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Abstract

The prefrontal cortex (PFC) provides the structural basis for complex rule-guided goal-directed behavior.
However, the functional mechanisms that underlie cognitive control and flexibility are not as well under-
stood. Over the last decade, novel electrophysiological methods and analysis techniques have begun
to elucidate the neural mechanisms underlying higher cognitive functions. Here we review how electro-
physiology and, in particular, intracranial recordings in humans and primates enable imaging of cognitive
processing with an unprecedented spatiotemporal resolution. Convergent evidence from multiple species
and across several spatial scales suggests that cell assemblies and transient synchronized network activity
constitute the functional units of PFC implementation of organized behavior. These observations indicate
that the functional architecture of cognition is inherently rhythmic and not static. We highlight that
prefrontal neurons exhibit a mixed selectivity to various task-relevant aspects and code information
in a time-varying dynamic population code and not at the level of individual neurons or in stable
coding schemes. We argue that network neuroscience and network neurology are emergent paradigms
to understand complex behavior and mental diseases.

THE NEURAL BASIS OF GOAL-DIRECTED
BEHAVIOR AND COGNITIVE CONTROL

Numerous lesion and imaging studies have documented
that the prefrontal cortex constitutes the structural basis
for goal-directed behavior and a variety of higher cogni-
tive functions (Miller and Cohen, 2001; Sakai, 2008,
Stuss and Knight, 2013). However, the prefrontal cortex
is anatomically not as clearly organized as primary sen-
sory areas. Therefore, it remains unclear which functional
mechanisms give rise to cognitive flexibility and abstract,
rule-guided and contextually adequate behavior (Rainer
et al., 1998; Wallis et al., 2001; Mante et al., 2013;
Voytek et al., 2015). In this chapter, we discuss how elec-
trophysiology in humans and primates begins to elucidate
the functional architecture of flexible cognitive control.
First, we will review a variety of common electrophy-
siological methods that are routinely being used in clinical
and preclinical settings to study behavior and cortical

functions. Then, we discuss analytical approaches, with
a particular focus on metrics that capture complex
spatiotemporal dynamics of prefrontal cognitive opera-
tions. Notably, we will focus on how intracranial
electrophysiology has advanced our understanding of
prefrontal-dependent cortical processing. Hence, we will
first illustrate three recent examples where groundbreak-
ing and unexpected results from intracranial studies have
significantly contributed to our understanding of the
prefrontal functional organization.

Following this, we discuss emerging concepts in cog-
nitive neurophysiology and systems neuroscience in
more detail. We revisit the neuron doctrine and review
evidence that supports the notion that neuronal assem-
blies are the functional unit of the central nervous system
(CNS) and not solely individual neurons. Importantly,
we consider how information might be encoded at the
population level and how rhythmic activity in large-scale
networks might determine the timescale of cognition.
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To this end, we review PFC-dependent, large-scale cor-
tical and subcortical networks that support cognitive
flexibility and behavior, as well as emerging technolo-
gies, which allow modulating oscillatory brain activity
in vivo. We then highlight how impaired network syn-
chrony might be implicated in various neuropsychiatric
diseases.

In the last section, we provide an outlook on how
multimodal analytic approaches enable updating of cur-
rent models of prefrontal physiology. Specifically, we
focus on nonlinear population-based methods, which
might capture complex prefrontal interactions better than
strictly linear metrics. Finally, we argue that challenging
established concepts of prefrontal-dependent processing
would provide valuable insights into the underlying com-
putations giving rise to flexible cognitive control. We posit
that intracranial electrophysiology combined with causal
interventions will illuminate the underlying processes that
support fluid prefrontal-dependent behavior.

IMAGING COGNITION WITH HIGH
SPATIOTEMPORAL RESOLUTION

Cognitive control stems from the flexible integration
of'endogenous priors with task-relevant rules according
to the current context and constitutes a hallmark of
human goal-directed behavior (Miller and Cohen,
2001). Numerous behavioral lesion and fMRI studies
have suggested that the prefrontal cortex constitutes a
core area for flexible cognitive control (Stuss and
Knight, 2013). However, both approaches lack the tem-
poral resolution to clarify the neurophysiological mech-
anisms that give rise to human behavior and the ability
to adapt to a new context or rule in a few hundred milli-
seconds (Miller and Cohen, 2001). This section focuses
on methods that allow imaging human cognitive pro-
cessing with a high temporal resolution. Noninvasive
approaches, such as EEG (electroencephalography) or
MEG (magnetoencephalography), are ideally suited
to test larger study populations (Buzsaki et al., 2012;
Lopes da Silva, 2013; Baillet, 2017; Cohen, 2017).
While it has been argued that MEG has a superior
spatial resolution due to the number of available sensors
(normally 151 or 306 for MEG instead of 32, 64, or
128 for EEG), one requires an additional structural MRI
scan to coregister MEG recordings to the individual
anatomy to take full advantage of the increased spatial
precision (Gross et al., 2013; Baillet, 2017). Recently,
several methodological advances, such as high density
electrode arrays, as well as advanced signal-processing
techniques such as independent component analysis
(ICA; Hyvarinen and Oja, 2000) and source projection
methods (e.g., linear beamforming (Van Veen et al.,
1997; Gross et al, 2001) or low-resolution brain
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Fig. 3.1. Intracranial EEG electrodes. (A) Various examples {0010

of intracranial EEG electrode placement: Red dots depict indi-
vidual electrode contacts. The first row highlights three exam-
ples of the commonly utilized ECoG grid electrodes with
either 64 (left and center; 8 x 8 electrodes; 1-cm interelectrode
spacing) or 256 electrodes (right; 16 x 16 electrodes; 4-mm
spacing). The second row illustrates stereotactically placed
depth electrodes in the hippocampus (left), OFC (center),
and cingulate cortex (right). Interelectrode spacing and num-
ber of contacts is variable. Note that electrode contacts are pre-
sent all throughout the shaft, allowing simultaneous recordings
from subcortical and cortical regions, such as the temporal cor-
tex (left) or DLPFC (center and right). (B) Depth electrodes
might house additional wire bundles in their lumen, which
allow recording of single and multiunit activity at the tip of
the depth electrode. Panel (B): Modified from Ad-Tech Med-
ical Product Catalog Volume VII.

electromagnetic tomography (Pascual-Marqui et al.,
1994; Lantz et al., 1997), LORETA) have significantly
improved the spatial resolution of EEG. Several compar-
ative studies indicated that the information that can be
extracted from EEG and MEG is comparable for frequen-
cies below 30Hz, while MEG has a superior signal-to-
noise ratio for higher frequencies (Siems et al., 2016).

Currently, the best spatiotemporal resolution in
human electrophysiological recordings can be obtained
from invasive recordings (intracranial EEG) in patients
who suffer from pharmaco-resistant epilepsy and who
undergo presurgical evaluation for seizure localization.
These patients are implanted with either grid electrodes
(electrocorticography, ECoG), depth electrodes that are
being placed stereotactically (SEEG), or a combination
of both types (Fig. 3.1A).

Typically, only a subpopulation of electrodes is
deemed epileptic after multiple days of monitoring,
while the majority cover intact brain tissue and may be
used for further analysis to address human cognition
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with an unprecedented spatiotemporal resolution. More
recently, several groups began to record activity from
single neurons in awake patients, while they perform
various tasks (Engel et al., 2005; Fried et al., 2014).
The most common approach is associated with minimal
risk for the patient and limited to sEEG (Fig. 3.1B):
Depth electrodes have an open lumen, where an addi-
tional wire bundle with eight contacts (+1 reference wire)
can be advanced up to Smm below the most distant
electrode contact to record unit activity and local field
potentials (LFPs) with a high sampling rate necessary
for spike sorting (>32kHz). Hence, unit recordings are
only possible at the tip of the electrode, which are rou-
tinely inserted into medial temporal lobe structures,
anterior cingulate, medial PFC, or orbitofrontal cortex
(Fried et al., 2014; Kaminski et al., 2017; Mormann
et al., 2017). This unique setup prevents recordings
from regions such as the dorsolateral prefrontal cortex
(DLPFC) since the single-unit activity (SUA) wires are
only at the tip of the SEEG electrode shaft. In a different
approach, a few groups have used multielectrode arrays
(MEAs; Utah array), which are inserted into healthy cor-
tical tissue that was part of the assumed resection zone.
Hence, recording unit activity is not always limited to
deeper brain structures. However, in several cases the tis-
sue where the MEA was inserted was not resected and
patients were left with permanent cortical scarring. Given
that single-unit recordings do not contribute to the clin-
ical assessment, this approach should be limited to selec-
tive usage such as brain—machine interface applications
to ensure patient safety and minimize surgical risks.

In contrast, acute or semichronic recordings are rou-
tinely used in primate research to simultaneously record
unit activity and LFPs (Buzsaki et al., 2012). Previously,
simultaneous recordings were often limited to one or
two ROIs and units were grouped into pseudopopula-
tions by pooling data from multiple recording sessions
and treating them as one simultaneous population recor-
ding (Meyers et al., 2008; Quian Quiroga and Panzeri,
2009; Stokes et al., 2013). Recently it has become
possible to record from several distant regions simulta-
neously. For example, Siegel et al. (2015) recorded from
a total of six regions, including parietal (LIP), temporal
(MT, V4, and IT) and frontal cortex (DLPFC and FEF).

One inherent shortcoming of all electrophysiological
methods is that they are often correlative in nature
(Herrmann et al., 2016). Establishing a causal relation-
ship between observed electrophysiological signatures,
such as neuronal oscillations, would imply modulating
brain activity and studying the impact on behavior
(Thut et al., 2012, 2017). Over the last few years several
methods have been introduced that allow the targeted
modulation of ongoing brain dynamics. For example,
rhythmic transcranial magnetic stimulation (rTMS) and

transcranial alternating current stimulation (tACS) offer
the opportunity to noninvasively drive cortical activity
and endogenous electric fields (Thut et al., 2011a;
Frohlich et al., 2015; Herrmann et al., 2016), while the
use of direct cortical electric stimulation (DES) is limited
to the clinical setting. While previous stimulation studies
attempted to activate or deactivate a certain cortical area
to ascertain its causal contribution, novel protocols
aim to modulate ongoing patterns to establish functional
relationships (Alagapan et al., 2016).

In most studies, behavior is assessed by mean accur-
acies or reaction times. Recently, several groups have
explored methods inspired by electrophysiological ana-
lyses to probe the timescale of cognition (Landau and
Fries, 2012; Fiebelkorn et al., 2013; Song et al., 2014).
These approaches probe behavior on a fine-grained
temporal scale to obtain multiple estimates of behavior.
For instance, target detection can be probed at different
offset latencies after a train of noninformative sensory
events, thus providing time-resolved behavioral esti-
mates. The resulting time course can then be analyzed
by means of spectral analyses to highlight the fact that
perception and cognition are not constant over time;
rather, they exhibit intrinsic temporal profiles that wax
and wane as a result of the underlying rhythmicity of
intrinsic brain activity.

SPATIOTEMPORAL COORDINATION IN
CORTICAL NETWORKS

Over the last 25 years cognitive neuroscience has
benefited from methodological advances to analyze
neuronal time series data (Buzsaki and Draguhn,
2004; Buzsaki, 2006; Buzsaki et al., 2013). While early
noninvasive scalp EEG and invasive single-unit record-
ings were limited to a few recording sites, which were
sampled several hundred times per second, novel
recording setups permit simultaneous recordings from
hundreds of electrodes at high sampling rates
(Fukushima et al., 2015; Panzeri et al., 2015). These
advances in recording of neuronal activity triggered a
surge of new analytic approaches, which have had a tre-
mendous effect on our current understanding of how the
prefrontal cortex supports cognitive processing. For
example, early noninvasive EEG studies focused on
event-related potentials (Handy, 2005; Luck, 2014),
which were obtained from averaging multiple stimulus
or response-locked trials to improve the signal-to-noise
ratio and reduce background noise. Likewise, invasive
recordings in primates were often limited to analyzing
spike trains over time (Brown et al., 2004). However,
both approaches ignored the role of background activity
and discarded the rich information present in single tri-
als (Stokes and Spaak, 2016). Although the discovery of
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Fig. 3.2. Communication-through-Coherence hypothesis.
Three neuronal populations are depicted. The first and third
rows highlight two downstream sensory regions: one represents
an apple and the other one a pear. The second row illustrates a
higher-order area that is connected to both populations. When
two populations (first and second rows) are synchronized at
an optimal phase, then excitatory volleys (red ticks) will arrive
at the higher-order area at an optimal, highly excitable phase and
information about the apple can be transferred. In contrast, the
third and second rows are out of sync; hence, volleys arrive
when the higher-order region is refractory due to inhibition (blue
ticks) and no information is transferred. The interplay of excita-
tion and inhibition thereby controls the oscillatory cycle of the
population. Reproduced from Fries P (2015). Rhythms for cog-
nition: communication through coherence. Neuron 88: 220-235.
doi:10.1016/j.neuron.2015.09.034 with permission of Elsevier.

neuronal oscillations is linked to the discovery of the
human EEG (Berger, 1929), their role has been mostly
ignored for decades. The field took a pragmatic turn in
the early 1990s, when several groups suggested that syn-
chronized oscillatory brain activity could constitute a key
mechanism of information processing and transfer in the
cortex (Gray et al,, 1989; Engel et al, 1991; Konig
et al., 1995; Singer and Gray, 1995). Subsequently, the
focus shifted away from event-related brain activity to
studying ongoing background activity utilizing spectral
analyses to explain how oscillatory dynamics shape subse-
quent cortical responses and behavior (Fries, 2005; Siegel
etal.,2012; Engel et al., 2013; Helfrich and Knight, 2016).
Initially, it has been hypothesized that synchronized
neuronal activity might enable efficient feature integration
or binding from different neuronal populations, offering a
possible mechanism for how different task-relevant fea-
tures are simultaneously encoded and integrated (Singer
and Gray, 1995). Subsequently, the psychophysiological
binding-by-synchrony hypothesis (Engel et al., 2001)
has been extended into a more physiological model of
information routing in the cortex by means of the commu-
nication-by-coherence hypothesis (Fig. 3.2; Fries, 2005).

R.F. HELFRICH AND R.T. KNIGHT

Recently, it has been postulated that different cog-
nitive states might be encoded in distinct spectral
fingerprints in large-scale cortical networks (Siegel
et al., 2012) and that the cortex utilizes independent
frequency bands and communication channels to effec-
tively multiplex cortical computations by separating
them in the frequency domain (Engel et al., 2013;
Knight and Eichenbaum, 2013; Lisman and Jensen,
2013; Akam and Kullmann, 2014).

While invasive recordings in rodents and primates
indicated that neuronal firing modulates the local
field potential, the exact relationship remains unclear
(Buzsaki, 2006; Buzsaki et al., 2012). Recently, it has
been suggested that the LFP is not only a result of
neuronal firing, but also constitutes a feedback mecha-
nism to guide cortical spiking activity (Frohlich and
McCormick, 2010). While primate research has made
major contributions to our current understanding of cor-
tical physiology and how it shapes behavior, it is not fully
understood whether these findings generalize to human
behavior (Pesaran et al., 2008; Crowe et al., 2013).

First, invasive recordings in primate provide a better
spatial resolution (submillimeter) range than invasive
recordings in human epilepsy patients (subcentimeter)
or noninvasive methods (multiple centimeters). Second,
although the level of spectrally decomposed LFPs under
100 Hz could theoretically allow for a direct comparison
between species (Buzsaki and Draguhn, 2004; Buzsaki
et al., 2012), they often do not provide the reliability to
link single-trial dynamics to behavior.

Hence, the discovery of high gamma (HG) or high fre-
quency activity (HFA, 70-150Hz) in the human cortex
(Fig. 3.3) constituted a substantial advance in linking
single-trial activity in humans to behavior (Crone et al.,
1998; Edwards et al., 2005; Szczepanski et al., 2014).

Primate recordings indicated that HFA might be a
suitable surrogate marker for multiunit activity (Ray
and Maunsell, 2011). However, to date all the evidence
has been obtained from recordings in sensory areas
and it remains unclear if these correlations general-
ize to higher-order association cortices. Nevertheless,
HFA analyses enabled researchers to adopt analytic
approaches from the single-unit field and bridge human
and primate research. For example, it has been well
established that spikes are preferentially coupled to cer-
tain phases of low frequency LFP components (spike-
field-coupling; Womelsdorf et al., 2007; Rutishauser
et al., 2010; Vinck et al., 2012). Given that spikes
and HFA are strongly correlated, this approach has
been extended into studying the coupling between
low-frequency oscillations and HFA in the human cortex
(referred to as cross-frequency coupling (CFC); Canolty
et al.,, 2006). In particular, phase-amplitude coupling
(PAC) where the phase of slower oscillations predicts
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electrodes is depicted (red circle). The patient performed a lateralized attention task. Left: Electrode placement. Right: Upper
row: Sustained high-frequency activity can be observed on the trial averaged spectrogram. Note the increase in the 70-250 Hz
range, which is stronger for contralateral than ipsilateral covert attention shifts. Lower row: Single-trial stacked HFA responses.
Every line depicts one trial; the black dashed line reflects the reaction time on every trial. Note that trials are sorted by reaction time.
Note the increase in HFA relative to the cue, which was present for approximately 300-500 ms in all trials. Subsequently, the effect
is less pronounced from 500ms to the motor response but appears sustained on the trial-averaged spectrogram (upper row).
However, note the different patterns between attend contralateral and ipsilateral to the grid electrode, which is present on the single
trial level. Reproduced from Szczepanski SM, Crone NE, Kuperman RA et al. (2014). Dynamic changes in phase-amplitude
coupling facilitate spatial attention control in fronto-parietal cortex. PLoS Biol 12: €1001936. doi:10.1371/journal.pbio.1001936
with permission from the authors under the Creative Commons Attribution (CC BY) license.

the amplitude of HFA has been studied in great detail ‘ — ‘
(Canolty and Knight, 2010; Lisman and Jensen, 2013;

Aruetal.,2015; Hyafil etal.,2015). Over the last decade,

CFC has been interpreted as a metric that captures the Phase —

temporal coordination within and across cortical regions synchrony )

and has been linked to a variety of cognitive functions \

(Hyafil et al., 2015; Helfrich and Knight, 2016). Notably, Local WMW
CFC and phase synchrony metrics or amplitude correla- CFC

tions, which are similar to fMRI functional connectivity

metrics, are not fully independent from each other Amplitude —

(Fig. 3.4), but might be systematically related (Hipp correlation "NWVWMW‘M\’“ JNWWVMWWWV

et al., 2012; von Nicolai et al., 2014). Recently, it has
been demonstrated that CFC is sensitive to nonlinear
sharp transients in the underlying signal and several
groups have urged caution when interpreting CFC results
(Aru et al., 2015; Gerber et al., 2016; Scheffer-Teixeira
and Tort, 2016; Cole and Voytek, 2017).

Fig. 3.4. Interareal connectivity and cross-frequency cou-
pling. Schematic illustration of how different connectivity
metrics are related: two hypothetical populations (I and II)
could be phase synchronous and exhibit local cross-frequency
coupling. Hence, the amplitudes of the high-frequency
activity should also be correlated over time, which might
be reflected in interareal phase-amplitude coupling (PAC;

INTRACRANIAL ELECTROPHYSIOLOGY
OF THE PFC—A GAME CHANGER

Much of our understanding about the function of the
PFC was obtained from carefully studying patients
with circumscribed lesions in different prefrontal areas

red arrow). However, it is currently unclear whether these
phenomena always interact or whether they could
occur in isolation. Adapted from Helfrich RF,
Knight RT (2016). Oscillatory dynamics of prefrontal cogni-
tive control. Trends Cogn Sci 20: 916-930. doi:10.1016/
j.tics.2016.09.007 with permission of Elsevier.
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(Szczepanski and Knight, 2014). In addition, a multitude
of imaging studies localized and thus confirmed the
involvement of prefrontal regions to support higher
cognitive functions (Sakai, 2008; Stuss and Knight,
2013). In a separate line of research, several groups have
studied single-unit activity in primates, providing imp-
ortant insights into cognitive processing at the single
neuron level (Miller and Cohen, 2001). However, both
approaches are also inherently limited in their spa-
tiotemporal resolution. While imaging and lesions pro-
vide information at the macroscale, studying SUA only
provides insights on the microscale (Rainer et al,
1998; Wallis et al., 2001; Pesaran et al., 2008; Crowe
et al., 2013), often limited to only one or two cortical
regions. Here we argue that intracranial electrophysiology
in humans bridges this gap on the mesoscale (Fukushima
et al., 2015), in which novel recording and analysis tech-
niques provided valuable insights into cortical coding
and information transfer (Quian Quiroga and Panzeri,
2009; Panzeri et al., 2015). In order to highlight the power
of the intracranial approach, we describe three exem-
plary studies where intracranial recordings substantially
extended our understanding of cognition. These examples
are by no means exhaustive, but provide a starting point to
illustrate the strength of this approach: (1) the use of HFA
to pinpoint cognitive processes in space and time; (2) the
single-trial reliability; and (3) the precise timing informa-
tion in large-scale networks. After the introductory exam-
ples, we will discuss various key concepts in more detail.

The role of Broca’s area for speech
production

In 1861, Broca described two patients with damage to
the left inferior frontal gyrus, who exhibited severely
impaired speech production. Since then, a number of
fMRI studies have linked activity in Broca’s area to a
variety of language-related tasks. However, activations
in Broca’s area were not limited to speech production
and several cases were reported where patients could
still speak despite the obvious destruction of Broca’s area
(Dronkers et al., 1992, 2004).

In a recent study, Flinker et al. (2015) recorded ECoG
from epilepsy patients while they performed a cued word
production task. Their results indicated that Broca’s area
mediates the transformation from sensory representation
to spoken words through reciprocal connections with both
temporal and motor cortex. However, contrary to the exp-
ected activation of Broca’s area during speech production,
they observed that it remained silent, while motor cortex
was active. This provides direct evidence that Broca’s area
is not involved in speech production per se, but rather
encodes the information and establishes an articulatory
plan, which is then executed by motor cortex. Crucially, this
effect was visible on single trials (Fig. 3.5).

Sustained neuronal firing as a correlate of
working memory maintenance

Delay activity in the prefrontal cortex has been suggested
to constitute the neuronal correlate of working memory
to maintain information online (Fuster and Alexander,
1971;Christophel etal.,2017 ; Leavittetal., 2017). How-
ever, several recent studies indicated that this view might
be oversimplified (Sreenivasan et al., 2014; Rose et al.,
2016). First, the sustained activity in the delay period
could rather reflect an artifact of averaging across
multiple trials, which were characterized by discrete
activity bursts (Stokes and Spaak, 2016). Hence, averag-
ing across multiple bursts might have resulted in a
smooth trace that appeared sustained (Warden and
Miller, 2007; Watanabe and Funahashi, 2007). Second,
in a recent dual-task experiment an attentional modula-
tion was added to the working memory experiment
(Watanabe and Funahashi, 2014). The authors reported
that the sustained delay activity was absent when atten-
tion was directed away from the memory task. However,
the monkeys were still able to recall the items held in
memory. These observations led to the hypothesis that
working memory might be encoded in an activity-silent
manner by transiently shifting synaptic weights (Stokes,
2015). Stokes and colleagues reasoned that if the task
context or content of working memory are encoded
in a static code, then a pattern classifier trained on previ-
ous time points should be able to predict the information
held in memory on subsequent samples (Stokes et al.,
2013; Spaak et al., 2017). However, they reported only
limited evidence for this consideration. Rather, their
results supported a dynamic, activity-silent code, which
implied that pattern discrimination is only successful
at a given time point but does not necessarily general-
ize across time. Implications of the findings will be
discussed in detail later.

Representation of task-relevant information
in large-scale networks

For decades, it has been thought that different brain areas
are specialized and subserve distinct cortical functions.
For example, distinct sensory regions encode different
task-relevant aspects (e.g., color in V4 and motion in
MT+), which are then integrated in higher-order fron-
toparietal association cortex (e.g., PFC). This notion
has recently been challenged in an experiment where
two monkeys performed a flexible categorization task
(Siegel et al., 2015). As expected, the authors found
that sensory information was encoded in early sensory
regions and then flowed to higher-order frontoparietal
association areas, while choice information first emerged
in frontal areas and subsequently peaked in downstream
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f0030 Fig. 3.5. Revisiting the role of Broca’s area for speech production. (A) Trial-averaged responses at representative electrodes over
superior temporal gyrus (STG), Broca’s area, and motor cortex. During every trial, subjects listened to a word and then repeated it.
Cortical activations were first observed in STG during word perception, then in Broca’s area, and finally in motor cortex during word
production. Note that Broca’s area is only active prior to production onset, while STG is again active during word production, which is
related to the perception of the spoken word. (B) Upper: Electrode coverage and electrode locations. Lower: Time-course of HFA
activity. (C) Stacked single trials that were sorted relative to the reaction time (black line). Again, note the reliability of the signal-on-
single trials. The activation of Broca’s area is clearly visible as well as its sustained activity, which terminates just prior to the motor
response. These findings clearly indicate that Broca’s area is involved in sensorimotor transformations of speech, but not involved in
actual speech production. Reproduced from Flinker A, Korzeniewska A, Shestyuk AY et al. (2015). Redefining the role of Broca’s
area in speech. Proc Natl Acad Sci USA 112: 2871-2875. doi:10.1073/pnas.1414491112 with permission from the authors.

regions. However, information about all task-relevant
aspects was present in all sampled cortical regions, thus
supporting the notion that information is distributed
across large-scale networks. Analyses of peak latencies

indicated that at least some of the information is encoded
in parallel. However, this study did not address whether
information was redundant or if distinct features were
encoded in different cortical regions. In addition, it is
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currently not clear how information is transferred
between regions. Similar findings were obtained from
working memory tasks, where information about the
items held in memory could be decoded from frontal
as well as parieto-occipital regions, indicating that at
least some information is redundant (Christophel et al.,
2017; Leavitt et al., 2017).

REVISITING THE NEURON DOCTRINE

The neuron doctrine is one of the foundations of
modern neuroscience and states that the single neuron
constitutes the structural and functional unit of the
CNS (Golgi, 1906). The doctrine was first conceptua-
lized by Golgi in the 19th century and later received a
multitude of experimental support, including the seminal
work of Hubel and Wiesel (1962) and Barlow (1953),
who suggested that individual neurons are highly selec-
tive and are only tuned to very specific features. While
early recordings were only made from one or a few neu-
rons at a time, modern neuroscience enabled scientists
to record from tens to hundreds of neurons simulta-
neously. One intriguing observation was that a surprising
number of randomly sampled neurons encoded task-
relevant aspects. For example, several microelectrode
studies recording from prefrontal cortex suggested that
around 90% of the recorded cells are active during
one or more task epochs (Warden and Miller, 2007;
Watanabe and Funahashi, 2007; Barak et al., 2010;
Stokes et al., 2013). Were these groups simply fortunate
to have sampled from highly task-active populations, or
does this population activity actually support cognitive
processing?

In a theoretically different account from Golgi or
Barlow, Hebb and others suggested that neuronal assem-
blies might constitute the functional unit of the nervous
system (Hebb, 1949). This notion has received substan-
tial experimental support in recent years by taking full
advantage of large-scale recordings and novel methods
to analyze network interactions and population-based
information coding (Quian Quiroga and Panzeri, 2009;
Yuste, 2015; Eichenbaum, 2017). Regarding prefron-
tal cortex, it has repeatedly been demonstrated that
most randomly sampled neurons are task-active and that
the same group of neurons exhibits highly context-
dependent alterations in their firing rates (Warden and
Miller, 2007; Meyers et al., 2008; Mante et al., 2013;
Rigotti et al., 2013; Stokes et al., 2013). While inform-
ation about all task-relevant aspects could be decoded
from the population at all times during the task, individ-
ual neurons showed complex patterns, which could not
be explained by a linear summation of two task-relevant
variables (Meyers et al., 2008; Barak et al., 2010; Rigotti
et al.,, 2013). These findings strongly supported the

hypothesis that cell assemblies are the functional
unit of the brain and code information in high dimen-
sional neuronal representations (Fusi et al., 2016). Sim-
ilar findings have been reported in the inferotemporal
cortex of macaques or the hippocampus in rodents
(Eichenbaum, 2017). Despite substantial evidence for
population-based coding in rodents and primates, human
single-unit research is still largely focused on single
neurons and how they respond to one specific task-aspect
(Fried etal., 2014; Kaminski et al., 2017; Kornblith et al.,
2017; Mormann et al., 2017).

MIXED SELECTIVITY AND DYNAMIC
CODING FOR COGNITIVE FLEXIBILITY

In the case of the PFC, two related key observations have
gained interest in recent years. The first is population-based
coding, where single neurons exhibit complex response pat-
terns that depend on the current task context (Meyers et al.,
2008; Barak et al., 2010; Rigotti et al., 2013; Stokes et al.,
2013; Panzeri et al., 2015). This feature has also been
described as mixed selectivity at the single cell level within
an assembly. In particular, a neuron might respond to a
specific object 1 in context A, but not object 2. If task
demands or rules change (i.e., context B), then the same
neuron might respond to object 2 instead, but not object
1 (Warden and Miller, 2007, 2010; Rigotti et al., 2013). This
mechanism might support an adaptive mapping of any task
onto a cell population according to current task demands
and therefore support cognitive flexibility (Fusi
et al., 2016).

Mixed selectivity also implies that the neuronal pop-
ulation can alter its current state into a number of possible
complex configurations. These configurations can be
represented in a N-dimensional coordinate system. Here,
N corresponds to the number of possible task-relevant
combinations. For example, in Rigotti et al. (2013), mon-
keys were presented with 2 consecutive objects out of a
set of 4, yielding 12 possible combinations (objects A—B,
A-C, A-D,B-A, B-C, B-D, etc.), which were presented
in two different contexts. Hence, the maximal dimen-
sionality N was 24—i.e., a maximum of 24 different
configurations was needed to map every possible task—
object relationship onto the population. This study high-
lights the behavioral relevance of high dimensional
representations by demonstrating that the dimensionality
is significantly lower in error trials. This was interpreted
as evidence for the notion that current task demands need
to be encoded by the cell assembly. Any errors during
encoding lead to a breakdown of dimensionality and
predict that the monkey will make a mistake.

The second concept is closely related and has been
described as dynamic coding (Meyers et al., 2008;
Stokes et al., 2013; Spaak et al., 2017). In the past,
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sustained activity in the delay period has been thought
to reflect a hallmark of working memory (Fuster and
Alexander, 1971; Sreenivasan et al., 2014). Recently, it
became clear that this sustained activity might actually
reflect an averaging artifact (Lundqvist et al., 2016;
Stokes and Spaak, 2016). While single trials might
exhibit bursts of spiking or oscillatory activity, the
averaging of hundreds of trials might actually smear
out effects, which then appear as sustained (Fig. 3.6).
Similar considerations might apply to decision-making
processes (Latimer et al., 2015).

In order to ascertain whether the coding at the popu-
lation level remains stable over time, Stokes et al. utilized
a multivariate pattern classification approach (Stokes
etal.,2013). They demonstrated that at time point ¢, a pat-
tern classifier could successfully discriminate different
trial types. Crucially, they also attempted to train the
classifier on time point ¢ and then classify later time
points. While they found robust evidence for time-
specific coding, the classifier did not generalize to later
time points when being trained during cue presentation.
However, this failure to generalize to later time points did
not imply that no discriminative information was present,
but rather suggested that the coding at the population
level changed over time. Notably, they found evidence
for a generalization in the delay period, pointing toward
more stable population codes (Fig. 3.7). They suggested
that this time-varying coding could most likely be attrib-
uted to shifts in synaptic weights (Stokes, 2015). While
early processing requires a high dimensional active
space, the system settles into a low dimensional, possibly

more energy-efficient, state after encoding, which would
explain why population coding might change from
dynamic to more stable codes.

Critically, a coding scheme at the synaptic level might be
“activity-silent,” i.e., a set of cues, rules, or contexts does
not induce significant differences in mean firing rates or
oscillatory power (Stokes, 2015). In a related study, Busch-
man et al. demonstrated that encoding of different task rules
was mediated by shifting phase relationships of oscillatory
signatures at the population level (Buschman et al., 2012).

These findings raised the question of how activity-
silent coding at the synaptic level could be quantified.
Recently, Wolff et al. conceived a novel analytical
approach, which was inspired by echolocation (Wolff
et al.,, 2015, 2017). By presenting a task-irrelevant,
high-contrast, visual impulse stimulus in the delay
period, they evoked a strong visual response, which con-
tained decodable information about the content of work-
ing memory, even when the content was not decodable
prior to impulse presentation. These findings support
the idea of activity-silent population encoding at the
synaptic level. Taken together, both mixed selectivity
and dynamic coding contradict the neuron doctrine
(Eichenbaum, 2017); rather they highlight the impor-
tance of a population-based code to support cognitive
flexibility and dynamic cognitive control (Yuste, 2015).

THE TIMESCALE OF COGNITION

We experience the world as continuous, while brain activ-
ity is inherently rhythmic (Helfrich and Knight, 2016).
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This has led to the intriguing hypothesis that if neuronal
oscillations constitute the neuronal basis for cognitive
processing, then these rhythms should modulate percep-
tion and higher cognitive functions (Thut et al., 2012).
To empirically examine this hypothesis, behavior is

R.F. HELFRICH AND R.T. KNIGHT

typically sampled on a fine-grained temporal scale over
several hundred milliseconds in small steps (Landau and
Fries, 2012; Fiebelkorn et al., 2013). For example, in a
recent study we probed visual target detection performance
over 850ms by sampling 25 discrete bins in 34-ms steps
(Helfrich et al., 2017). We replicated the observation that
target detection performance cycles are a function of the
parieto-occipital alpha (8-12Hz) phase (Busch et al.,
2009; Mathewson et al., 2009, 2012; Spaak et al., 2014).
Thus the average performance changed by up to 10% as
a function of the presentation phase (Fig. 3.8). Next, we
added an additional top-down cue that predicted the
upcoming target in the preceding rapid visual stream.
Previous lesion evidence had suggested that DLPFC
lesion patients do not show a behavioral benefit from the
predictive cue (Fogelson et al., 2009).

We hypothesized that if cognition operates in a rhyth-
mic mode, then the alpha-dependent target detection
performance should be modulated by a second rhythm
(Song et al., 2014; Zoefel and Sokoliuk, 2014). We
identified a delta (~4Hz) signature that modulated
perceptual alpha cycles in the top-down condition, but
not in the absence of a predictive cue. Simultaneous
source-reconstructed EEG recordings confirmed that
the perceptual sampling in the alpha range originated
from parieto-occipital areas, while the delta rhythm arose
from the prefrontal areas and modulated posterior alpha
activity in a top-down manner (Fig. 3.9).

Similar periodic fluctuations in behavior that reflect
the timescale of endogenous processes have been found
for visual perception (Mathewson et al., 2012; de Graaf
etal.,2013; Spaak et al., 2014) and attention (Landau and
Fries, 2012; Fiebelkorn etal., 2013), as well as for human
decision-making (Wyart et al., 2012).

In particular, attention research (Carrasco, 2011) has
shifted its focus away from studying how attention samples
the spatial dimension (e.g., space or objects) and more
toward investigating how attentional processes evolve over
time (Buschman and Kastner, 2015). A series of studies
(Landau and Fries, 2012; Fiebelkom et al., 2013; Song
et al., 2014; Landau et al., 2015) demonstrated that visual
perception at a cued location is sampled at approximately
8-12 Hz, while unattended spatial positions are only mon-
itored at a slower rhythm (~4Hz). Jointly, these findings
provide evidence that cognition operates in a rhythmic
mode and exhibits fluctuations that can be attributed to
periodic endogenous processes.

PREFRONTAL CORTEX DEPENDENT
LARGE-SCALE NETWORKS

The PFC is widely connected to different cortical
regions through reciprocal connections (Miller and
Cohen, 2001). A long-standing hypothesis of prefrontal
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executive control suggested that activity patterns in the
PFC selectively bias neural activity in distant cortical
regions to route information to task-relevant cortical
regions (Pesaran et al., 2008; Crowe et al., 2013;
Voytek et al., 2015). The influential Communication-
through-Coherence (CTC) theory (Fries, 2005, 2015) sug-
gested that the selective synchronization of task-relevant
neuronal populations establishes transient coalitions of
neuronal assemblies, which support cognition (Siegel
etal., 2012). Crucially, phase alignment is thought to opti-
mize the spiking activity; that is, a volley sent from pop-
ulation A arrives at an optimal, highly excitable, phase of
population B. While the original CTC implied that two
populations are optimally aligned at zero phase lags, sev-
eral more realistic recent models take interareal conduc-
tion delays into account (Baldauf and Desimone, 2014;
Bastos etal., 2015a). Furthermore, the original CTC could
not explain how feedforward and feedback information
could be transferred between two neuronal populations
along the same anatomic pathways. More recently, the
concept of oscillatory multiplexing provided a powerful
solution (Watrous et al., 2013; Akam and Kullmann,
2014). Multiplexing implies that information along the
same pathway might be transmitted on different frequency
bands, similar to FM transmitters for radio reception
where one can tune into different, simultaneously active
channels. In recent years, several groups have provided
evidence that distinct spectral signatures support
bottom-up and top-down processing along the same

anatomic pathways (Bastos et al., 2015b; Michalareas
et al., 2016). For instance, while gamma oscillations
(30-80Hz) are thought to reflect bottom-up processing,
beta-band signatures (13-30Hz) are often implicated in
top-down processing to support conscious perception
and goal-directed behavior (Buschman et al., 2012;
Micheli et al., 2015; Lundqvist et al., 2016).

Several other influential theories have emphasized the
role of, e.g., alpha oscillations (8—12Hz) as a gating
mechanism to block out irrelevant sensory information
and optimize the cortical processing architecture on both
the micro- and macrolevel (Klimesch et al., 2007; Jensen
and Mazaheri, 2010; Klimesch, 2012; Jensen et al.,
2014). Slow-frequency delta (1-4 Hz) and theta oscilla-
tions (4—7 Hz) have been linked to a number of processes,
but they might play a pivotal role in context-dependent
processing and memory formation (Anderson et al.,
2010; Rutishauser et al., 2010; Lisman and Jensen,
2013; Watrous et al., 2013; Cavanagh and Frank, 2014).

We will now focus on PFC-dependent large-scale cor-
tical and subcortical interactions to highlight the role of
selective oscillatory synchronization and timed informa-
tion transfer for cortical processing.

Prefrontal—cortical connectivity

The frontoparietal network, which is often referred to as
the attention network (Buschman and Kastner, 2015;
Scolari et al., 2015), is thought to provide the structural
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foundation for a multitude of cognitive functions
(Helfrich and Knight, 2016). While most of the evidence
is still correlative in nature, several lesion or noninvasive
brain stimulation studies aimed to provide causal evi-
dence for the importance of frequency-specific interac-
tion for cognitive processing (Herrmann et al., 2016;
Thut et al., 2017).

For example, a recent lesion EEG study investigated
the role of PFC for working memory performance.
Johnson et al. replicated the commonly observed finding
that PFC lesion patients had impaired memory recall per-
formance (Duarte et al., 2005; Szczepanski and Knight,
2014; Johnson et al., 2017). Notably, their performance
was still significantly above chance level, indicating that
the PFC has a modulatory and not an exclusive role in
supporting working memory. Subsequently, the authors
demonstrated that bottom-up signals in the alpha-beta
10 band (9-24 Hz) were intact in PFC lesion patients, but

a top-down signals from PFC to parieto-occipital areas
c £ NE in the delta-theta band (2—7 Hz) were absent in patients
with PFC lesions. These findings support the notion that
multiple, frequency-specific bidirectional networks sup-
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Fig. 3.9. Prefrontal-dependent top-down control of posterior
alpha activity. (A) Prefrontal top-down control of alpha activ-

ity (8—12Hz) in ventromedial parieto-occipital cortex was
mainly mediated by activity in the delta/theta range (~4 Hz)
in the right middle frontal gyrus. (B) Posterior alpha amplitude
(y-axis) was predicted by the phase of the frontal delta/theta
signature (x-axis). Note the nonuniform amplitude distribution
relative to the delta phase. (C) Directionality analyses indi-
cated that this prefrontal driving was only present in the pre-
dictive, but not in the nonpredictive, condition. Reproduced
with permission from Helfrich RF, Huang M, Wilson G,
Knight RT (2017). Prefrontal cortex modulates posterior alpha
oscillations during top-down guided visual perception. Proc
Natl Acad Sci USA 114: 9457-9462.

port white matter (WM) (Fig. 3.10). Hence, DLPFC
lesions only abolish top-down modulatory signals, while
bottom-up processing remains intact and explained why
patients still perform significantly above chance (>80%
correct). These findings challenge classic PFC-centric
models of WM and support theories of distributed mem-
ory maintenance in higher-order sensory areas
(Sreenivasan et al., 2014; Leavitt et al., 2017).
Converging evidence from imaging, fiber tracking,
brain stimulation, electrophysiology, lesions, and behav-
ior indicates that processing in early sensory areas is
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Fig. 3.10. Bidirectional frontoparietal connectivity supports working memory. (A) Behavioral results. Memory recall perfor-
mance was better in healthy controls than in DLPFC lesion patients. However, patients performed well above chance level
(0.5), indicating that all patients were able to perform the task despite prefrontal damage. (B) Schematic illustration of two distinct
bidirectional system supporting WM. While the bottom-up (posterior to PFC; purple to green) system in the alpha/beta range
remained intact in PFC patients, the top-down PFC-dependent delta/theta system was attenuated in patients. Since the PFC lesion
patients still demonstrated task proficiency, the authors reasoned that the bottom-up system might be sufficient for WM, while the
prefrontal system only exerts moderate modulatory influences in this task. Reproduced from Johnson EL, Dewar CD, Solbakk A-K
et al. (2017). Bidirectional frontoparietal oscillatory systems support working memory. Curr Biol 27: 1829-1835. doi:10.1016/j.
cub.2017.05.046 with permission of Elsevier.
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PFC-dependent (Barcelo et al., 2000; Voytek and Knight,
2010; Voytek etal., 2010; Szczepanski and Knight, 2014;
Marshall et al., 2015a,b; Helfrich et al., 2017). For exam-
ple, it has been demonstrated that prefrontal damage
reduced neuronal activity in extrastriate cortex of the
lesioned hemisphere as early as at 125 ms after stimulus
presentation (Barceld et al., 2000). In addition, it has
been reported that the volume of frontoparietal WM
tracts correlates with their ability to lateralize behavior-
ally relevant alpha and gamma oscillations in a latera-
lized spatial attention task (Marshall et al., 2015a).
Hence, transient (Marshall et al., 2015b) or permanent
(Voytek and Knight, 2010) deactivation of regions in
DLPFC has a profound impact on the oscillatory archi-
tecture in distant cortical sites (Helfrich and
Knight, 2016).

To date most studies have focused on frequency-
specific interactions, which did not explain how informa-
tion could be transferred across different temporal scales.
Neocortical cross-frequency coupling (Fig. 3.4; Canolty
et al., 2006; Canolty and Knight, 2010) was described a
decade ago. Subsequently, CFC was used to capture
interactions in the frontoparietal network during working
memory processing (Friese et al., 2013), selective spatial
attention (Szczepanski et al., 2014), or top-down guided
contextual processing (Helfrich et al., 2017).

Prefrontal-subcortical connectivity

In addition to being widely connected to multiple cortical
regions, the PFC is also linked to subcortical structures
such as the hippocampus (Anderson et al., 2010;
Brincat and Miller, 2015; Place et al., 2016), the cingu-
late (Voloh et al., 2015), and thalamus (Sweeney-Reed
et al., 2014, 2015). Here, we first focus on prefrontal—
thalamic interactions, which have not been widely stud-
ied, given the difficulty to record electrophysiological
signals from the thalamus in humans.

In recent years, interest in the thalamo-cortical inter-
actions has been fueled by several findings that sug-
gested that the thalamus regulates cortical information
flow and might be an important relay station to coordi-
nate cortical networks. For example, Saalman et al. dem-
onstrated that thalamic control of two distant cortical
sites (V4 and TEO: temporo-occipital cortex) induced
zero phase-lag synchronization at the cortical level
(Saalmann et al., 2012). This finding was extended to
prefrontal-thalamic interactions during rule-guided
attentional control (Schmitt et al., 2017). This provides
evidence that the thalamus plays a crucial role in control-
ling cortical excitability (Guo et al., 2017). This is in line
with the observation that thalamo-cortical connectivity
depends on the general arousal state as measured by
pupillometry. Stitt et al. reported that different frequency

bands mediate feedforward and feedback interactions
between thalamus and cortex: connectivity in the delta/
theta band (~4 Hz) was driven by the thalamus and mono-
tonically increased with increased pupil size indexing
higher arousal levels. In contrast, connectivity in the alpha
band was driven by neocortical regions and was inversely
modulated by arousal: high alpha synchronization in states
of low arousal, and low alpha synchronization in states of
high arousal (Stitt et al., 2017).

Invasive recordings from epilepsy patients offer the
rare opportunity to record directly from the human thal-
amus. For example, Sweeney-Reed et al. took advan-
tage of simultaneous intracranial thalamic recordings
and external EEG recordings (Sweeney-Reed et al.,
2014, 2015). They reported that successful memory
encoding is associated with stronger thalamocortical
phase synchronization in the theta band. These rare clin-
ical opportunities provide significant insights into
thalamus-dependent large-scale dynamics underlying
higher cognitive functions.

Prefrontal-dependent large-scale dynamics

In this chapter, we did not cover prefrontal-cingulate
(Voloh et al., 2015), —hippocampal (Brincat and Miller,
2015), or —striatal (Antzoulatos and Miller, 2014) inter-
actions, and the examples in this chapter are by no means
exhaustive. We refer the interested reader to other recent
reviews on the topic (Helfrich and Knight, 2016). Cur-
rently, most observations are only correlative in nature
and several pressing questions have not been addressed
yet. For example, it is unclear how neuronal populations
actively tune into one or another frequency channel to
extract information (Knight and Eichenbaum, 2013). In
addition, no mechanism has been described for how a
cell assembly can simultaneously process top-down
and bottom-up influences. Does mixed selectivity of sin-
gle neurons play a key role or do cell assemblies contain
specialized subunits that process top-down and bottom-
up influences separately? Eventually, the field needs a
better understanding of how timed transfer of informa-
tion is established in the human brain, to understand
how cognitive flexibility is supported at the neuronal
level. In the future, this will help to assess the path-
ophysiology of a variety of neuropsychiatric disorders
such as attention deficit hyperactivity disorder
(ADHD), obsessive—compulsive disorder (OCD), or
schizophrenia, which likely reflect network disorders
(Voytek and Knight, 2015). Therefore, several attempts
have been made to modulate oscillatory patterns
in vivo to better understand their relevance for behavior
and potentially have novel tools to nonpharmacologi-
cally treat neuropsychiatric diseases.
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ENTRAINED COGNITION: DRIVING
OSCILLATIONS TO UNDERSTAND
BEHAVIOR

Neuronal oscillations are readily visible in a variety of
electrophysiological recordings, ranging from noninva-
sive scalp EEG to invasive LFP recordings in primates
(Buzsaki, 2006; Buzsaki et al., 2012). While numerous
studies provided correlative evidence for their role in cog-
nitive processing, a causal demonstration in humans
remained difficult (Thut et al., 2011a). Novel noninvasive
brain stimulation techniques offer the opportunity to stim-
ulate the cortex rhythmically and thereby modulate oscil-
latory patterns and subsequent behavior (Herrmann et al.,
2016; Thut et al., 2017). The two most commonly used
approaches are rTMS and tACS. However, the exact
mechanisms of action of both methods are currently not
fully understood. Several theoretical accounts argued that
rhythmic cortical stimulation entrains cortical generators
by phase alignment (Thut et al., 2011a, 2012; Ali et al.,
2013). For example, multiple rTMS pulses are thought
to reset and align the phase of ongoing oscillatory
activity, i.e., the ongoing oscillation becomes entrained
and now cycles in sync with the external driving force
(Thut et al., 2011b; Hanslmayr et al., 2014). Crucially,
entrainment in dynamic systems implies that this effect
outlasts stimulation offset (Herrmann et al., 2013;
Frohlich et al., 2015). Note that this approach aims at
assessing frequency-specific contributions and is funda-
mentally different from the often employed 1Hz or
theta-burst TMS protocols, which are applied over
minutes, to temporarily make a cortical region active or
deactive (“virtual lesion” approach), to make causal infer-
ences about its function (Herrmann et al., 2016).

In the case of tACS, it has been hypothesized that sinu-
soidal stimulation waveforms utilizing weak electric cur-
rents (1-2mA) enhance network resonance at the applied
stimulation frequency (Ali et al., 2013; Helfrich et al.,
2014; Neuling et al., 2015). However, in order to be suc-
cessful, the frequency of the external driving force needs
to match the endogenous frequency. It has been demon-
strated that 10-30min of stimulation induce outlasting
network effects, possibly through mechanisms similar to
short-term synaptic plasticity (Zaehle et al., 2010;
Neuling et al., 2013; Kasten et al., 2016).

Driving brain oscillations in the prefrontal cortex have
been used to test frequency-specific causal contributions
to a variety of cognitive functions. For example,
Hanslmayr et al. tested the role of theta, alpha, and beta
oscillations over the left inferior frontal gyrus for memory
recall performance (Fig. 3.11; Hanslmayr et al., 2014).

Correlative evidence has linked all three spectral signa-
tures to memory processes; however, only rTMS at beta
frequencies significantly impaired recall performance.

Even though theta oscillations have been implicated in
memory processes, stimulation in that frequency did not
modulate recall performance in this study. In contrast,
multiple tACS studies reported that beta tACS remained
ineffective in modulating WM performance (Braun
etal., 2016), but demonstrated that theta-band tACS might
be effective in modulating WM performance (Vosskuhl
et al., 2015; Alekseichuk et al., 2016, 2017; Chander
et al., 2016). Evidently, the field is still in its infancy
and preliminary results often remain inconclusive, which
can partially be attributed to the state-dependence of neu-
romodulatory approaches (Neuling et al., 2013; Alagapan
et al., 2016; Hanslmayr and Roux, 2017).

Notably, several groups have begun to take advantage
of direct electric stimulation (DES) on the cortex of epi-
lepsy patients with implanted electrodes who undergo
presurgical evaluation. DES is a standard procedure in
the preoperative mapping of motor and speech regions
and is routinely delivered in biphasic pulses at SOHz.
Again, results are mixed and while a few groups
found that stimulation enhanced memory performance
(Suthana et al., 2012), others reported impaired memory
performance (Jacobs et al., 2016). Recently, it became
clear that this approach is highly state-dependent, too
(Ezzyat et al.,, 2017; Hanslmayr and Roux, 2017).
A shortcoming of DES is that stimulation patterns are
not functionally motivated, i.e., they are not frequency
matched to modulate a distinct spectral signature of a
cognitive process, which might enhance its efficacy in
future studies (Alagapan et al., 2016).

Taken together, the field of (noninvasive) brain stimu-
lation holds the potential to establish a causal relationship
between electrophysiological signatures and human
behavior and will likely gain more interest in the future
to enhance or restore cognitive functions in the aged or
diseased brain.

OSCILLOPATHIES AND DISORDERS OF
NETWORK SYNCHRONY

Many neuropsychiatric diseases have traditionally been
described and understood at the cellular or molecular
level, such as Parkinson’s disease (PD), Alzheimer’s dis-
ease, or epilepsy. However, despite substantial effort no
cellular or molecular mechanisms have been observed
for a variety of disorders such as schizophrenia, depres-
sion, ADHD, or OCD, and the underlying anatomic
structures appeared intact in imaging studies. Therefore,
it has been suggested that selected neuropsychiatric dis-
orders might be caused by impaired network communi-
cation (Voytek and Knight, 2015). While every cortical
region appears functional when analyzed independently,
their coordinated interplay might be disturbed, thus giv-
ing rise to a variety of neuropsychiatric symptoms.
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Neuropsychiatric disorders might reflect
network disorders

One of the model diseases that might be understood as a
network disorder is schizophrenia, since multiple
genetic mutations have been linked to clinical symp-
toms. In addition, pharmacotherapy in schizophrenia
is often not effective, indicating that the aberrations giv-
ing rise to clinical symptoms are highly complex. In
recent years, a multitude of studies indicated that the
variability in clinical symptoms and their fluctuations
across days, months or years correlates with the vari-
ability in electrophysiological signatures in large-scale
networks (Andreou et al., 2015; Curcié-Blake et al.,
2017; Hunt et al., 2017). In particular, two frequency
bands have been implicated: Delta and gamma oscilla-
tions. It has been hypothesized that the coupling
between sensory cortices, prefrontal areas, mediotem-
poral lobe structures, and the thalamus is impaired. Cru-
cially, both impaired and elevated coupling have been
observed: positive symptoms, such as auditory halluci-
nations, might reflect increased synchrony in the
gamma band from auditory to prefrontal areas
(Herrmann and Demiralp, 2005; Andreou et al.,
2015), while decreased cortical delta connectivity is
thought to reflect impaired network integration (Hunt
et al., 2017). Hence, the coordination of information
flow from sensory areas to cortical association cortex
seems to be aberrant. Similar network-based models
have been proposed for ADHD (Uhlhaas and Singer,
2012, 2015; Calderone et al., 2014). Several recent
reports indicated that this spatiotemporal coordination
is impaired in ADHD (Vollebregt et al., 2016), espe-
cially between alpha and gamma activity in the fronto-
parietal attention network (Jensen et al., 2014). In the
case of OCD, deep brain stimulation on subgenual areas
has proven to be beneficial, in particular when WM
tracts and not distinct nuclei are being stimulated (van
Westen et al., 2015). Hence, activity might spread to
several relevant regions in the network and rebalance
excitatory—inhibitory balance and synchrony (Voytek
and Knight, 2015).

The recent developments in linking impaired oscilla-
tory brain activity to neuropsychiatric diseases have
triggered revisiting other diseases in light of these
new findings. For example, in the case of PD, the aber-
rant network oscillation in the delta/theta band becomes
visible in the tremor frequency. In addition, it has been
demonstrated that high-frequency DBS in PD changes
oscillatory activity in the beta band in motor cortex
(Swann et al., 2015; Cole et al., 2017). Evidently, clin-
ical findings can be reinterpreted in the framework of
network neuroscience and can advance our understand-
ing of neuropsychiatric disorders.

How to restore oscillatory balance and
network synchrony

If aberrant neuronal oscillatory activity is causally
involved in clinical symptoms, then an intriguing
hypothesis is that modulation of these oscillatory pat-
terns should improve symptoms and clinical scores.
In the case of PD, it has been shown that peripheral
tracking of the cortically generated tremor allows deter-
mining its frequency and instantaneous phase (Brittain
etal.,2013). Following this, Brittain et al. used tACS to
stimulate the motor cortex at the same frequency. They
showed that if motor cortex is stimulated at an opposite
phase angle, tremor amplitude is significantly reduced
through phase cancellation. If the phases were aligned,
the tremor amplitude was enhanced.

Currently, the first clinical trials are being conducted
to test whether tACS may modulate aberrant oscillatory
patterns in schizophrenia (STILL2 study: Stimulation to
Improve auditory HaL.Lucinations). In contrast to the
more common transcranial direct current stimulation
(tDCS) approach, which has been widely criticized in
recent years (Horvath et al., 2015, 2016), tACS offers
the opportunity to tailor stimulation protocols to distinct
spectral signatures and individualize interventional
protocols by means of frequency, intensity, and duration
according to individual structural and functional
metrics (Thut et al., 2017). If successful, this approach
provides a nonpharmacologic treatment of neuropsy-
chiatric disorders to complement DBS (Philip
et al., 2017).

OUTLOOK AND FUTURE DIRECTIONS

In this chapter, we outlined how electrophysiology in
humans and primates has contributed to our current
understanding of the prefrontal cortex physiology.
The field of network neuroscience is slowly replacing
the classic neuron doctrine (Yuste, 2015;
Eichenbaum, 2017). In this last section, we would like
to highlight that testing future hypotheses using novel
methods does not necessarily require additional data
collection. As data sharing and open science become
more widely accepted (loannidis et al., 2014;
Chambers et al., 2015; Eglen et al., 2017; Munafo
et al., 2017), scientists have the opportunity to test
new hypotheses on existing datasets to provide addi-
tional insights. In the following text, we outline this
approach on one exemplary dataset. In particular, non-
linear signal analyses have gained importance in recent
years and will be discussed in detail. We believe that
challenging established facts constitutes a hallmark of
scientific progress toward a better understanding of
the specific role of the prefrontal cortex for cognition.
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A multimodal and multifaceted approach to
understanding the PFC

Understanding the physiology of the prefrontal cortex
requires recording techniques that span multiple scales:
across species, across spatial, and across temporal scales.
Every method has advantages and disadvantages to
answer specific questions. In the field of invasive electro-
physiology, one often has to adapt the scientific question
to the recording environment. For example, the electrode
coverage in epilepsy patients is solely dictated by clinical
considerations, and thus only rarely provides access
to, e.g., primary visual cortex (Self et al., 2016) or the
thalamus (Sweeney-Reed et al., 2014). In contrast, given
that the majority of epileptic cases have a seizure onset
zone in medial temporal cortex and adjacent regions,
consistent coverage can be expected over medial and lat-
eral temporal cortex, as well as over frontal regions, such
as DLPFC, OFC, anterior cingulate, SMA, and
medial PFC.

Similar considerations hold true for primate research.
While electrode placement in primates can be adjusted
according to the scientific question, primate research
entails a different set of ethical considerations and diffi-
culties. Therefore, it is important to extract as much infor-
mation as possible from a single dataset using a variety of
analytical approaches. We outline how one dataset could
be mined for different questions using multiple analytical
approaches, which ultimately leads to a better under-
standing of the underlying processes.

We exemplify this approach by focusing on a dataset
that was first reported by Warden and Miller, in which
two monkeys were trained on a working memory task,
where two pictures were presented sequentially
(Warden and Miller, 2007). Memory performance was
either assessed in a recognition task, where the monkeys
had to indicate whether a second sequence matched the
first sequence or not. In a second recall task, the monkey
had to pick the two pictures in the correct sequence from
a three-item array. Recordings across multiple sessions
were made from single neurons and LFPs in DLPFC.

In the first paper, the authors analyzed how the firing
rates of individual neurons contributed to recall perfor-
mance. They reported that most prefrontal neurons
responded to both stimuli. However, the exact relation-
ship was complex: representations of the first object were
altered by the addition of the second object. However,
they did not observe a clear pattern across different neu-
rons, suggesting that the items held in working memory
are not encoded by single neurons but by coding at the
population level (Warden and Miller, 2007).

In the first follow-up paper reexamining this dataset,
they demonstrated that this complex coding was also
modulated by task context, i.e., whether the monkey

performed the recall or recognition task (Warden and
Miller, 2010). Most prefrontal cells encoded both the task
and the objects in a highly complex fashion, again sup-
porting the notion that neuronal populations are func-
tional units and not single neurons.

In order to test whether the population encodes all
task-relevant parameters, a second follow-up study uti-
lized machine-learning techniques to decode information
from the population (Rigotti et al., 2013). They found
that every task-relevant aspect could be decoded from
the population. Crucially, they demonstrated that indi-
vidual neurons exhibited a mixed selectivity, i.e., one
neuron would only respond to the first object in the recall
context and only to the second object in the recognition
task. Importantly, these responses did not reflect a linear
summation, but were instead highly nonlinear in nature
(Fusi et al., 2016). This indicated that neural representa-
tions are complex and encoded in a high dimensional
space in prefrontal cortex, which was predictive of task
performance. However, while the results provided
insights into how different task-relevant features are
encoded at the population level, it remained unclear
how the temporal order of the objects is held in working
memory.

To address this, the authors extended their analyses
from studying single neurons to assessing the temporal
relationship of spikes and the underlying LFP in another
follow-up study (Siegel et al., 2009). Previously it has
been suggested that LFP oscillations provide a temporal
reference frame to encode the temporal order of objects
or events. Indeed, in support of this hypothesis, they
found that information about the first object peaked sig-
nificantly earlier in the cycle of a beta oscillation
(~32Hz) than information about the second object.
These findings supported the idea that WM content is
not represented in sustained firing rates but is maintained
in an activity-silent manner embedded into oscillatory
activity at the population level (Stokes, 2015).

In a more recent study, the group also demonstrated
that discrete, short-lasting bursts of activity support the
read-out of working memory on a trial-by-trial basis
(Lundqvist et al., 2017), supporting a novel model of
working memory (Lundqvist et al., 2011, 2016). Impor-
tantly, activity in the beta (20-35Hz) and gamma range
(55-120Hz) was predictive of task performance on a
trial-by-trial basis.

Taken together, multiple analytical approaches, rang-
ing from single neuron spiking to multivariate decoding
approaches, information theoretical measures or spectral
and connectivity analyses, jointly provide insights into
the functional architecture of higher cognitive functions.
We are convinced that reanalysis of previously collected,
highly complex datasets using novel methods will help to
unravel the spatiotemporal dynamics of prefrontal-
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dependent operations and ultimately lead to a better
understanding of neurophysiology of the prefrontal
cortex.

Analysis of nonlinear neural dynamics

In recent years it became obvious that previously
employed analytic approaches are insufficient to capture
complex dynamics underlying human behavior. We briefly
outline two approaches to study nonlinear dynamics.

First, spectral analyses of oscillatory brain activity are
increasingly popular and have significantly advanced our
understanding of how information is encoded and trans-
ferred in large-scale cortical networks. A particular focus
has been on the phase of band-limited oscillatory signals,
which is circular in nature and hence cannot easily be ana-
lyzed using linear models. Therefore, circular statistics
have been used to unravel periodicities in electrophysio-
logical signals and behavior (Berens, 2009). Multiple
methods have been introduced to either assess circular—
circular correlations to describe phase-synchronous pro-
cesses in distant cortical sites (Lachaux et al., 1999;
Nolte et al., 2004; Vinck et al., 2012), or to capture circu-
lar—linear interactions as frequently utilized in cross-
frequency-coupling analyses (Canolty et al., 2006; Tort
et al., 2008).

A second approach to assess nonlinear dynamics of
neuronal populations is based on machine learning algo-
rithms, which are able to separate complex patterns by
projecting them into a high dimensional space (Meyers
et al, 2008; Quian Quiroga and Panzeri, 2009;
Jafarpour et al., 2013; Panzeri et al., 2015). The outcome
of'such pattern classifiers or decoding algorithms indicates
that there is enough information present in the data to suc-
cessfully separate two or more task categories. While pat-
tern classification provides valuable insights into what
information is encoded and when it is decodable, it often
remains difficult to visualize these highly dimensional pat-
terns in regular 2-D or 3-D representations (Meyers et al.,
2008; Barak et al., 2010; Stokes et al., 2013). Therefore,
multiple groups used additional dimensionality reduction
techniques, such as principal component analysis, to limit
their analyses to components that explain most of the var-
iance (Quian Quiroga and Panzeri, 2009).

Challenging classical models of PFC-
dependent processing

Over the last decade, novel methods for signal analyses
and multisite recording techniques yielded a wealth of
information that provided valuable insights into the neu-
rophysiology of the prefrontal cortex. During this pro-
cess, several established concepts were challenged,
such as the neuron doctrine, the role of sustained firing

for cognitive processing, and cortical division into highly
specialized subunits. Instead, it became clear that net-
work neuroscience might constitute a new paradigm to
study cognitive functions and we expect that several
other well-established cognitive constructs will be revis-
ited in light of the most recent developments. Ultimately,
all models that assume a neural process is stationary
might not stand the test of time.

For example, visual attention has been extensively
studied in the spatial domain (Carrasco, 2011). The cur-
rent taxonomy distinguishes spatial from object-based or
feature-based attention, which might be independently
modulated by endogenous priors and high-level predic-
tions (Chun etal., 2011). Recently, the field became more
interested in the temporal features of attention
(Buschman and Kastner, 2015). Given the most recent
findings, attention might be better described as a rhyth-
mic process where distinct spatial locations are sampled
periodically over time (Fiebelkorn et al., 2013). In this
view, the brain might sample more frequently from a spa-
tially cued location. When temporal expectations are
high and attention can be directed to a certain point in
time, this endogenous rhythmic process might align its
optimal phase to maximize stimulus processing through
endogenous entrainment or phase resetting (Slama and
Helfrich, 2017). Furthermore, conceptualizing attention
as a rhythmic process might explain attentional lapses
and fluctuations over time.

It is part of the scientific process that established
knowledge is revisited and put under close scrutiny
when new evidence becomes available. Even though the
discovery of the human EEG is inevitably linked to the
discovery of neuronal oscillations (Berger, 1929), their
functional relevance in guiding neocortical spiking was
only established recently (Frohlich and McCormick,
2010). Critically, oscillations can be observed across sev-
eral spatial scales: for example, on the microscale in LFPs
or single-unit firing patterns, as well as on the macroscale
in human M/EEG and sometimes in behavior. We suggest
that oscillatory neural activity might constitute a candidate
mechanism to bridge findings from various species and
recoding environments (Buzsaki and Draguhn, 2004;
Buzsaki et al., 2013). However, it is currently unclear if
frequency-specific motifs actually reflect distinct canoni-
cal cortical computations and if they are comparable
across spatial scales (Haegens et al., 2011; Spaak et al.,
2012). While oscillations were largely ignored for decades
in favor of studying event-related potentials and neuronal
spiking activity, the most recent technological advance-
ments permit a more detailed characterization (Kam
et al., 2016). Hence, we are convinced that spectral
analyses will have an increasing impact on the field of
network neuroscience.
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CONCLUSIONS

Over the last three decades, scientific interest in the pre-
frontal cortex and its intrinsic computations has steadily
increased. While lesion and imaging evidence clearly
attributed many cognitive functions to the prefrontal cor-
tex, it remained unclear how prefrontal cortex gives rise to
complex behavior and human mental abilities. Novel
methods and sophisticated analysis methods are begin-
ning to unravel the role of neuronal assemblies in cogni-
tion. In particular, intracranial electrophysiology allows
the imaging of cognitive processes at an unprecedented
spatiotemporal resolution. Milestones of the last decade
include the findings that neuronal assemblies constitute
the functional unit of the nervous system, and not the sin-
gle neuron. Importantly, in higher-order cortical areas,
such as the prefrontal cortex, neurons exhibit mixed selec-
tivity and utilize dynamic codes to encode information at
the population level. Network neuroscience is an emerg-
ing paradigm for neuroscience and has the potential to
bridge findings from several species and spatial scales
(Yuste, 2015). Eventually, a better understanding of the
underlying physiology will help to characterize the corti-
cal states that support higher cognitive functions, generate
complex goal-directed and contextually adjusted behav-
ior, and potentially underlie mental diseases.
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