inferences about
cortical networks underlying higher cognitive functions.

s0025 P300

p0040 P300 summarizes a family of frontal and parieto-
temporo-occipital positive components that emerge
around 300ms and index the detection and discrimina-
tion of task-relevant targets and cues (Polich, 2007).
The more frontal P3a has been linked to bottom-up atten-
tion and novelty processing, while the posterior P3b
might signal more top-down control of attention and
memory processing (Friedman et al., 2001; Polich and
Criado, 2006; Polich, 2007). The P300 has been widely
studied, because both its amplitude and latency seem to
provide relatively stable markers to index classification
accuracy and speed (Friedman et al., 2001; Polich,
2007). In contrast to early evoked potentials (P100/
N100), the P300 involves bilateral cortical regions and
its amplitude is maximal over midline EEG leads
(Soltani and Knight, 2000).

p0045 So far, no consensus has been reached as to what the
P300 actually reflects. Both cortical activation and inhi-
bition have been debated. Recent intracranial evidence
showed that electrodes exhibiting strong P300-like
responses did not show a strong high-frequency activity
response (HFA; see the following), thus supporting the
inhibition hypothesis (Szczepanski et al., 2014; Kam
et al., 2016). HFA is generally thought to reflect cortical
activation and has been shown to index cortical spiking
activity (Ray andMaunsell, 2011; Rich andWallis, 2017;
Watson et al., 2017). Furthermore, HFA positively corre-
lates with the fMRI BOLD signal (Hermes et al., 2017).
However, there is only minimal overlap between elec-
trodes that exhibit a strong HFA response and electrodes
that have a clear ERP component, which supports the
notion that distinct cortical generators contribute to the
generation of these electrophysiologic signatures
(D€urschmid et al., 2016; Kam et al., 2016). To date, it
remains unknown how population activity and the timed
interplay of inhibitory or excitatory neurons contribute to

ERP generation. However, it is unlikely that ERPs signal
cortical activation given their inconsistent relationship to
surrogate makers of spiking activity (Kam et al., 2016).
Future studies in humans taking advantage of single
neuron recordings to estimate the excitatory-inhibitory
balance will have the potential to address these outstand-
ing questions (Fried et al., 2014; Voytek and
Knight, 2015).

p0050Given that the P300 is a prominent component with
large amplitude, it requires very few trials to be reliably
estimated against background activity. Therefore it has
been employed in a variety of clinical contexts (Duncan
et al., 2009; Morlet and Fischer, 2014; Kremláček et al.,
2016; Seer et al., 2016) and used for noninvasive brain-
computer interfaces (Birbaumer, 2006; Cecotti, 2011).
The P300 appears to be reliably reduced in schizophrenic
patients (Duncan et al., 2009). In contrast, the P300 in
patients with Parkinson’s disease (PD) is variable and
depends on medication and deep brain stimulation
(DBS) settings, PD subtype, and disease duration (Seer
et al., 2016). In addition, the P300 has been used to track
a healthy development. For example, children with atten-
tion deficit hyperactivity disorder (ADHD) have compara-
ble smaller P300 amplitudes, while autistic children often
also exhibit delayed peak latencies (Duncan et al., 2009).

p0055Taken together, several lines of research have indi-
cated the usefulness of ERP analyses to assess neuropsy-
chiatric diseases. While a number of guidelines have
been proposed (Duncan et al., 2009; Kappenman and
Luck, 2016), the field has not reached a consensus yet
and the sheer variety of tasks, settings, recording envi-
ronments and equipment, study populations, and analy-
sis techniques makes it difficult to compare across
studies. Ultimately, a better understanding of the neural
underpinnings and origins of ERPs will be necessary to
make use of them in clinical settings (Sussman and
Shafer, 2014; Sussman et al., 2014).

s0030TOP-DOWN CONTROL OF
SENSORY ERPs

p0060The lesion approach in cognitive neuroscience takes
advantage of the high temporal resolution of EEG to link
behavioral deficits to impaired neuronal processing in
the millisecond range (Szczepanski and Knight, 2014).
Here, we review several studies that successfully
employed this method to make inferences about top-
down guided behavior in the human brain. We focus
on lesions in the prefrontal cortex (PFC), given that sub-
stantial evidence from imaging and invasive recordings
tightly linked the PFC to goal-directed top-down control
(Miller and Cohen, 2001; Szczepanski andKnight, 2014;
Helfrich and Knight, 2016).
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p0065 Several studies demonstrated that early ERP ampli-
tudes are decreased ipsilaterally to a circumscribed
dorsolateral prefrontal cortex (DLPFC) lesion in the
visual (Barceló et al., 2000; Yago et al., 2004; Voytek
et al., 2010) or the auditory domain (Knight et al.,
1981; Bidet-Caulet et al., 2015) and indexed impaired
behavioral performance. In addition, it has been shown
that the later responses, such as the novelty P300, are
markedly reduced in response to unexpected novel stim-
uli (Knight, 1984; Yamaguchi and Knight, 1992;
Løvstad et al., 2012). In the case of predicted events,
DLPFC lesion patients do not exhibit the usual behav-
ioral benefits from predictive cues, which was reflected
in prolonged P300 peak latencies (Fogelson et al., 2009).
Hence, ERP components may serve as a precise index of
top-down control on a fine-grained temporal scale.

s0035 THE ORIGIN OF EVENT-RELATED
POTENTIALS

p0070 Substantial invasive and noninvasive evidence demon-
strated that the ERP at scalp level reflects the summation
of independent cortical sources (Halgren et al., 1980;
Soltani and Knight, 2000; Edwards et al., 2005;
Rosburg et al., 2005; Kam et al., 2016). In particular,
intracranial recordings from patients with intractable epi-
lepsy provided insights into the neuronal underpinnings
of ERPs (Halgren et al., 1980; Edwards et al., 2005;
Rosburg et al., 2005; D€urschmid et al., 2016; Kam
et al., 2016). We review two lines of research in this
domain. The first one entails a direct comparison of ERPs
as observed on the cortex and observed at scalp elec-
trodes. The second approach takes advantage of the dis-
covery of broadband high-frequency activity (HFA or
high gamma) in the human brain in the range from
70 to 150Hz (Crone et al., 1998). It has been demon-
strated that amplitude changes in this frequency range
closely correlate with spiking activity of single neurons
and might serve as a surrogate marker of cortical activa-
tion (Ray and Maunsell, 2011). Several studies taking
advantage of higher digitization rates of new EEG ampli-
fiers ("1000Hz) have begun to unravel the relationship
of cortical activation and ERP generation.

s0040 Comparison of extra- and intracranial ERPs

p0075 Early clinical recordings had a limited sampling rate of
<256Hz, which did not permit reliable estimation of
HFA; therefore most of the intracranial reports in the
1980s and 1990s focused on ERPs. In particular, Halgren
et al. delineated the cortical origins of the P300 in a series
of seminal papers (Halgren et al., 1980, 1982, 1998).
They concluded that bilateral parietal, dorsolateral pre-
frontal, orbitofrontal, and anterior cingulate areas con-
tribute to the scalp ERP (Halgren et al., 1998). In

addition, they showed that later ERP components were
not lateralized, while early evoked responses exhibited
a contralateral preference.

p0080Rosburg et al. took advantage of simultaneous intra-
cranial and extracranial EEG recordings and showed that
most intracranial electrodes that exhibited a scalp-like
MMN were located around the superior temporal lobe,
and only a minority were over inferior frontal areas
(Rosburg et al., 2005). A related study extended these
findings and demonstrated that auditory ERPs mainly
arose from the posterior Sylvian fissure, but that
MMN-like responses were more pronounced over more
anterior temporal regions (Edwards et al., 2005). This is
in line with several other studies describing the most pro-
nounced effects along the superior temporal gyrus
(Li"egeois-Chauvel et al., 1994; Yvert et al., 2005;
Nourski et al., 2013). Notably, the study by Edwards
et al. also examined HFA responses, which partially
overlapped with the ERP findings.

s0045Relationship of cortical activation and ERPs

p0085HFA tracks behavior on a trial-by-trial basis with high
precision and several studies have begun to assess the
relationship of HFA and ERPs. It has been observed that
electrodes that show ERPs on the cortex do not necessar-
ily exhibit HFA (Fig. 36.1) (Edwards et al., 2005;
Szczepanski et al., 2014; D€urschmid et al., 2016).

p0090Kam et al. addressed the relationship between the
P300 andHFA in an auditory and a visual target detection
task (Kam et al., 2016). They found that (I) more frontal
electrodes show HFA than a P300, (II) an equal number
of parietal electrodes exhibits HFA or a P300, but cru-
cially (III) the overlap between HFA-responsive and
P300-positive electrodes was minimal. This has been
interpreted that separate neuronalmechanisms contribute
to P300 and HFA generation and that the P300 does not
necessarily index cortical activation. Furthermore, they
demonstrated that (IV) the P300 at single intracranial
recordings did not resemble the P300 at scalp level.
A classic scalp-like P300 only became evident when
P3 time courses from multiple electrodes were averaged
(Fig. 36.2). This finding supported the idea that
multiple cortical ERP generators contribute to the scalp
potential.

p0095Likewise, it has been demonstrated that HFA over
frontal but not sensory areas is more sensitive to unpre-
dicted deviants than the ERP (Fig. 36.3) (D€urschmid
et al., 2016). Taken together, several intracranial studies
demonstrated that the overlap of electrodes exhibiting
HFA and the ERP isminimal and that it is likely that these
features index different cortical processes, but the exact
relationship and physiologic function are unknown.
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s0050 THE RELATIONSHIP OF ERPs AND
ONGOING BRAIN ACTIVITY

p0100 ERPs are small in comparison to large fluctuations as
observed in ongoing brain activity. Several lines of
research have demonstrated that ongoing brain activity
exhibits a rich spatiotemporal structure, which indexes
instantaneous cortical excitability and thereby shapes
evoked response based on the brain state at stimulus
presentation (Klimesch et al., 2007c; Barry, 2013).
A common approach is to divide ongoing activity into
several frequency bands to extract prestimulus phase
and/or amplitude and then determine their impact on
subsequent ERPs.

s0055Ongoing brain activity vs evoked brain
activity

p0105For decades, ongoing brain activity has been largely
ignored and the background EEG was considered to
mainly reflect noise, which could be attenuated through
time-locked averaging. Early reports suggested that the
phase of band-limited ongoing activity might play a role
for subsequent behavior and cortical responses
(Callaway and Yeager, 1960; Lesèvre and R"emond,
1967; Trimble and Potts, 1975). Recent work has system-
atically investigated the relationship of ongoing activity
and evoked potentials.

p0110For example, in a series of studies Barry et al. demon-
strated the importance of the prestimulus delta, theta, and
alpha phases for the subsequent ERP generation (Barry
et al., 2004; Barry, 2013). In particular, they showed that
cortical negativity (half wave below zero) as well as neg-
ative driving (falling flank of the sine wave) in multiple
frequency bands in the range from 1 to 13Hz modulated
early (N100) and later components (P300). The artificial
subdivision into narrow frequency bands did not take
into account whether a true oscillation was present
(Sauseng et al., 2007). Therefore, these phase effects
need to be interpreted with caution and might be spuri-
ously introduced by narrow-banded filtering of ongoing
broadband brain activity without a true oscillation (Aru
et al., 2015). Work by the Klimesch group focused on
the role of ongoing alpha dynamics for subsequent
ERP generation. They demonstrated that prestimulus
phase alignment in the alpha band predicts the P100
amplitude (Fellinger et al., 2011) as well as amplitude
and latency of the P100/N100 complex (Gruber et al.,
2005). Furthermore, prestimulus amplitudes have been
shown to inversely correlate with the amplitude and laten-
cies of early evoked potentials, such as the P100 compo-
nent (Klimesch, 2011; Himmelstoss et al., 2015). This has
been interpreted in light of the alpha inhibition hypothesis
(Klimesch et al., 2007b; Jensen and Mazaheri, 2010;
Klimesch, 2011),which postulates that states of high alpha
power block out irrelevant information by decreasing the
instantaneous cortical excitability. Crucially, their findings
suggested that slower components such as the N170, P2,
or ERN are associated with increased phase-locking in
slower frequency bands (delta: 1–4Hz, theta: 4–7Hz
(Fell et al., 2004; Freunberger et al., 2007; Yeung et al.,
2007; Han et al., 2015)).

s0060Phase-resetting as a mechanism of ERP
generation

p0115Most of the evidence for the relationship between
prestimulus activity and subsequent ERPs has been cor-
relative in nature. Hence, it remains unclear if phase and

f0010Fig. 36.1. Overlap of intracranial HFA and ERP electrodes.
Reconstructions of intracranial electrode placement for eight
subjects, who performed a lateralized attention task. Blue
circles depict intracranial electrodes, red circles depict
electrodes that exhibited HFA coupled to delta rhythm (phase
amplitude coupling (PAC)), and black circles denote elec-
trodes that showed a clear ERP. Finally, yellow circles depict
the overlap of PAC and ERP electrodes. Note that the overlap is
minimal outside of extrastriate areas. Hence, it has been sug-
gested that both electrophysiologicmarkersmight index distinct
processes. Figure reproduced with permission from Szcze-
panski SM, Crone NE, Kuperman RA et al. (2014). Dynamic
changes in phase-amplitude coupling facilitate spatial attention
control in fronto-parietal cortex. PLoS Biol 12: e1001936.
https://doi.org/10.1371/journal.pbio.1001936, under the Crea-
tive Commons Attribution (CC BY) license.
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power only modulate evoked dynamics or if they caus-
ally contribute to their generation. In particular, it has
been fiercely debated whether evoked dynamics are
added on top of the background EEG or whether an
endogenous phase reset and subsequent phase alignment
of low-frequency oscillations explain most of the ERP
(Penny et al., 2002; Sauseng et al., 2007). Evidence
has been presented in favor of (Makeig et al., 2002)
and against (Shah et al., 2004; Mazaheri and Jensen,
2006) this idea. To date, no definite conclusion has been
reached, which is largely due to methodological limita-
tions (Krieg et al., 2011; Xu et al., 2016). In order to
extract the instantaneous phase, the signal needs to be
band-limited by either band-pass filtering or a Fourier
or wavelet transformation (Bruns, 2004). However, all
of these techniques will render transient evoked activity
sinusoidal, since commonly used filters are acausal, i.e.,
filtering at a certain time point depends on both the signal
in the past and in the future. Therefore, it is inevitable that

evoked signals smear into the prestimulus baseline and
bias phase estimates towards nonuniform distributions
before target onset (Zoefel and Heil, 2013; Iemi et al.,
2017). Hence, the ERP, which reflects a rather sharp tran-
sient, will necessarily show up in multiple frequency
bands and introduce spurious phase-locking. Therefore,
it remains difficult to disentangle true phase-resetting
from spurious phase-alignment due to the evoked poten-
tials. Oneway to circumvent this issue is the use of causal
filters, which only consider the past of the signal and not
the future (Zoefel and Heil, 2013) and a set of criteria that
might help to determine true phase-resetting has been
introduced (Sauseng et al., 2007).

s0065Steady-state visual evoked potentials and
neuronal entrainment

p0120The rapid presentation of sensory stimuli gives rise to
repeated EPRs, which partially overlap in time. It has
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f0015 Fig. 36.2. Intracranial ERP waveforms. (A) Left: Exemplary ERP traces to auditory targets and nontargets from three intracranial
electrodes. Note that the waveforms look very different from a typical scalp-like ERP. A more typical ERP only emerges when
traces from multiple electrodes are averaged (center). However, the intracranial grand-average across six subjects only remotely
resembled a scalp ERP (right). (B) Same conventions for a visual target detection experiment. Note that the individual traces differ
from a typical scalp ERP, while the subject average (center) and grand-average (right) display a typical differential P300 response
to targets and standards. Figure reproduced with permission from the authors Kam JWY, Szczepanski SM, Canolty RT et al.
(2016). Differential sources for 2 neural signatures of target detection: an electrocorticography study. Cereb Cortex 1–12.
https://doi.org/10.1093/cercor/bhw343.
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been argued that the brain might entrain its ongoing
activity to the external rhythm after several cycles
(Herrmann et al., 2016) and that this rhythm keeps on
cycling after the offset of the external stimulus train
(Mathewson et al., 2012; Spaak et al., 2014; Notbohm
and Herrmann, 2016; Notbohm et al., 2016). This
approach has been used to investigate the causal relation-
ship of prestimulus activity for evoked activity after the
offset of the stimulus train and subsequent perception of
near-threshold targets (Herrmann et al., 2016). However,
it has been argued that this effect does not constitute real
phase alignment but is rather the result of the superposi-
tion of single evoked responses (Capilla et al., 2011;
Keitel et al., 2014). While this is an obvious concern
for neuronal data, it cannot explain the typically observed
phase-dependent modulation after stimulus offset
(Mathewson et al., 2012; Spaak et al., 2014; Notbohm
and Herrmann, 2016). Recently, Xu et al. used this

technique to disentangle the contribution of the prestimu-
lus phase for ERP generation (Xu et al., 2016). They
found that neither the evoked nor the phase resetting
model fully explained the ERP. This is in line with sev-
eral reports that indicated that the ERP has evoked com-
ponents that are being influenced by prestimulus
oscillatory brain activity (Fell et al., 2004; Shah et al.,
2004; Sauseng et al., 2007; Min et al., 2007; Klimesch
et al., 2007a,c).

p0125These findings helped to shed new light on one of the
most studied psychological paradigms, the so-called
attentional blink, where a preceding target in a rapid
visual stream masks the detection of a second target
(Zauner et al., 2012). Crucially, the masking depends
on the frequency of stimulus presentation and is
most pronounced if presented at around 8–15Hz and
has been attributed to entrainment in the alpha range
(Zauner et al., 2012; Shapiro et al., 2017). Hence, the

f0020 Fig. 36.3. Intracranial ERP and HFA Mismatch Responses. (A) Stimulus-responsive regions in the HFA (high gamma) and low-
frequency ERP range collapsed across all subjects. (B) Upper: HFA response to targets (red and cyan) and standards (green and
blue) for sensory (left) and frontal (right) electrodes. Note that HFA in sensory areas does not discriminate between predicted and
unpredicted events, while HFA in frontal areas is only present for unpredicted targets, but not for predicted or standard events.
Lower: Same analysis for the low-frequency ERP component. The effects are generally less pronounced and do not distinguish
between predicted and unpredicted events. Figure reproduced with permission from the authors D€urschmid S, Edwards E,
Reichert C et al. (2016). Hierarchy of prediction errors for auditory events in human temporal and frontal cortex. Proc Natl Acad
Sci USA 113: 6755–6760. https://doi.org/10.1073/pnas.1525030113.
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rhythmic presentation of the stimuli gives rise not only to
a steady-state evoked potential, but also entrains the
underlying alpha generators to the stimulus presentation
rate (Spaak et al., 2014; Notbohm and Herrmann, 2016;
Notbohm et al., 2016). This entrainment through steady-
state visual evoked potentials (SSVEPs) had direct
functional consequences for perception.

p0130 In a separate line of research, SSVEPs have been used
to frequency-tag overlapping stimulus streams (Norcia
et al., 2015). The cortex exhibits a frequency-following
response, i.e., an ongoing oscillation is not a prerequisite
for the observation of a peak in the power spectrum, as
long as the sensory stimulus stream provides an exoge-
nous rhythmicity (Herrmann, 2001; Keitel et al.,
2010). While the superposition of evoked responses
impeded the analyses in the time domain, the two streams
can be disentangled in the frequency domain. A robust
finding is that attention to one of the streams enhances
the evoked amplitude, but not the amplitude of the
ignored stream (Baldauf and Desimone, 2014). Hence,
frequency-tagging and SSVEPs allow a reliable estimate
of the focus of attention and have been used in a variety of
cognitive experiments.

s0070 METHODOLOGICAL CONSIDERATIONS:
STATISTICAL TESTING OF ERPs

p0135 ERPs are a simple and cost-effective tool, which can be
easily set up in clinical and basic science lab environ-
ments. However, several methodological limitations
apply in addition to the limited spatial resolution and they
have been addressed in introductory tutorials, guidelines,
and books (Handy, 2005; Luck, 2014). Here, we discuss
a major caveat, which has been part of recent scientific
debate: namely, what is an appropriate way to test ERP
differences (Luck and Gaspelin, 2017)?

p0140 At first glance, statistical testing of ERP components
seems straightforward. Activity at a given electrode can
easily be extracted for a certain time range and compared
between groups and/or task conditions. However, in a
typical ERP experiment, there are multiple researcher
degrees of freedom (Simmons et al., 2011), where sub-
jective parameter choices can easily bias the results in
one way or another, e.g., by choosing different time win-
dows and electrodes. Most multifactorial designs will
test amplitude differences between groups/conditions
with analyses of variance (ANOVAs), while the underly-
ing data points are not normally distributed and the basic
ANOVA assumptions are violated. Another commonly
used approach is to test for significance by utilizing
successive univariate tests, i.e., a running t-test is con-
ducted for every data point (Guthrie and Buchwald,
1991). Statistical significance is then assessed based on
how many subsequent tests are significant. While this

approach is data-driven and does not make any assump-
tions about when the effect is expected, it violates the
assumption of independence between tests (Piai et al.,
2015), since succeeding data points are strongly corre-
lated, which is further increased by low-pass filtering
(temporal smoothing).

p0145It has therefore been argued that the best data-driven
approach to circumvent these issues is the use of non-
parametric cluster-based permutation statistics (Piai
et al., 2015), where an empirical null distribution is
obtained from the data by randomly shuffling condition
labels (Maris and Oostenveld, 2007). This procedure
assures that the temporal features of the underlying data
points are preserved. Importantly, clusters can be as
connected data points in time and space, i.e., in adjacent
electrodes. Therefore the test outcome will provide both
the spatiotemporal dimension of an effect without mak-
ing a-priori assumptions about the distribution (Piai et al.,
2015). Significance is then assessed by comparing the
empirically observed cluster to a null distribution
obtained from the same data, which effectively corrects
for the hundreds of univariate tests that were conducted
to define the clusters.

p0150The spatial extent of clusters can be approximated at
scalp or source level. One of the most straightforward
and most commonly employed methods is the surface
Laplacian or current source density, which is calculated
at sensor level (Carvalhaes and de Barros, 2015;
Kayser and Tenke, 2015a,b). The algorithm transforms
the scalp-recorded EEG into radial currents by local
re-referencing. While this approach slightly improves
the spatial specificity, it is still a two-dimensional repre-
sentation of a more complex underlying pattern. Another
possibility is to project the sensor level data into source
space based on adaptive spatial filtering. The linearly
constrained minimum variance (LCMV) beamforming
(Van Veen et al., 1997) or the low-resolution brain
electromagnetic tomography approach (LORETA)
(Pascual-Marqui et al., 1994) are among the most com-
monly used tools. However, there is not a single solution
to the inverse problem and, therefore, all source projec-
tion methods remain equivocal, but the visualization on
3D-rendered brains helps to identify cortical regions
contributing to scalp-level ERPs.

s0075NEW VISTAS FOR EVENT-RELATED
NEURONAL ACTIVITY

p0155With the discovery of neuronal oscillations, ERP ana-
lyses have been sidelined in favor of more sophisticated
spectral analysis techniques. In particular, metrics of
synchronization between different regions and/or differ-
ent frequencies have been used to explain behavior
on a trial-by-trial level (Salinas and Sejnowski, 2001;
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Varela et al., 2001;Helfrich andKnight, 2016). However,
spectral techniques only estimate activity and artificially
render nonsinusoidal neuronal activity sinusoidal (Cole
and Voytek, 2017). The raw voltage trace contains rich
spatiotemporal information, which might not be accessi-
ble by trial-averaged ERPs or spectral estimates. Hence,
we highlight different possibilities as to how some of
the rich information in single-trial ERPs can be used to
make inferences about cognitive functions (Stokes and
Spaak, 2016).

s0080 Multivariate approaches and single-trial
decoding

p0160 ERPs contain rich spatiotemporal information that is
often reduced by averaging across trials, sensors, and
subjects to obtain grand-average waveforms. Multivari-
ate pattern classification approaches take advantage of
the fact that every different time point is associated with
a certain unique spatial distribution of activity (Stokes
et al., 2015). A decoding algorithm is trained on a certain
number of trials and then applied to the remaining trials
and the classification accuracy at any given time point is
extracted (Blankertz et al., 2011). Performance above
chance indicates that the spatiotemporal patterns con-
tained information to reliably discriminate two condi-
tions. This approach reduces the dimensionality into a
single time course per participant and provides additional
insights into the temporal dynamics of an observed effect

(Fig. 36.4). This technique has recently been used to
decode items held in working memory (Wolff et al.,
2015). Crucially, after a delay period the decodability
returned to zero. A brief noninformative visual impulse
stimulus then elicited an evoked response, which again
contained information about the item held in working
memory that was not detectable with univariate tests.
In this case, this has been interpreted as evidence for
“activity-silent” working memory, where information
is encoded in a current network state (Stokes, 2015;
Wolff et al., 2015; Rose et al., 2016).

s0085Event-related cross-frequency correlations

p0165ERPs have several spectral components, mainly cover-
ing frequencies below 20Hz, but might also have
high-frequency contributions. More sophisticated meth-
odologies and invasive recordings now allow reliable
estimating of high-frequency gamma activity (>40Hz)
(Gross et al., 2013). Previous EEG studies on gamma-
band oscillations were often contaminated by microsac-
cadic artifacts (Yuval-Greenberg et al., 2008; Keren
et al., 2010), which closely resembled gamma-band
activity, but several methods to attenuate these artifacts
have been introduced in recent years (Keren et al.,
2010; Carl et al., 2012; Hipp and Siegel, 2013).

p0170It has been suggested that the correlation or coupling
between low- and high-frequency components might be
differentiallymodulated depending on the cognitive state

f0025 Fig. 36.4. Multivariate decoding on ERPs. (A) A decoder was trained to identify items held in working memory (WM). While
univariate tests between conditions did not reveal prominent differences in the ERPs at single electrodes, multivariate decoding
from several posterior electrodes enabledWolff et al. to correctly identify the item inWM in the first 200ms. The discriminability
was above chance for nearly 800ms. (B) A second noninformative strong visual impulse stimulus reinstated the decodability above
chance. This was interpreted as evidence that a memory representation might be encoded in an activity-silent state: i.e., there were
no ERP differences between conditions, but the spatiotemporal network configuration still provided information about the item
held inWM. Figure reproduced with permission fromWolff MJ, Ding J, Myers NE et al. (2015). Revealing hidden states in visual
working memory using electroencephalography. Front Syst Neurosci 9: 123. https://doi.org/10.3389/fnsys.2015.00123 under the
Creative Commons Attribution (CC BY) license.
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(Voytek et al., 2013). Normally, cross-frequency interac-
tions are calculated across time and then compared across
different trials (Canolty et al., 2006; Tort et al., 2008).
Recently, a method for event-related cross-frequency
coupling has been proposed to track the time course of
cross-frequency correlations. In a standard oddball task,
Voytek et al. demonstrated that the correlation between
alpha phase and gamma amplitude was greater for targets
than for standards (Voytek et al., 2013). Importantly, this
difference was detected in the first 250ms, a time frame
where no ERP differences are obvious in an oddball task
and the P300 effect only emerges later (Polich, 2007).
Hence, cross-frequency correlations might provide addi-
tional information into the temporal dynamics of evoked
responses. However, a number of recent reports urged
caution in interpreting cross-frequency metrics, which
require a number of careful control analyses, such as
the absence of power differences, equal number of trials,
and the presence of oscillatory activity (Aru et al., 2015;
Gerber et al., 2016; Cole and Voytek, 2017).

s0090 Assessing nonsinusoidal neuronal activity
in the time domain

p0175 Spectral techniques that are used to capture event-related
dynamics might easily render sharp transient evoked
activity sinusoidal by band-pass filtering or Fourier or
wavelet transforms (Bruns, 2004). Hence, all subsequent
analyses that are being carried out on frequency-domain
transformed data must be carefully interpreted and cross-
checked with the underlying raw traces to ensure that
oscillatory brain activity was actually present (Aru
et al., 2015). In the case of ERPs, multiple scenarios
are likely where no sinusoidal oscillation was present
before the evoked response (Sauseng et al., 2007). There-
fore it has been argued that the shape of the waveform
might actually hold more physiologically relevant infor-
mation than a frequency decomposition of the signals
(Cole and Voytek, 2017). This framework has been first
suggested for the analysis of nonsinusoidal oscillatory
activity but might also have merits to gain additional
insights into ERPs. In addition to amplitude measures
and latency analyses, evoked activity could be described
according to the waveform shape, the symmetry, the rise
time, or the steepness of the slope.

s0095 CONCLUSIONS

p0180 For more than half a century, event-related analyses
have provided a unique opportunity to study temporal
dynamics of conscious cognitive processes on a fine-
grained temporal scale (Luck, 2014). While the exact
physiologic mechanisms that give rise to ERPs are still
largely unknown, multiple studies favored a mixed

model of evoked responses plus phase resetting
(Fell et al., 2004; Min et al., 2007; Sauseng et al.,
2007; Krieg et al., 2011; Han et al., 2015; Xu et al.,
2016). In addition, several recent intracranial studies
provided insights into the cortical origins of ERPs, sug-
gesting that ERPs do not necessarily overlap with areas
of cortical activation (Szczepanski et al., 2014; Kam
et al., 2016). We also reviewed several novel methods
and techniques, which allow extractingmore information
from ERPs than could usually be obtained from grand-
average difference waveforms. While spectral analysis
techniques have been widely popular over the last
10 years, they only provide estimates of oscillatory activ-
ity and are susceptible to artifacts, which are obvious in
the time domain (Cole and Voytek, 2017; Vaz et al.,
2017). Therefore, we believe that ERPs will remain
one of the essential tools for image cognitive processes
with a high temporal resolution needed to understand
cortical information processing and transfer. In addition,
ERPs are of particular relevance for a variety of clinical
applications in both neurology and psychiatry and will
likely gainmore importance in the future. Diagnostically,
ERPs are routinely used to, for example, infer optic nerve
damage in MS (visually evoked potentials), where
increased latencies and/or reduced amplitudes are com-
monly observed. Likewise, somatosensory-evoked
potentials are being used to assess ascending spinal
pathways, while transcranial magnetic stimulation over
motor cortex is often used to assess the integrity of the
corticospinal tract and is routinely used to aid in diagno-
sis of motor neuron disorders, such as amyotrophic
lateral sclerosis.

p0185ERP data collection is fast and cost effective and
modern EEG systems allow experimenters and clinicians
to collect ERPs in the patient room or in the ICU, making
ERPS ideally suited for long-term monitoring. ERPs
can be used to track patient arousal states with high tem-
poral resolution to, for example, delineate a reversible
coma from a vegetative state (Boly et al., 2011; Morlet
and Fischer, 2014; Sussman and Shafer, 2014). Further-
more, ERPs might be helpful to index the instantaneous
cortical excitability, which is altered in epilepsy as well
as in neuropsychiatric disorders, such as schizophrenia
(Kremláček et al., 2016). In particular, ERPs in task-
related designs that allow the assessment of both
sensory-evoked and cognitively relevant potentials are
likely to gain importance in the future, since these com-
ponents, such as the MMN or P300, allow making infer-
ences about cortical networks that go beyond simple
sensory processing.

p0190Therapeutically, ERPs have been used in a variety of
brain-computer interfaces, for which they are ideally
suited given their prominent amplitude in comparison
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to the background activity and the fact that it only takes a
few trials (four to six) to successfully train the classifica-
tion algorithm. This approach allows, for example, ALS
patients to communicate with their environment
(Krusienski et al., 2008; Guger et al., 2009).

p0195 Taken together, ERPs are an elegant way to assess a
variety of clinically relevant cognitive functions and
we foresee that their application in clinical neurophysiol-
ogy will likely increase over the next decade. In particu-
lar, several lines of research are beginning to clarify the
neural underpinnings that contribute to the generation of
ERPs and to converge on the idea that ERPs can be used
to noninvasively index cortical function with high
temporal resolution.
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