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Abstract 

Contextual cues and prior evidence guide human goal-directed behavior. To date, 

the neurophysiological mechanisms that implement contextual priors to guide 

subsequent actions remain unclear. Here we demonstrate that increasing 

behavioral uncertainty introduces a shift from an oscillatory to a continuous 

processing mode in human prefrontal cortex. At the population level, we found that 

oscillatory and continuous dynamics reflect dissociable signatures that support 

distinct aspects of encoding, transmission and execution of context-dependent 

action plans. We show that prefrontal population activity encodes predictive 

context and action plans in serially unfolding orthogonal subspaces, while 

prefrontal-motor theta oscillations synchronize action-encoding population 

subspaces to mediate the hand-off of action plans. Collectively, our results reveal 

how two key features of large-scale population activity, namely continuous 

population trajectories and oscillatory synchrony, operate in concert to guide 

context-dependent human behavior.  
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Introduction 

Human decisions strongly depend on available prior evidence and contextual 

cues. A long-standing question in models of top-down guided behavior is how 

prior evidence is incorporated into momentary action plans1-3. The active sensing 

framework postulates that the brain utilizes its inherent rhythmic structure as an 

energy-efficient mechanism to implement temporal predictions4,5. This framework 

further predicts that the brain switches from a rhythmic to a continuous, and 

therefore energy-costly, processing mode when less prior evidence is available. 

Furthermore, active sensing implies that synchronization of endogenous 

oscillations is instrumental for inter-areal information transfer, as suggested by 

the communication-through-coherence hypothesis6. Active sensing has mainly 

been studied in the context of sensory selection7-9 and to date it remains unknown 

whether similar principles apply when context is signaled by abstract cues. In a 

different line of research, recent work in non-human primates (NHP) has 

demonstrated that sensorimotor cortex as well as adjacent premotor areas, such 

as the frontal eye fields, encode high-level contextual information in neural 

population codes10-15. Whereas the active sensing framework relies on univariate 

features (i.e., oscillatory power, phase, and neural firing), the population doctrine 

emphasizes that information is encoded in the entire population response that 

can be conceptualized as a trajectory passing through a high-dimensional neural 

state space16. To date, population coding and neural oscillations, two key 

signatures of coordinated population activity, have mainly been studied in 
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isolation. Consequently, it remains elusive how both features interact to guide 

goal-directed behavior.  

In this study, we addressed how high-level contextual information is flexibly 

integrated into current action plans in humans. We specifically tested if principles 

of the active sensing framework also apply to prefrontal-motor interactions when 

contextual information is rule-based and not sensory-driven9. Furthermore, we 

aimed to determine the population correlates of presumed rhythmic and 

continuous processing modes. So far, population activity has mainly been studied 

using single- and multi-unit recordings in NHP. Here we recorded intracranial 

electroencephalography (iEEG) from prefrontal and motor cortex in patents with 

epilepsy who underwent invasive monitoring for localization of the seizure onset 

zone. We specifically studied high-frequency band activity (HFA; 70-150 Hz) as a 

proxy of population firing to address if coding principles that have previously been 

identified in NHP also apply in the human brain. All participants engaged in a 

predictive motor task, where they were instructed to continuously track a moving 

target and release a button once it reached a pre-defined spatial location. A 

contextual cue determined the probability of a premature and abrupt stop when 

participants had to withhold their ongoing response.  

We describe a striking functional dissociation between population activity and 

network oscillations where human PFC encodes predictive context and the 

current action plan in orthogonal subspaces using a continuous processing 

regime, while theta oscillations mediate the hand-off of the current action plan 

from prefrontal to motor regions. Collectively, we identified computationally 
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distinct roles of continuous and rhythmic brain activity at the population level that 

jointly guide context-dependent, goal-directed human behavior.  

 

Results 

We recorded intracranial EEG (iEEG) from 19 pharmaco-resistant patients with 

epilepsy (33.73 years ± 12.52, mean ± SD; 7 females) who performed a predictive 

motor task (Fig. 1a). Participants had to closely track a moving target and respond 

(go trial) as soon as the target reached a predefined spatial location (hit lower limit; 

HLL). They were instructed to withhold their response if the target stopped 

prematurely (stop trial). A predictive cue indicated the likelihood of a stop trial 

(green circle = 0%, orange circle = 25%, red circle = 75%). We refer to the stop 

likelihood as behavioral uncertainty or predictive context and use these terms 

interchangeably. We simultaneously recorded from prefrontal cortex (PFC) and 

motor cortex to study how the human prefrontal-motor network converts 

predictive context into concrete actions (Fig. 1b).  

 

Neural and behavioral signatures of context-dependent evidence 

accumulation. We confirmed that participants used the predictive cue to guide 

behavior. We found that reaction times (RT) gradually increased as a function of 

uncertainty (Fig. 1c; +43.9ms ± 19.8ms, mean ± SD; F2,36 = 58.99, P = 4.4 x 10-12, 

𝜂"#  = 0.77; one-way RM-ANOVA). Participants were also significantly less accurate 

in trials with high uncertainty (Fig. 1c; -20.7% ± 8%; mean ± SD; F2,36 = 81.53, P 
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= 4.3 x 10-14, 𝜂"#  = 0.82). Furthermore, we quantified how predictive context 

modulated participants’ sensitivity d’ (d-prime) and decision criterion c (Methods). 

We found that d’ decreased (Supplementary Fig. 1; P = 0.002, Cohen’s d = 1.03; 

Wilcoxon rank sum test) and c increased (Supplementary Fig. 1; P = 0.008, 

Cohen’s d = -0.7) with uncertainty. To quantify trial-by-trial variability, we 

assessed the interquartile range (IQR) as a measure of dispersion (Fig. 1c). We 

found that RTs were more consistent for predictive trials (IQR 0.05s ± 0.01s; mean 

± SD) and more variable under high uncertainty (IQR 0.08s ± 0.03s; mean ± SD; 

F2,36 = 11.36, P = 1.5 x 10-4, 𝜂"#  = 0.39; one-way RM-ANOVA). In sum, these results 

demonstrate that states of high behavioral uncertainty are detrimental for the 

speed, accuracy, and sensitivity of action-linked decisions.  

 

 

Fig. 1 | Task design, hypothesis, behavioral results and electrophysiological 
signatures of context-dependent neural information. a, Participants were 
presented with a predictive cue indicating the likelihood that a moving target (self-
initiated via space bar press) would stop prior to a predefined lower limit (HLL; 
pink horizontal line). Participants were asked to release the space bar as soon as 
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the target hit the lower limit (go trial) or withhold the response if the target stopped 
before reaching the lower limit (stop trial). Afterwards, participants received 
feedback. b, Schematic illustration of our key hypothesis. States of high 
behavioral uncertainty should introduce a switch towards stronger ramping 
dynamics. c, Behavioral results. Scattered dots represent single grand averages, 
black outlined dots depict the group level average and histograms illustrate the 
probability distribution. Upper: RTs gradually scales with behavioral uncertainty. 
Middle: Accuracy gradually decreases as a function of behavioral uncertainty. 
Lower: Interquartile range also increases from trials with no to high behavioral 
uncertainty. d, ROI-specific time course of context-dependent neural information 
(percent explained variance, %EV) for context-encoding (solid lines) and non-
encoding electrodes (dashed lines). The lower horizontal lines show the temporal 
extent of significant cluster differences between context-encoding and non-
encoding electrodes for the respective ROI. Shading represents the standard 
error of the mean (SEM) across participants. e, Context-encoding (large spheres) 
and non-encoding (small spheres) electrodes overlaid on a standardized brain in 
MNI space for our two regions of interest.  

 

 We subsequently determined the neural dynamics that underlie behavioral 

uncertainty by assessing HFA as a proxy for local population activity17-19. The initial 

quantification of percent variance20-24 explained by context revealed significant 

context-dependent neural information in both PFC and motor cortex when time-

locked to the HLL (Fig. 1d; PFC: t15 = 985.91, P < 0.001, Cohen’s d = 0.83; motor 

cortex: first cluster, t10 = 761.78, P < 0.001, Cohen’s d = 1.24; second cluster, t10 

= 351.6, P < 0.001, Cohen’s d = 0.96; cluster test). A comparable pattern was 

observed when time-locked to action execution (button release, BR; PFC: t16 = 

1144.2, P < 0.001, Cohen’s d = 0.88; motor cortex: t10 = 941.25, P = 0.0016, 

Cohen’s d = 1.51). Neural information evolved similarly in both regions over time 

(all P > 0.09; cluster test).  

Overall, we found that 35% (N = 152) of all electrodes in PFC and 27% (N = 

73) of all electrodes in motor cortex significantly encoded context (Fig. 1e; 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.17.473118doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473118


Methods). We used context-encoding electrodes for subsequent univariate 

analyses unless stated otherwise. We found a context-dependent HFA 

modulation in both PFC (Fig. 2a; first cluster: F2,30 = 699.15, P = 0.009; second 

cluster: F2,30 = 496.57, P = 0.018) and motor cortex (Fig. 2b; F2,20 = 326.6, P = 

0.036). The strongest context-dependent modulation was observed for the PFC 

~300ms prior to the HLL (Fig. 2a). 

We next assessed HFA strength (peak amplitude) and peak timing to quantify 

neural dynamics on a trial-by-trial basis. We observed that HFA in PFC gradually 

scaled with behavioral uncertainty (Fig. 2a; F2,30 = 9.77, P = 0.0005, 𝜂"#  = 0.39; 

one-way RM-ANOVA). This was not the case for motor cortex (Fig. 2b; F2,18 = 2.37, 

P = 0.122, 𝜂"#  = 0.21). A significant context x ROI interaction confirmed the local 

specificity of this effect (F2,18 = 4.67, P = 0.046, 𝜂"#  = 0.34; two-way RM-ANOVA). 

Furthermore, PFC population activity peaked significantly later in trials with high 

as compared to no uncertainty (Fig. 2a; F2,30 = 9.07, P = 0.0008, 𝜂"#  = 0.38; one-

way RM-ANOVA). We did not find evidence for such as context-dependent 

temporal dissociation for motor cortex (F2,20 = 1.97, P = 0.165, 𝜂"#  = 0.16). Yet, the 

direction of the effect was comparable between the two regions (context x ROI 

interaction; F2,18 = 1.25, P = 0.299, 𝜂"#  = 0.12; two-way RM-ANOVA). Collectively, 

these findings indicate that PFC, but not motor cortex, encodes predictive context 

to guide decisions. 

Single-trial associations between HFA amplitude, timing, and behavior were 

investigated using linear regression. This analysis revealed that HFA in PFC and 
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motor cortex predicted RT on a trial-by-trial basis (Fig. 2e/f; PFC; R2 = 0.026, P = 

6.7 x 10-18; motor cortex; R2 = 0.032, P = 1.22 x 10-15; see Supplementary Table 

1 for partial linear regression). In summary, larger HFA peak amplitudes and 

slower peak latencies predicted slower RTs. These results highlight delayed and 

increased HFA responses in states of low predictive context that can be directly 

mapped to behavior on single trials. 
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Fig. 2 | HFA encodes prior evidence and predicts behavior on a trial-by-trial 
basis. a, HFA amplitude (lower right) and peak timing (upper left) both increased 
with behavioral uncertainty. Lower left: Grand average HFA time courses per 
context condition (mean ± SEM). Average HFA gradually increased with less 
predictive context. The single-colored horizontal lines show the temporal extent 
of significant context-dependent processing. Two-colored horizontal lines 
indicate the temporal extent of significant clusters obtained from pairwise 
comparisons. Upper right: Topographical depiction of the neuro-behavioral linear 
regression. All electrodes are color-coded according to the coefficient of 
determination (R2). b, Same as (a), but for motor cortex. Same conventions as in 
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(a). c-d, Single trial examples demonstrating the context-dependent change in 
neural activity. Note the increased ramping dynamics as a function of behavioral 
uncertainty (from left to right). e, Representative single participant example for the 
neuro-behavioral regression in PFC. Left: Vertically stacked single trials sorted by 
RT (black line) and color coded according to the z-score. For visualization, panels 
were smoothed using a 4 trial-wide boxcar function after sorting. Upper right: 
Relationship between RT and HFA strength. Lower Right: Relationship between 
RT and HFA peak timing. ***P < 0.001. f, Same as (e), but for motor cortex. Same 
conventions as in (e). 
 

Ramping dynamics, but not oscillatory signatures dissociate states of 

uncertainty. We directly tested whether different processing modes implement 

predictive context (Fig. 1b) by disentangling oscillatory and ramping dynamics. 

We computed the HFA slope on single trials (Fig. 2c/d). In line with our main 

predictions, we found that ramping dynamics were modulated by predictive 

context. Ramping dynamics in PFC (Fig. 3a; F2,30 = 4.49, P = 0.019, 𝜂"#  = 0.23; 

one-way RM-ANOVA), but not in motor cortex (Fig. 3b; F2,20 = 0.36, P = 0.698, 𝜂"#  

= 0.035), scaled with behavioral uncertainty. Importantly, we did not find support 

for significant ramping in PFC during trials with no uncertainty (t15 = -0.2, P = 

0.419, Cohen’s d = 0.07; one-tailed t-test vs. zero). However, we found significant 

ramping in PFC during trials with moderate (t15 = 3.34, P = 0.002, Cohen’s d = 

1.18) or high uncertainty (t14 = 2.15, P = 0.024, Cohen’s d = 0.79). These results 

support our prediction that ramping dynamics in PFC are modulated by predictive 

context. 

 Prior studies have argued that ramping dynamics reflect the sequential 

activation of neural subpopulations with recurrent excitation25,26. We therefore 

examined whether ramping dynamics directly index neural excitability using three 
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surrogate markers of population-level neural excitability (low-frequency 

desynchronization, spectral exponent, and sample entropy27-30). While high-

frequency synchronization was evident in both PFC (Fig. 3c; F2,30 = 849.3, P = 

0.029; cluster test) and motor cortex (Fig. 3d; F2,20 = 743.3, P = 0.007), low-

frequency desynchronization was only apparent in PFC (Fig. 3c; F2,30 = 922.1, P 

= 0.024). A context x ROI interaction effect in the lower frequencies (2-19 Hz; t10 

= -548.72, P = 0.006) confirmed that the low-frequency desynchronization during 

states of high uncertainty was specific to PFC. The spectral slope has been shown 

to closely track the excitation/inhibition (E/I) balance in neural circuits (flatter 

slopes indicate more excitation29,31). We found that the spectral slope got flatter 

with behavioral uncertainty in PFC (Fig. 3e; F2,30 = 5.97, P = 0.006, 𝜂"#  = 0.28; one-

way RM-ANOVA), but not motor cortex (Fig. 3g; F2,20 = 0.77, P = 0.476, 𝜂"#  = 0.07; 

context x ROI interaction effect; F2,20 = 14.2, P = 0.0002, 𝜂"#  = 0.59; two-way RM-

ANOVA). We computed time-resolved fluctuations in E/I balance using sample 

entropy30. Time-resolved sample entropy was context-dependent in PFC and 

showed the strongest increase in trials with high uncertainty (Fig. 3f; F2,30 = 68.32, 

P = 0.016; cluster-test). In contrast, we found no evidence of time-resolved 

entropy in motor cortex to be context-dependent (Fig. 3h; F2,20 = 4.01, P = 0.291). 

No context x ROI interaction was present (no cluster at p < 0.05). Collectively, this 

set of findings demonstrates that predictive context initiates a shift in ramping 

dynamics and neural excitability during evidence accumulation. We show that 
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these shifts are most pronounced in PFC (Fig. 3a/c/e/f) in comparison to motor 

cortex (Fig. 3b/d/g/h) and gradually scale with behavioral uncertainty.  

 

 
 
Fig. 3 | Ramping dynamics dissociate states of behavioral uncertainty and 
reflect neural excitability. a, Left: Grand average linear fit (mean ± SEM) 
obtained by fitting a linear regression to HFA single trials in PFC. Right: Group-
level results depicting the context-dependent modulation of ramping dynamics. 
b, Same as (a), but for motor cortex. Same conventions as in (a). c, Time-
frequency dynamics in PFC were modulated by predictive context. The black 
outline indicates the extent of the significant cluster across time and frequency 
(left panel). Higher frequencies synchronized whereas lower frequencies 
desynchronized as a function of behavioral uncertainty (right panel). Traces were 
smoothed for visualization purposes using a 5 Hz running average. d, Same as 
(c), but for motor cortex. Same conventions as in (c). Note the absence of 
increasing low-frequency desynchronization in motor cortex as a function of 
behavioral uncertainty. e, The aperiodic spectral slope in PFC gets flatter with 
increasing uncertainty. f, Time-resolved PFC sample entropy. The single-colored 
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horizontal lines show the temporal extent of significant context-dependent 
processing. Two-colored horizontal lines indicate the temporal extent of 
significant clusters obtained from pairwise comparisons. The small inset depicts 
the temporal evolution of context-dependent sample entropy. g, Same as (e), but 
for motor cortex. Same conventions as in (e). No context-dependent modulation 
of the aperiodic slope in motor cortex. h, Same as (f), but for motor cortex. Same 
conventions as in (f). Note the similarly evolving sample entropy across all three 
predictive context conditions.  
 

Next, we investigated how oscillatory dynamics were modulated by predictive 

context during evidence accumulation. We extracted all HFA peaks (Fig. 4a) and 

performed peak-triggered averaging (PTA; Fig. 4b). We found that HFA is nested 

in a theta oscillation (~5 Hz; Fig. 4b). In order to quantify this on a group level and 

assess context-dependent modulations, we spectrally decomposed the PTA and 

separated oscillatory from aperiodic background activity by means of irregular-

resampling auto-spectral analysis (IRASA)32. A cluster-based permutation test 

revealed reduced oscillatory power in PFC during trials with high uncertainty (Fig. 

4c; first cluster; F2,30 = 58.16, P = 0.0009; second cluster; F2,30 = 56.54, P = 0.0009; 

cluster test). Importantly, this context-dependent modulation was not driven by 

changes in the peak frequency of the theta oscillations (Fig. 4c). Pronounced 

theta peaks were present irrespective of the contextual cue. We also inferred the 

instantaneous peak frequency directly on the HFA signal by computing the 

interval between adjacent HFA peaks (Fig. 4d)33. The instantaneous HFA peak 

frequency decreased with uncertainty (Fig. 4e/f; F2,30 = 4.14, P = 0.025, 𝜂"#  = 0.22; 

one-way RM-ANOVA). While theta oscillatory peaks were equally present in motor 

cortex, we found no context-dependent modulation in either the oscillatory power 

of the PTA (Supplementary Fig. 2; F2,20 = 7.61, P = 0.368; cluster test) or the 
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instantaneous frequency (Supplementary Fig. 2; F2,20 = 2.24, P = 0.132, 𝜂"#  = 0.18; 

one-way RM-ANOVA) of the HFA signal. Taken together, we did not find strong 

evidence for a context-dependent modulation of oscillatory power. In contrast to 

the presumed switch from an oscillatory to a continuous processing regime (Fig. 

1b), we found that neural oscillations are ubiquitous across all predictive contexts.  

This set of findings raised the question which role neural oscillations play in 

processes where evidence needs to be converted into an action. Based on the 

well-established role of neural oscillations in mediating inter-areal 

communication6,34, we tested whether oscillations synchronize the prefrontal-

motor network. We computed the imaginary phase-locking value (iPLV) between 

prefrontal-motor electrode pairs to assess network connectivity. We observed 

strong prefrontal-motor synchrony in the theta band (Fig. 4g; 6.4 ± 1.3 Hz; mean 

± SD) with no difference between context conditions (F2,26 = 3.82, P = 0.39; cluster 

test). To assess directional interactions, we computed the phase-slope index 

(PSI)35. We first identified the individual iPLV peak frequency for every prefrontal-

motor electrode pair prior to computation of the PSI. We found that directional 

theta connectivity from PFC to motor cortex was context-dependent (Fig. 4h/i; 

F2,24 = 4.2, P = 0.027, 𝜂"#  = 0.26; one-way RM-ANOVA) and strongest in trials with 

high behavioral uncertainty (t24 = 2.95, P = 0.006, Cohen’s d = 1.16; two-tailed t-

test vs. zero). Collectively, this set of findings demonstrates that ramping 

dynamics in PFC dissociate states of behavioral uncertainty while neural 
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oscillations dynamically coordinate the prefrontal-motor network interaction in a 

context-dependent manner.  

 

 

Fig. 4 | Theta oscillations modulate HFA and mediate context-dependent 
information flow from PFC to motor cortex. a, Example of the peak detection 
on single trial HFA traces (black asterisk). Note the waxing and waning pattern in 
single trials. b, Peak-triggered average (PTA; mean ± SEM; ±0.5s from HFA peak) 
in a representative single participant across PFC electrodes. HFA was nested into 
a ~5 Hz theta oscillation (red line depicts a sine fit to the PTA). c, Grand average 
1/f-corrected power spectrum computed on the PTA time-series using IRASA. 
Shaded grey areas depict the extent of significant context-dependent power 
modulation. Pronounced theta peaks were present in all predictive context 
conditions. d, Example trace depicting the quantification of the inter-peak interval 
(IPI) as a time length between two contiguous peaks. e, Single electrode example 
showing the IPI distribution across conditions. Vertical dashed lines represent the 
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peaks of the distributions. f, Reduced IPI with increasing behavioral uncertainty. 
g, Grand-average (mean ± SEM) prefrontal-motor undirected connectivity. 
Undirected connectivity was not modulated by states of uncertainty, but showed 
pronounced peak connectivity in the theta band. h, Directional prefrontal-motor 
connectivity in the theta band. Directional information flow from PFC to motor 
cortex was enhanced during states of high uncertainty. i, Topographical depiction 
of the directional change in information flow from PFC to motor cortex between 
distinct states of uncertainty.  
 

Population dynamics in PFC encode context and actions in orthogonal 

subspaces. While it is well established that neural oscillations reflect coordinated 

population activity36, the population correlates of ramping dynamics are 

understood to a lesser degree. Having established that ramping dynamics likely 

reflect a mechanism of context-dependent evidence accumulation, we assessed 

how ramping dynamics impact population dynamics. In neural state space, 

population dynamics can be conceptualized as a trajectory across time through 

a N-dimensional space (Methods). We computed the multidimensional distance 

(MDD) between pairwise trajectories. We observed that neural state-space 

trajectories in PFC were context-dependent and diverged prior to participants’ 

choice of behavioral response (button release) (Fig. 5a; t16 = 46.13, P = 0.024; 

cluster test). This effect was driven by strong state transitions in trials with high 

behavioral uncertainty (Fig. 5a; F2,32 = 96.01, P = 0.011). No evidence was found 

for a context-dependent evolution of neural trajectories in motor cortex (Fig. 5b; 

t13 = 13.69, P = 0.116). Instead, the neural state transitions revealed a highly similar 

pattern across all three levels of uncertainty (Fig. 5b; F2,26 = 23.81, P = 0.123). 
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 We extracted the most dominant, population-wide activity pattern using 

principal component analysis (PCA) to examine the latent dynamics underlying 

context-dependent evidence accumulation (Fig. 5c/d/e). We found that the top 

three principal components (PCs) captured 35.76 ± 14.15% of the variance (mean 

± SD) in PFC and 50.6 ± 24.88% of the variance in motor cortex (Fig. 5f; t13 = -

2.2, P = 0.046, Cohen’s d = 0.66; two-tailed t-test). We also observed that the 

variance explained per PC decreased more rapidly in motor cortex as compared 

to PFC (t13 = -2.01, P = 0.065, Cohen’s d = 0.67), suggesting that neural dynamics 

are higher dimensional in the human PFC than motor cortex. In line with this 

finding, population activity in PFC (PC1) revealed context-dependent dynamics 

(Fig. 5c; F2,32 = 1.18 x 103, P = 0.008; cluster test) with larger activation states in 

trials with high behavioral uncertainty. In comparison, we found similar latent 

dynamics across all context conditions in motor cortex (Fig. 5d; F2,26 = 230.85, P 

= 0.079). This indicates that PFC, but not motor cortex, is gradually recruited as 

a function of behavioral uncertainty (Fig. 5e). Next, we tested whether predictive 

context also modulates the inter-areal coupling in the prefrontal-motor network 

on a population level. We therefore quantified the degree of functional 

connectivity between population activity in PFC and motor cortex on a single-trial 

level (Methods). This revealed that the strength of the prefrontal-motor interaction 

scaled with behavioral uncertainty (inset Fig. 5e; F2,26 = 4.69, P = 0.018, 𝜂"#  = 0.27; 

one-way RM-ANOVA) and explained behavior on a single trial basis (R2 = 0.014, 

P = 2.4 x 10-9; linear regression).  
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We specifically assessed which latent dimension reflects contextual 

encoding in human PFC, given that neural dynamics were high-dimensional in 

PFC. To determine the relevant coding dimensions, we employed multivariate 

pattern classifiers (linear discriminant analysis; LDA) in PC space separately for 

both regions. This approach defined the coding dimensions that maximally 

discriminated context and behavioral performance (RT; split into terciles; 

Methods), thus, dissociating dynamics that mediated contextual processing and 

subsequent action execution. We found that human PFC encoded both context 

and action (Fig. 5g; context: t16 = 352.99, P = 5.9 x 10-4, Cohen’s d = 0.83; action: 

t13 = 1445.56, P = 1.9 x 10-4, Cohen’s d = 1.4; cluster tests). Critically, context 

could be decoded prior to action (Fig. 5g; context: 443ms prior to button release; 

action: 234ms prior to button release), suggesting that context was integrated 

before being translated into an action plan. Importantly, we found orthogonal 

coding dimensions for context and action coding (maximal discrimination in 

distinct PCs) in 11/14 participants (P = 0.057, Binomial test). In contrast, we were 

only able to reliably discriminate action, but not context, from motor cortex (Fig. 

5h; context: t13 = 39.32, P = 0.485, Cohen’s d = 0.75; action: t9 = 1118.44, P = 1.9 

x 10-4, Cohen’s d = 1.39), which indicates that the relevant contextual 

computations were completed at the level of the output stage.  
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Fig. 5 | Low-dimensional representation of context and action in orthogonal 
coding dimensions. a, Left: Normalized multidimensional distance (MDD; mean 
± SEM; Methods) between the three types of predictive context in the neural state 
space (PFC). Significant divergence of neural trajectories prior to the behavioral 
response. Shaded grey areas depict the temporal extent of significant clusters. 
Right: Within-condition transitions in activation states. Note the strong vs. weak 
neural state transitions in trials with high vs. no behavioral uncertainty, 
respectively. The single-colored horizontal lines show the temporal extent of a 
significant context-dependent dissociation. Two-colored horizontal lines indicate 
the temporal extent of significant clusters obtained from pairwise comparisons. 
b, Left: Normalized MDD (mean ± SEM) between the three context conditions 
within motor neural state space. Neural trajectories were statistically 
indistinguishable. Right: The dynamics of neural activation state transitions 
revealed a similar profile across all context conditions with strong state changes 
until the participants’ response. c, Left: Context conditions can be dissociated 
based on the first principal component (PC1) of the HFA, reflecting the most 
dominant pattern of population activity. Horizontal lines share the same 
convention as in (a). Population activity gradually increased with uncertainty. The 
inset depicts stacked single trials of the population activity sorted by RT (black 
line). Population activity explained a significant proportion of behavioral variance 
on single trials (linear regression; R2 = 0.02, P = 7.9 x 10-15). Right: Low-
dimensional neural trajectories formed by the top two PCs in PFC. The filled dots 
indicate the start (-0.5s prior to BR) and the crosses indicate the moment of BR. 
Note the joint activation pattern at the start of the trial, but the progressively 
increasing divergence of context-dependent neural trajectories until the 
participants’ response. States of high behavioral uncertainty show a more 
dynamic profile with a more complex pattern through the neural state space. 
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Neural trajectories were smoothed using a 50 ms running average. d, Left: 
Context conditions were not dissociable based on the first principal component 
(PC1) of the HFA, reflecting the most dominant pattern of population activity in 
motor cortex. Note the highly similar activation profiles across all three predictive 
context conditions (as compared to the context-dependent dynamics in PFC). 
The inset depicts stacked single trials of the population activity sorted by RT 
(black line). Population activity still captured a significant proportion of behavioral 
variance on single trials (linear regression; R2 = 0.01, P = 1.9 x 10-7). Right: Low-
dimensional neural trajectories formed by the top two PCs in motor cortex. Same 
convention as in right panel of (b). All three neural trajectories follow a similar 
curved path through state space. e, Projection of the population activity in PFC 
and motor cortex into a common two-dimensional space. Each point reflects the 
joint activation state of population activity in the prefrontal-motor network. Note 
that the main discrimination of the three types of predictive context occurs in PFC, 
suggesting a gradual recruitment of PFC activity with increasing uncertainty. Axes 
are equally scaled for comparison. Filled dots and crosses, same conventions as 
in (b) and (d). The inset displays the z-transformed (Methods) power correlation 
coefficient between prefrontal-motor population activity per context condition. 
Functional connectivity between the population activity in the prefrontal-motor 
network increased with uncertainty. f, Cumulative percent variance (%EV; mean 
± SEM) explained by the top five PCs in PFC (red) and motor cortex (blue). The 
cumulative %EV is significantly lower in PFC. Similarly, the variance explained per 
PC decayed more rapidly in motor cortex (inset), highlighting increased 
dimensionality in PFC. g, Left: Grand average decoding accuracy (mean ± SEM) 
for context and action within PFC (Methods). Horizontal lines indicate the extent 
of significant temporal clusters (color coded for the respective feature). Maximal 
context classification emerged prior to action classification. Right: Joint 
representation of the neural trajectories formed the two coding dimensions 
(context and action; Methods). Each point represents the joint activation state at 
time t formed by the two coding dimensions. Note that the neural trajectory does 
not progress along the context dimension in trials with no uncertainty, suggesting 
a direct transformation of predictive context into an action plan at trial start. h, 
Left: Grand average decoding accuracy (mean ± SEM) for context and action 
within motor cortex. Only action, but not context, could be decoded in motor 
cortex. Same conventions as in (g). Right: Joint representation of the neural 
trajectories formed the two coding dimensions. Note that all neural trajectories 
progress along the action, but not the context dimension. Axes in left panels of 
(g) and (h) are equally scaled for comparison (y-axis = four times x-axis).  

 

Collectively, we have shown that the activation state of population 

dynamics in the human PFC gradually scales as a function of behavioral 

uncertainty. In a final analysis step, we characterized how population dynamics 
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interact with neural oscillations to support goal-directed behavior. We therefore 

extracted the dimension with the strongest oscillatory theta power in every 

participant (Fig. 6a/b). Next, we employed LDA classifiers to assess the coding 

features of the theta component. In both PFC and motor cortex, we found that 

the dimension with the strongest theta power significantly coded action (Fig. 6c; 

PFC; t13 = 740.72, P = 0.0004, Cohen’s d = 0.82; motor cortex; t9 = 816.03, P = 

0.002, Cohen’s d = 1.32; cluster tests), but not context (PFC and motor cortex; 

no cluster at p < 0.05). In support of this observation, we found no evidence that 

the theta dimension and the previously determined action dimensions are 

embedded in distinct subspaces (P = 0.18, Binomial test). Remarkably, the 

dimension with the strongest theta power most likely matched PC1 (PFC: 11/17 

participants; motor cortex: 11/14 participants). Finally, we observed that neural 

dynamics embedded in the dimensions with strongest theta power are 

functionally coupled within the prefrontal-motor network (Fig. 6d; P = 0.003, 

Cohen’s d = 0.69; Wilcoxon rank sum test). However, coupling strength was not 

modulated by predictive context (F2,26 = 1.36, P = 0.273, 𝜂"#  = 0.09; one-way RM-

ANOVA), indicating a functional role of theta oscillations to mediate the hand-off 

of action plans from prefrontal to motor cortex. Taken together, these findings 

reveal that structured population activity in PFC encodes and integrates predictive 

context into a higher-level action plan that is executed at the level of motor cortex. 

Our results demonstrate that the transformation from PFC-dependent context 
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integration to goal-directed action execution in motor cortex is mediated by 

directed theta-band connectivity (cf. Fig. 4g-i). 

 

Fig. 6 | Theta oscillations temporally coordinate action-encoding subspaces 
in the prefrontal-motor network. a, The peak-triggered average (PTA) across 
participants obtained from the PC with the strongest theta power in PFC (upper 
panel) and motor cortex (lower panel). The black lines depict a sine fit to the PTAs. 
b, The instantaneous frequency of the identified theta PC as computed by the 
inter-peak-interval (upper panel shows the distribution for PFC, the lower panel 
for motor cortex). Both PFC and motor cortex showed strong oscillatory peaks in 
the theta-frequency band. c, Grand average decoding accuracy (mean ± SEM) for 
context and action within the identified theta PC in PFC (upper panel) and motor 
cortex (lower panel). The theta dimension significantly coded action, but not 
context in both PFC and motor cortex. d, Upper panel: Histogram depicting z-
normalized power correlation coefficients between the theta PCs in PFC and 
motor cortex. Lower panel: Significant coupling between the theta PCs in PFC 
and motor cortex. Single dots represent the z-normalized (permutation) power 
correlation coefficients. 

 

Discussion 

Context-guided decision-making is a hallmark of flexible human behavior. 

To date, it remains unknown how contextual priors are encoded to guide decision 

processes in humans. Previous work in NHP indicated that (pre-)motor cortex 
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might mediate context-dependent decision-making10,12-15. While earlier theories, 

such as the active sensing framework4,5, emphasized that neural coding is mainly 

reflected in local activity profiles (i.e. neural firing or oscillatory (de-

)synchronization), novel population-based theories now suggest that context-

dependent processing is distributed across large-scale neural populations10,12.  

Thus far, the population doctrine had its greatest impact on understanding 

movement-related computations in the motor system37-40, but it might also provide 

a powerful framework to understand higher cognitive processes41. Using a 

predictive motor task, we demonstrate that (I) behavioral uncertainty is reflected 

in neural indices of uncertainty as quantified by uni- (Fig. 2/3) and multivariate 

analyses (Fig. 5). In line with the active sensing framework, we show that (II) 

behavioral uncertainty introduces a shift from an oscillatory to a continuous 

ramping processing mode (Fig. 3/4). Using population-based analysis strategies, 

we demonstrate that (III) oscillatory and ramping dynamics reflect dissociable 

population signatures that support distinct aspects of encoding, transmission and 

execution of context-dependent action plans (Fig. 5). Specifically, we show that 

(IV) prefrontal population activity encodes predictive context and action plans in 

serially unfolding orthogonal subspaces, while we observed motor cortex to 

encode action plans only (Fig. 5). Furthermore, our results reveal that (V) theta 

synchrony temporally coordinates action-encoding population subspaces, 

thereby mediating the hand-off of action plans from prefrontal to motor cortex 

(Fig. 6). Collectively, our results demonstrate how two hallmarks of large-scale 
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population activity, namely continuous population dynamics and oscillatory 

synchrony, operate in concert to guide context-dependent human behavior.  

 

Oscillatory and ramping dynamics reflect distinct population signatures of 

context-dependent behavior 

The influential active sensing framework postulates that the brain switches 

from an energy-efficient oscillatory processing mode during states of high 

predictability to an energy-consuming continuous ramping processing mode in 

states of low predictability. Evidence for this theory has mainly been obtained in 

NHP auditory cortex7,8, but it had been argued that similar principles apply to 

higher-order cortical areas5. In line with this framework, we found that the 

transition from high to low prior evidence increased ramping dynamics in the 

human PFC, but not in motor cortex. Contrary to the theory, we did not find 

evidence for a modulation of local oscillatory dynamics as a function of 

predictability. In addition, a related line of inquiry argued that frontal theta activity 

constitutes a mechanism of cognitive control, especially in states of high 

uncertainty22,42. Using direct brain recordings in humans, we found that directional 

theta synchrony is inversely related to predictability. We found stronger directional 

theta synchrony from prefrontal to motor cortex in states of high uncertainty, 

indicating a flexible recruitment and network engagement when limited predictive 

context is available. Using population-based decoding, we found that theta 

oscillations were not associated with the encoding of predictions per se, but that 

theta activity was confined to the action subspaces of the population activity. This 
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finding is in line with the communication-trough-coherence hypothesis6. 

Moreover, it indicates that the PFC encodes task-relevant context, devises the 

appropriate motor plan, and hands off the action plan to the motor cortex for 

execution through theta synchrony. Collectively, these results demonstrate that 

several hallmarks of predictive processing that have primarily been captured 

using univariate metrics in fact reflect coordinated and functionally specialized, 

population-wide activity patterns. 

Translating findings that were obtained in NHP into human research is 

hampered by the fact that signals from different recording modalities are typically 

being compared (e.g. single unit vs. EEG activity). Here, we analyzed HFA in 

humans as a proxy of multiunit activity firing17-19. HFA offers the advantage that it 

already constitutes an aggregate metric that summarizes the underlying 

population activity. Recent work demonstrated that HFA contains more 

behaviorally relevant information than single-/multi-unit activity or EEG activity, 

and therefore constitutes a highly suitable level of abstraction to study population-

wide activity43. Furthermore, theta oscillations temporally structure HFA activity 

through phase-amplitude cross-frequency coupling, and thus resemble previous 

findings that neural firing is controlled by network oscillations20,44.   

 

The population doctrine and cognitive processing 

The population doctrine is an emerging concept highlighting that 

population activity, and not the single unit per se, reflects the essential unit of 

computation in the brain16,45. Population activity has mainly been studied in NHP 
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(pre-)motor cortex where distinct movement trajectories are represented by 

unique neural trajectories of the population37,40. While previous evidence in NHP 

indicated that (pre-)motor cortex performs context-dependent computations13-

15,46, we found that neural trajectories in prefrontal, but not motor cortex, 

dissociated the current predictive context. Critically, we observed that large-

magnitude neural states within PFC indexed behavioral uncertainty. We found 

that PFC settled into a low-energy state (smaller magnitude, only covering a 

limited subspace of the entire state space) during states of high predictability. 

Critically, these patterns could only be observed when using multivariate analysis 

strategies (Fig. 5; c.f. Fig 2 for the univariate approach) that take coordinated 

variability across different recording sites into account. 

 Previous work in NHP demonstrated that motor cortex exhibits a low-

dimensional structure45,47. Here, we replicate this finding in humans, but in 

contrast to NHPs, we found no evidence that the human motor cortex encodes 

predictive context. We observed that motor cortex relies on input from PFC, which 

encodes both context as well as the current action plan. Importantly, prefrontal 

population activity is high-dimensional in nature, where distinct operations 

(context encoding and action planning) are encoded in orthogonal subspaces. We 

argue that the high-dimensional prefrontal functional architecture constitutes a 

substrate for flexible goal-directed behavior and that simultaneous processing in 

separate coding dimensions maximizes information-coding capacity of the 

underlying population.     
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Conclusions 

In the present study, we demonstrate that high-dimensional prefrontal 

population dynamics encode predictive context and action plans in orthogonal 

subspaces. We demonstrate that a lack of prior evidence comes at a behavioral 

(increased response time/error rates) as well as a neural (large magnitude neural 

states) cost. Moreover, our results reveal a functional dissociation of population 

trajectories and oscillatory synchrony, and indicate a division of labor between 

prefrontal and motor cortex. Specifically, we found that prefrontal population 

trajectories encode behaviorally relevant variables, while oscillatory synchrony 

mediates the prefrontal-motor transmission of action plans. We observed low-

dimensional neural dynamics in human motor cortex, which did not encode 

predictive context, but relied on theta-mediated input from higher-order prefrontal 

areas. We studied context-dependent motor behavior using univariate as well as 

multivariate analyses and thereby demonstrated that ramping and oscillatory 

signatures of predictive processing in fact constitute dissociable signatures of 

coordinated population activity underlying flexible human behavior. These 

findings pave the way for future studies to understand human goal-directed 

behavior and provide the first demonstration that population dynamics and 

oscillatory synchrony interact in concert to guide flexible human behavior. 
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Online Methods 
Patients and implantation procedure. We obtained intracranial recordings from 

a total of 19 pharmaco-resistant epilepsy patients (33.73 years ± 12.52, mean ± 

SD; 7 females) who underwent presurgical monitoring and were implanted with 

intracranial depth electrodes (DIXI Medical, France). Data from one patient were 

excluded from neural analyses because a low-pass filter was applied at 50 Hz 

during data export from the clinical system, thus, precluding analyses focusing 

on HFA. All patients were recruited from the Department of Neurosurgery, Oslo 

University Hospital. Electrode implantation site was solely determined by clinical 

considerations and all patients provided written informed consent to participate 

in the study. All procedures were approved by the Regional Committees for 

Medical and Health Research Ethics, Region North Norway (#2015/175) and the 

Data Protection Officer at the Oslo University Hospital as well as the University 

Medical Center Tuebingen (049/2020BO2) and conducted in accordance with the 

Declaration of Helsinki.  

 

iEEG data acquisition. Intracranial EEG data were acquired at the Oslo University 

Hospital at a sampling frequency of 512 Hz using the NicoletOne (Nicolet, Natus 

Neurology Inc., USA) or at a sampling frequency of 16 KHz using the ATLAS 

(Neuralynx) recording system.  

 

CT and MRI data acquisition. We obtained anonymized postoperative CT scans 

and pre-surgical MRI scans, which were routinely acquired during clinical care.  
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Electrode localization. Two independent neurologists visually determined all 

electrode positions based on individual scans in native space. For further 

visualization, we reconstructed the electrode positions as outlined recently48. In 

brief, the pre-implant MRI and the post-implant CT were transformed into 

Talairach space. Then we segmented the MRI using Freesurfer 5.3.049 and co-

registered the T1 to the CT. 3D electrode coordinates were determined using the 

Fieldtrip toolbox50 on the CT scan. Then we warped the aligned electrodes onto a 

template brain in MNI space for group-level analyses.  

 

Task. Participants performed a predictive motor task where they had to 

continuously track a moving target and respond as soon as the target hits or 

withhold their response if the target stops prior a predefined spatial position using 

their dominant hand (Fig 1a). Prior to the main experiment, participants were 

familiarized with the task by means of a short practice session. Each trial started 

with a baseline period of 500ms followed by a cue (presented for 800ms centered) 

that informed participants about the likelihood that the moving target would stop 

prior to the lower limit (hit lower limit; HLL; Fig. 1a). Thus, the predictive cue could 

be directly translated into the probability that either of two possible action 

scenarios will occur: button release (BR) vs. withhold response (Bernoulli 

distribution). Participants were instructed to either release the button as soon as 

the target hits (“Go” trials) or withhold their response if the target stops prior to 

the HLL (“Stop” trials). We parametrically modulated the likelihood of stopping. A 

green circle indicated a 0% likelihood, an orange circle indicated a 25% likelihood 
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and a red circle indicated a 75% likelihood that the moving target would stop prior 

to the HLL. Hence, participants were able to fully predict the outcome on trials 

with a 0% likelihood and already prepare the motor response. However, in trials 

with a 25% or 75% likelihood of stopping, they continuously had to accumulate 

evidence in order to decide whether to release the button or withhold the 

response. Upon receiving the predictive cue, participants were able to start the 

trial in a self-paced manner by pressing the space bar on the keyboard. By 

pressing the space bar, the target would start moving upwards and reach the HLL 

after 560 – 580ms. The upper boundary was reached after 740 – 760ms, thus, 

leaving 160ms between the HLL and the upper boundary. If participants released 

the button within this 160ms interval, the trial was considered as correct. Trials in 

which the button was released either before or after this interval were considered 

as incorrect. Feedback on trial performance was provided upon each trial for 

1000ms. 

 

Behavioral data analysis. We quantified reaction time (RT) as the time passed 

between the moving target reaching the HLL and the participants’ response. We 

considered both correct and incorrect trials in our analyses on RT. Accuracy was 

quantified as the average number of correct responses relative to the number of 

trials. We used the interquartile range (IQR) as a measure for behavioral trial-by-

trial variability51. We also considered the signal detection theoretic measures d’ 

(d-prime) and c (criterion)52. While d’ quantifies the distance between the signal 

(e.g. go trials) and noise distribution (e.g. stop trials), c reflects a participant’s 
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propensity to choose yes or no (decision criterion). Due to the nature of the task 

(absence of noise distribution in the 0% condition), we were only able to quantify 

d’ and c for conditions with a 25% or 75% likelihood of stopping. 

 

Intracranial EEG analysis 

Preprocessing and artifact rejection. Intracranial EEG data were demeaned, 

linearly de-trended, locally re-referenced (bipolar derivations to the next adjacent 

lateral contact) and if necessary down-sampled to 512 Hz. To remove line noise, 

data were notch-filtered at 50 Hz and all harmonics. Subsequently, a neurologist 

visually inspected the raw data for epileptic activity. Channels or epochs with 

interictal epileptic discharges (IEDs) and other artifacts were removed.  

Trial definition. We extracted 10 seconds long, partially overlapping trials to 

prevent edge artifacts in subsequent filtering. We excluded all stop trials and 

focused subsequent analyses on go trials. Trials were event-locked to the HLL 

unless otherwise stated. 

Definition of regions of interest. The pre-selection of electrodes was guided by 

our question on how the human prefrontal-motor network is engaged during 

context-dependent evidence accumulation. Electrodes were classified into 

discrete PFC and motor ROIs based on surface anatomy using the Anatomical 

Automatic Labeling atlas (ROI_MNI_V4.nii)53. Electrodes in the following areas 

were considered to be in the PFC ROI (equal for both hemispheres): superior 

frontal gyrus (orbital, medial and dorsolateral part), medial frontal gyrus, inferior 
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frontal gyrus (opercular, triangular and orbital part). Electrodes in the following 

areas were considered to be motor electrodes (equal for both hemispheres): 

precentral gyrus, supplementary motor area, paracentral lobule. In total, 17 

patients were implanted with clean, artifact-free electrodes in PFC, 14 patients in 

motor cortex and 14 patients were implanted with clean, artifact-free electrodes 

in both ROIs.  

HFA extraction. The extraction of the high-frequency activity time series was 

conducted in a three-step process. In the first step, we bandpass-filtered the raw 

data epochs (10 seconds) between 70-150 Hz into eight, non-overlapping 10 Hz 

wide bins. We then applied the Hilbert transform to obtain the instantaneous 

amplitude of the filtered time series. In a last step, we normalized the high-gamma 

traces using a bootstrapped baseline distribution54,55. This involved randomly 

resampling baseline values (from -0.2 to -0.01s relative to cue onset) 1000 times 

with replacement and normalizing single high-gamma traces by subtracting the 

mean and dividing by the standard deviation of the bootstrap distribution. The 

high-gamma traces were finally averaged across the eight bins. This procedure 

mitigates the effect of the 1/f power drop-off and enables comparable estimates 

across different conditions by minimizing the influence of different baseline 

distributions onto task-related activity.   

Context-dependent neural information. We identified context-encoding 

electrodes using a well-established information theoretical approach that has 

been used in both human and non-human primate studies22-24,56. We employed a 
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one-way analysis of variance (ANOVA) to quantify the percentage of HFA variance 

that could be explained by our behavioral regressor “predictive context”. The 

amount of percent explained variance was quantified using ω2 as 

𝜔#	 = ''()*+)),-./01234(67	8	9':)
''*0*<=>	?@A

	 
	
where 𝑆𝑆CDCEF  reflects the total sum of squares across n trials, 

𝑆𝑆CDCEF = 	G(𝑥I − �̅�)#
L

IMN

	 

𝑆𝑆OPCQPPL4RSDTUV the sum of squares between G groups (e.g. factor levels),  

𝑆𝑆OPCQPPL4RSDTUV = G 𝑛RSDTU(�̅�RSDTU − �̅�)#
X

RSDTU

 

𝑀𝑆𝐸 the mean square error, 

𝑀𝑆𝐸 =	G(𝑥I − �̅�RSDTU)#
L

IMN

 

and 𝑑𝑓 the degrees of freedom specified as 𝑑𝑓 = 𝐺 − 1. In order to obtain a time 

series of context-dependent neural information, we estimated ω2 using a sliding 

window of 50ms that was shifted in steps of 2ms. Electrodes that exhibited a 

significant main effect of predictive context for at least 10% of the trial length were 

defined as context-encoding electrodes. Note that this approach was blind with 

respect to both direction and timing of the effect. Finally, to minimize inter-

individual variance and maximize the sensitivity to identify a temporally consistent 

pattern that accounts for most of the variance explained by predictive context 

within the context-encoding electrodes across participants, we used principal 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.17.473118doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473118


component analysis (PCA)24,57. PCA was applied to the F value time series 

concatenated across participants (channel x time matrix). In order to define PCs 

that explain a significant proportion of variance in the data, we used non-

parametric permutation testing to determine the proportion of variance that can 

be explained by chance. We randomly shuffled the F value time series 1000 times 

to test the null hypothesis that there is no temporal structure present in the data. 

Electrodes that exhibited a strong weight (75th percentile) on any of the high 

variance-explaining PCs as determined by their coefficients were defined as 

context-encoding. This analytical approach classified electrodes to be context-

encoding for 16 patients in PFC (time-locked to HLL; 17 patients showed context-

encoding electrodes when time-locked to the behavioral response) and for 11 

patients in motor cortex.  

HFA peak analyses. HFA peak amplitude and timing were estimated on a trial-by-

trial basis and used as a proxy of strength and timing of the neural responses, 

respectively. We included both trials in which participants released the button 

within the lower and upper limit (correct trials) and trials in which they released 

the button only after the upper limit (incorrect trials). Amplitude and latencies 

below the 2.5th or above the 97.5th percentile per channel were considered as 

outliers and removed from further statistical analysis.  

HFA single trial regression to behavior. Peak amplitude and latency were 

computed as described above (see “HFA peak analyses”) and regressed against 

behavior (RT) via linear regression. We quantified the neuro-behavioral 
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relationship using both full (peak amplitude + latency ~ behavior) and partial linear 

models (peak amplitude/latency ~ behavior).  

Estimation of ramping dynamics. To estimate ramping dynamics on a trial-by-trial 

basis, we quantified the slope of single trial HFA traces using robust linear 

regression. The slope was estimated from trial start to the HLL. 

Time-frequency decomposition. We decomposed the raw data into the time-

frequency domain using the multitaper method based on discrete prolate 

spheroidal Slepian sequences in 33 logarithmically spaced bins between 0.5 and 

128 Hz. Temporal and spectral smoothing was adjusted to approximately match 

a 200ms time window and ¼ octave frequency smoothing. To avoid edge artifacts 

and allow for resolving low frequency activity, decomposition was performed from 

±2 sec. surrounding the HLL. As for the HFA analysis (see “HFA extraction”), we 

normalized the time-frequency data per frequency bin using a bootstrapped 

baseline distribution (from -0.4 to -0.1s relative to cue onset). Power values were 

z-transformed according to the means and standard deviations of the 

bootstrapped distribution. This procedure accounts for the 1/f power drop-off as 

a function of frequency and minimizes any bias due to baseline differences.  

Spectral slope estimation. Spectral estimates were obtained by means of a fast 

Fourier transform (FFT) for linearly spaced frequencies between 1 and 45 Hz after 

applying a Hanning window and zero padding the data to obtain a fine-grained 

frequency resolution of 0.25 Hz to improve subsequent background activity 

estimation. In order to get an estimate of the aperiodic background activity of the 
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power spectrum, we utilized irregular-resampling auto-spectral analysis 

(IRASA)32. IRASA takes advantage of the fact that resampling the original time 

series by a non-integer resampling factor will leave the 1/f background activity 

unchanged while systematically shifting the peak frequency at the scale of 

resampling. Thereby, IRASA disentangles the spectrum into oscillatory (periodic) 

and 1/f (aperiodic) components. We used the original resampling parameters 1.1 

to 1.9 in steps of 0.0532 that have also been used in a variety of previous 

studies31,54,58. In a next step, we quantified the spectral slope by means of applying 

a linear fit to the aperiodic power spectrum in log-log space between 30 to 45 Hz 

as suggested previously29.  

Time-resolved sample entropy. Sample entropy reflects an information-theoretic 

measure and captures the complexity of natural time series data59. Sample 

entropy is defined as the negative natural logarithm of the conditional probability 

that two sequences similar for 𝑚 data points will still match when another data 

sample (𝑚 + 1) is added to the sequence:  

𝑆𝑎𝑚𝑝𝐸𝑁(𝑚, 𝑟, 𝑁) = 	−log	 i
𝑝jkN(𝑟)
𝑝j(𝑟) l 

where 𝑚 defines the sequence length, 𝑟 the similarity criterion and defines the 

tolerance with which two points are considered similar, and 𝑁 the length of the 

time series to be considered for analysis (𝑚 = 2 and 𝑟 = 0.259,60). In order to obtain 

a time series of sample entropy, we estimated sample entropy using a sliding 

window of 100ms that was shifted in steps of 20ms. Resulting sample entropy 
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time series were smoothed using a 5ms boxcar window to attenuate trial-by-trial 

variability.  

HFA peak-triggered average. We conducted a peak-triggered average analysis in 

order to test 1) whether the HFA is nested into ongoing oscillatory activity, and 2) 

whether the strength of oscillatory activity is context-dependent. This approach 

is conceptually similar to spike-triggered averaging used in single unit 

electrophysiology61. Therefore, we detected peaks in the single-trial HFA traces 

and re-aligned the raw unfiltered data to the detected peak events (segmented 

±0.5s surrounding the peaks). To assess the spectral content of the underlying 

raw traces, we obtained spectral estimates by means of a FFT for linearly spaced 

frequencies between 1 and 30 Hz after applying a Hanning window and zero 

padding the data to obtain a frequency resolution of 0.25 Hz. We used IRASA 

(same parameters and settings as for “spectral slope estimation”) to discount the 

aperiodic component. Oscillatory residuals were extracted by subtracting the 

aperiodic spectral component from the original power spectrum. 

HFA inter-peak-interval. The speed of the HFA traces was quantified by means of 

computing the interval between two adjacent peaks. We estimated the inter-peak-

interval (IPI) on single trials and transformed the distance into frequencies 

(sampling frequency divided by the time interval between two adjacent peaks). 

The instantaneous frequency of the HFA amplitude modulation was inferred by 

the mean of the distribution.  
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Connectivity estimates. We calculated phase-based connectivity metrics 

between PFC and motor cortex electrodes to infer inter-areal interactions. We first 

established the presence of undirected phase-based connectivity between PFC 

and motor cortex by means of the imaginary phase-locking value (iPLV). The iPLV 

was computed for center frequencies between 3 to 32 Hz (± center frequency/4), 

logarithmically spaced in steps of 21/8 after band-pass filtering and applying the 

Hilbert transform62,63. Only considering the imaginary part of the phase-locking 

value removes zero-phase lag contributions64. The iPLV was computed as: 

𝑖𝑃𝐿𝑉7 = q𝑖𝑚𝑎𝑔s𝑛4NG𝑒I(uv*4uw*)
L

CMN

xq 

where 𝑛  is the number of time points and 𝜙  reflects the phase angles from 

electrode 𝑥 and 𝑦 at time 𝑡 and frequency 𝑓. We first identified the electrode in 

motor cortex that explained most behavioral variance using linear regression 

(regressor = HFA timing; response variable = RT). This substantially reduced the 

degrees of freedom in terms of prefrontal-motor electrode combinations. We then 

quantified the iPLV between all PFC electrodes and the motor cortex electrode 

explaining most of the behavioral variance. We have chosen to use behavioral 

variance explaining electrodes in motor cortex, and not in PFC as motor cortex 

reflects the final cortical output station to direct behavior65. To normalize 

undirected connectivity, we obtained a permutation distribution by randomly 

shuffling trial vectors and re-computing the iPLV for every random partition. We 

further randomly resampled the permutation values 1000 times to approximate a 
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normal distribution. The resulting mean and standard deviations of the 

bootstrapped permutation distribution were then used to z-normalize the iPLVs. 

Having established the presence of inter-areal connectivity, we used the phase-

slope-index (PSI)35 to infer directional connectivity between PFC and motor 

cortex. We focused our PSI analysis on the low-frequency range given that we 

observed true oscillatory activity within the low-frequency theta band (Fig. 4c). 

We employed an individualized measure of the PSI using participant-specific peak 

iPLV frequencies between 2-13 Hz (computed separately per prefrontal-motor 

electrode pair and using the grand average across all trials) in order to maximize 

sensitivity and prevent spurious inference on directional prefrontal-motor 

connectivity55. Channel-pairs without a distinct iPLV peak between 2-13 Hz were 

discarded from the analysis. We computed the PSI between prefrontal-motor 

electrode pairs on segmented data (zero-padded by 2s on every side) using the 

corresponding peak iPLV frequency (±3 Hz frequency boundary; linearly spaced). 

PSI values were z-normalized by means of a permutation distribution that was 

created by randomly shuffling the frequencies in one vector and recomputing the 

PSI (1000 iterations)55. Note that we used both context-encoding and non-

encoding electrodes for undirected and directed connectivity estimates to sample 

the entire network population.  

 

Population dynamics 

Multidimensional distance. The activation state of the full neural population at time 

t can be represented as a point in a n-dimensional coordinate system where n 
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reflects the number of electrodes (state space). The neural dynamics between the 

activation state at time t and time t+tn can then be represented as a trajectory 

through this n-dimensional state space10,16,66. We quantified the population 

dynamics by means of the HFA as a proxy for local population activity17-19. To 

investigate whether neural trajectories in the state space are context-dependent, 

we computed the Euclidean distance between pairwise neural trajectories (e.g. 

0% and 75% likelihood of stopping) and then summed the pairwise distances. 

We used a sliding window of 50ms that was shifted by 20ms in time to obtain a 

time series of multidimensional distances (Fig. 5 a/b). We smoothed the time 

series using a 25ms boxcar window to attenuate trial-by-trial variability.  

Euclidean state transitions. We also quantified transitions within neural 

trajectories separately per context condition (Fig. 5 a/b). Thus, we computed the 

Euclidean distance on single trial trajectories between two adjacent 50ms time 

windows that were overlapping for 20ms.  

Dimensionality reduction (PCA). We used principal component analysis (PCA) to 

identify linearly uncorrelated population activity patterns and construct a low-

dimensional manifold that is embedded in the neural state space spanned by the 

recorded depth electrodes. We performed PCA on a two-dimensional data matrix 

(channel x time, trial). The resulting matrix (component x time, trial) was then 

reshaped into a three-dimensional matrix (trial x component x time) which allowed 

us to perform single trial analysis in PC space.  
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Identification of coding dimensions. While the top PCs reflect a set of orthogonal 

dimensions that are optimized to capture maximum variance, they might not 

always reflect the computationally-relevant subspaces. We used linear 

discriminant analysis (LDA) to identify the dimensions that carry maximal 

information about neural dynamics linked to context-integration and movement-

execution. We therefore trained two linear classifiers on the PC data. The first 

classifier was trained to discriminate the type of predictive context, and the 

second one was trained to discriminate behavioral performance (RT; split into 

terciles; referred to as action). This procedure allowed us to dissociate neural 

dynamics linked to the integration of predictive context from subsequent 

dynamics linked to action. We split the data into training and testing sets using 

tenfold cross-validation. Because results obtained from cross-validation are 

stochastic by nature (due to the random assignment of trials into folds), we 

repeated the analysis five times and then averaged across the repetitions. We 

applied the LDAs to all PCs in order to identify the dimension that carries most 

information about our latent variable of interest (note that we only considered PCs 

that cumulatively explained 99% of the variance and discarded the remaining PCs 

from the decoding analysis). Decoding traces were then smoothed via application 

of a 25ms boxcar window. We applied a threshold at chance level to the resulting 

decoding time series (~33% for both context and action) and set values below 

chance level to zero. Next, we identified clusters in the decoding time series 

(adjacent non-zero values) and summed the classification accuracies within each 

cluster. We defined the PC with the maximum decoding accuracy (largest cluster) 
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as the dimension coding for the latent variable (context or action; referred to as 

action or context coding dimension). We further created a permutation distribution 

of classification accuracies by randomly shuffling the trial labels and re-computing 

the largest cluster from the resulting decoding time series 50 times. We then 

contrasted the classification accuracies (cluster values) of the identified coding 

dimension with the generated permutation distribution. We only considered the 

coding dimension to be valid if the true cluster exceeded the 95th percentile of the 

permutation distribution. Importantly, we further constrained the dimensions 

coding for context and action to be orthogonal (distinct PCs). This, however, was 

empirically the case without adding constraints in 11/14 participants in PFC (P = 

0.057; two-tailed Binomial test) and 10/10 participants in motor cortex (P = 0.002).  

Determination of oscillatory components in PC space. We obtained spectral 

estimates for all PCs using IRASA (see “Spectral slope estimation”) for linearly 

spaced frequencies between 2 and 13 Hz. We then identified the PC with the 

strongest power in this frequency range.  

PC-based functional connectivity. We determined the functional connectivity 

between PCs using power correlations. We computed the correlation coefficient 

between PC single-trials in PFC and motor cortex. To compare the power 

correlation across conditions, we normalized the correlation coefficients based 

on a permutation distribution. We generated the permutation distribution by a 

random block swapping procedure. This procedure was repeated 1000 times on 

a trial-by-trial basis to obtain a permutation distribution. Correlation coefficients 
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were then z-transformed using the mean and standard deviation of the 

permutation distribution.      

Statistical analysis.  

Analysis of variance (ANOVA). Data were aggregated into ROIs (averaged across 

electrodes) for statistical testing. We performed a one-way repeated-measures 

ANOVA using predictive context as a within-subject factor to analyze behavior 

(Fig. 1c), HFA peak latency/amplitude (Fig. 2a/b), HFA ramping activity (Fig. 

3a/b), aperiodic slope (Fig. 3e/g), inter-peak interval (Fig. 4f) and phase-slope 

index (Fig. 4h). Since not every participant was implanted with electrodes in both 

PFC and motor cortex, we computed the ANOVA separately for both cortices to 

estimate the main effect of context onto our latent variable. Significant ANOVA 

effects were followed by post-hoc testing (two-tailed and corrected for multiple 

comparisons using the Benjamini-Hochberg procedure67). We computed the 

interaction effect between context x region of interest (PFC, motor cortex) using 

only a subset of participants that were implanted with electrodes in both regions 

(N = 11). We considered participant data where z-scores exceeded 3rd standard 

deviation as outliers.   

Linear mixed effect models. We confirmed the ANOVA results using linear mixed 

effect models. Participants were treated as random effects while context and ROI 

were treated as fixed effects in our model. This approach has been used in 

previous studies involving human intracranial EEG recordings55,68. Model testing 

was obtained by likelihood ratio tests to compare the models with and without an 
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interaction term (context x ROI). Linear mixed effect models largely confirmed the 

ANOVA results and are reported in Supplementary Table 2.      

Non-parametric cluster-based-permutation analysis. We used non-parametric 

cluster-based permutation testing69 (as implemented in Fieldtrip50) to analyze data 

in the time (Fig. 1d; 2a/b; 3f/h; 5a-d, g/h), frequency (Fig. 4c/g) or time-frequency 

(Fig. 3c/d) domain (Monte Carlo method; 10000 iterations; maxsum criterion; two-

tailed). Clusters were formed by thresholding a dependent t-test at a critical alpha 

of 0.05. We generated a permutation distribution by randomly shuffling trial labels 

and recomputing the cluster statistic. The p-value was then obtained by 

contrasting the true cluster statistic against the permutation distribution. Clusters 

were considered to be significant at P < 0.05. We also computed interaction 

effects (context x ROI) using cluster-based permutation testing. We therefore 

contrasted the difference between two context conditions (75% and 0% 

likelihood of stop) obtained per ROI using dependent t-tests (only performed on 

a subset of participants that were implanted with electrodes in both regions). 

Clusters were considered significant at P < 0.05. Note that the cluster-level test 

statistic reported throughout the text refers to the sum of the F- or t-values in the 

cluster. 

Bootstrapping. To control for trial differences across conditions, we used a 

bootstrap procedure. We randomly resampled as many trials from the two context 

conditions (0% and 25% likelihood) as there were trials in the 75% condition. This 

procedure was repeated 500 times, if not stated otherwise. The bootstrapped 
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mean was then considered the final value for the conditions with a higher-trial 

count70.  
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Additional information 
 
 

 

Supplementary Figure 1 | Behavioral uncertainty shifts participant’s 
sensitivity, but not criterion. Predictive context significantly shifted participant’s 
sensitivity (d-prime; left panel) and criterion (right panel) indicating a lower 
discriminability between trial types and an increased tendency to withhold the 
response with increasing uncertainty. 
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Supplementary Figure 2 | Theta oscillations in motor cortex are not 
modulated by predictive context. a, Grand average 1/f-corrected power 
spectrum computed on the peak-triggered-average (PTA) time-series using 
IRASA. The HFA was strongly nested in theta oscillations across all three 
predictive context conditions as can be seen by the pronounced theta peaks in 
the power spectrum. b, The HFA inter-peak-interval in motor cortex was not 
significantly modulated by predictive context. 
 

Supplementary Table 1  

 

Results for partial linear regression between HFA peak amplitude or peak 

timing and behavioral response time. 

  

PFC df F P R2 

RT ~ Peak Timing 1,2903 61.74 5.47 x 10-15 0.021 

RT ~ Peak Amplitude 1,2903 30.64 3.38 x 10-8 0.01 

 

Motor Cortex df F P R2 

RT ~ Peak Timing 1,2017 69.51 1.38 x 10-16 0.033 

RT ~ Peak Amplitude 1,2017 6.88 0.008 0.0029 
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Supplementary Table 2 

 

Linear mixed-effect models supporting the results obtained from the 

ANOVAs.    

Modelled Parameter Beta T-
statistic 

df p-value Lower-
95 CI 

Upper-
95 CI 

Rando
m 
effect
s (SD) 

Model 
comparison 

(Likelihood 
ratio / p-
value) 

HFA peak 
amplitude 

(simple 
model) 

 

Intercept 

ROI 

Prediction 

7.416 

0.179 

0.012 

17.921 

1.469 

3.522 

75 

75 

75 

0 

0.146 

< 0.001 

6.592 

-0.064 

0.005 

8.240 

0.423 

0.019 

1.29 

 

0.87 / 0.34 
(favoring 
simple model) 

HFA peak 
timing 

(simple 
model) 

Intercept 

ROI 

Prediction 

-0.103 

0.015 

0.0003 

-9.014 

3.179 

2.478 

77 

77 

77 

< 0.001 

0.002 

0.015 

-0.126 

0.005 

< 0.0001 

-0.080 

0.024 

0.0006 

0.017 0.05 / 0.81 
(favoring 
simple model) 

HFA 
ramping 

dynamics 
(simple 
model) 

Intercept 

ROI 

Prediction 

0.3 

0.029 

0.012 

0.635 

0.158 

2.149 

77 

77 

77 

0.526 

0.874 

0.034 

-0.639 

-0.338 

0.0008 

1.240 

0.397 

0.023 

0.934 0.37 / 0.54 
(favoring 
simple model) 

Aperiodic 
slope 

(simple 
model) 

Intercept 

ROI 

Prediction 

-2.886 

0.111 

0.001 

-28.27 

3.232 

0.984 

78 

78 

78 

0 

0.001 

0.328 

-3.089 

0.042 

-0.001 

-2.683 

0.18 

0.003 

0.271 0.38 / 0.53 
(favoring 
simple model) 

Inter-peak-
interval 
(simple 
model) 

Intercept 

ROI 

Prediction 

8.232 

-0.003 

-0.001 

162.88 

-0.159 

-2.561 

77 

77 

77 

0 

0.873 

0.012 

8.131 

-0.047 

-0.003 

8.332 

0.04 

-0.0004 

0 0.54 / 0.46 
(favoring 
simple model) 

PSI Intercept 

Prediction 

 

0.098 

0.005 

 

0.719 

2.221 

 

40 

40 

0.47 

0.032 

 

-0.177 

0.0004 

-0.374 

0.009 

 

0.29 no other 
model used 
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