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Hierarchical synchronization of sleep oscillations establishes communication
pathways to support memory reactivation, transfer, and consolidation. From an
information-theoretical perspective, oscillations constitute highly structured
network states that provide limited information-coding capacity. Recent findings
indicate that sleep oscillations occur in transient bursts that are interleaved with
aperiodic network states, which were previously considered to be random noise.
We argue that aperiodic activity exhibits unique and variable spatiotemporal
patterns, providing an ideal information-rich neurophysiological substrate for
imprinting new mnemonic patterns onto existing circuits. We discuss novel ave-
nues in conceptualizing and quantifying aperiodic network states during sleep to
further understand their relevance and interplay with sleep oscillations in support
of memory consolidation.

Multiscale rhythms support memory reactivation, transformation, and
consolidation during sleep
How does the human brain turn novel experiences into long-lasting stable memories? Over the
past four decades a large body of work has established that sleep plays a key role in memory
formation [1,2]. The influential active systems memory consolidation hypothesis suggests a
two-stage process in which novel information is initially encoded in the hippocampus and the
neocortex, and subsequently becomes neocortex-dependent as new information is consolidated
[1,3–5]. The sleeping brain exhibits rich temporal dynamics which are thought to subserve this
transformation of mnemonic representations [6–9]. During sleep, prominent neuronal oscillations
emerge which serve as an intrinsic clocking mechanism for self-organized timed reorganization.
Specifically, non-rapid eye movement (NREM) sleep is characterized by slow oscillations
[<1.25 Hz; sometimes also including delta activity <4 Hz), sleep spindles (~12–16 Hz), and ripple
oscillations (~100–200 Hz)]. Importantly, these cardinal sleep oscillations are thought to emerge
from different neural circuits: slow oscillations are most prominent in prefrontal cortex, spindles
are thought to emerge in thalamocortical loops, and ripples are most prevalent within the hippo-
campus [1,7,8,10–12)]. The selective synchronization of these oscillations, which span several
spatial and temporal scales, has been suggested to trigger a processing cascade [8,10,13].
Specifically, the occurrence of hippocampal ripples has been associated with the selective reac-
tivation and replay (see Glossary) of spiking sequences which reflect novel mnemonic content
[7,14,15]. The repeated activation is thought to trigger plasticity, thus imprinting a permanent
mnemonic trace (also termed the engram).

In this perspective we first review recent evidence supporting and extending the active systems
consolidation theory. We discuss evidence that temporally precise cross-frequency coupling
indexes the integrity of memory pathways but might not convey only memory-specific informa-
tion. We then review evidence that sleep oscillations constitute discrete oscillatory bursts
that are interleaved with episodes that are not characterized by prominent spectral signatures
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Glossary
Aperiodic: desynchronized network
states are characterized by the absence
of strong oscillations, and thus lack a
prominent periodic signal and reflect
increased variability. Aperiodic activity
follows a power law (1/f) and indicates
that no predominant temporal activity,
such as an oscillation, is present (see
also desynchronization).
Complexity: we define complexity in
the temporal domain as a state of high
Shannon entropy, namely with high
variability and low redundancy. In the
spatial domain at the network level, it
refers to low synchrony and therefore
primarily local processing.
Cross-frequency coupling:
interaction between oscillations at
different frequencies. Themost common
type is phase–amplitude coupling (PAC)
where the phase of the slower rhythm
modulates the amplitude of the faster
oscillation.
Decoding: classification of a neural
activity patterns to infer, for example,
different cortical states or mnemonic
representations. Decoding requires a
training dataset where the decoder has
access to the ground truth, whereas
novel patterns can be classified
according to the learned signal
characteristics.
Desynchronization: refers to states
after an oscillatory burst, the term is
used interchangeably with aperiodic
and non-oscillatory activity.
Occasionally these phenomena are
also termed scale-free activity and 1/f
or fractal behavior.
Engram: the physical trace of a
memory after encoding and
consolidation. Engrams can be found at
all levels of abstraction from single-cell to
population activity to network
connectivity.
Excitation–inhibition (E/I) balance:
the ratio between excitatory and
inhibitory cell activity in a neural
population. In the cortex, pyramidal
neurons typically reflect excitatory and
interneurons inhibitory drive. A balance
between the two is observed under
physiological conditions, whereas a shift
towards either one extreme impairs
function.
Oscillatory burst: oscillations in the
brain are not continuous and ongoing
phenomena but periodically occur as
discrete events. At the cellular level,
bursts are associated with coherent
population firing.
and that are often considered to reflect quiescence or noise [16]. The physiologic origins of these
non-oscillatory episodes are not fully understood [17]. We utilize the terms desynchronized,
aperiodic, and non-oscillatory network state interchangeably to describe episodes in which
prominent oscillations are absent. This encompasses timepoints before and after an oscillatory
(e.g., spindle) burst, where the network switches from a synchronized to a desynchronized
(or vice versa) state, as well as prolonged episodes that lack a defining periodicity [such as during
rapid eye movement (REM) sleep] where no clear oscillatory peak in the power spectrum is dis-
cernible and are therefore referred to as aperiodic [18,19].

The prevalence of oscillatory and aperiodic states in the sleeping brain
Although oscillations constitute the most salient feature of electrophysiological sleep recordings,
one cannot assume that this also reflects their degree of functional significance. During a typical
night of 8 h of sleep, we spend ~25% (2 h) in REM sleep, which in humans is not characterized by
continuous oscillations, unlike the very prominent ongoing theta (3–8 Hz) activity observed in ro-
dent REM sleep [20]. Furthermore, we spend ~50% (4 h) in NREM2 and another 25% (2 h) in
deep slow wave (NREM3) sleep [21]. NREM2 is characterized by spindle bursts 1–2 s in length
which periodically reoccur approximately every 3–6 s [9,13,22]. Hence, one can assume a ratio
of ~3:1 of time spent in an aperiodic versus a synchronized state in NREM2 sleep. Likewise,
sleep slow oscillations constitute the hallmark of NREM3, but are by definition only present
~50% of the time on average. Taken together, using a conservative estimate, one must conclude
that ~50% of total sleep is spent in an asynchronous network state. Note, several definitions for
the detection of oscillatory events have been utilized, which might yield varying duration esti-
mates. It is now considered best practice to employ algorithms that establish the presence of os-
cillations based on relative and not on absolute amplitude criteria, thus resulting in more
comparable estimates across different cohorts [21,23].

Collectively, these considerations raise a question: do these non-oscillatory time periods have a
functional relevance, or can we discard them as sleep intermissions reflecting random noise?
Given that information encoding typically takes place during wakefulness, which is characterized
by predominately aperiodic states, it is conceivable that desynchronization during sleep might
play a similar role in benefiting further processing of newly encoded events [19,24].

We discuss here these aperiodic network states and argue that episodes without prominent os-
cillations reflect a less-ordered neural state. From an information-theoretical perspective, random
neural activity provides more unique patterns and increased complexity, thus constituting the
optimal milieu to imprint new information onto existing circuits. By contrast, during oscillatory
bursts, the underlying population is firing in synchrony, thus limiting their information-processing
capacity. This consideration implies that optimal information processing necessarily needs to
occur after discrete oscillatory bursts. We discuss recent empirical evidence in support of this
consideration and conclude by discussing how aperiodic activity can be conceptualized and
how it might relate to the underlying circuit architecture, specifically with respect to the excita-
tion–inhibition (E/I) balance. Given the high degree of interspecies similarity of sleep oscilla-
tions, we speculate that aperiodic activity might reflect a suitable level of abstraction to
understand the increased coding capacity in the human brain. Jointly, this will provide a perspec-
tive on how oscillations in concert with broadband aperiodic activity provide the necessary sub-
strate for plasticity and imprinting of novel information onto existing circuits.

Recent trends in understanding systems memory consolidation
The conceptualization of the two-stage process of memory formation typically takes a hippocam-
pus-centric perspective [6,7,25]. Specifically, the hippocampal ripple is proposed to serve as a
2 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx
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Power law: one parameter scales as a
function of the power of a second
parameter. Amplitude in the brain
typically scales as a function of 1/fX,
where x denotes an exponent ranging
between −2 and −4.
Replay: periodic reoccurrence of
neuronal firing patterns, which first
occurred during initial encoding and are
now repeated, predominantly during
non-rapid eye movement (NREM) sleep,
and that are thought to strengthen
mnemonic representations. Replay can
be time-compressed and/or forward
and backwards.
Shannon entropy and information
theory: a quantification of signal
variability that effectively assesses the
uncertainty about a signal or the
probability of observing a distinct state.
Information theory builds on the entropy
framework and quantifies information as
the degree to which uncertainty about a
signal can be reduced given a known
input signal.
Two-photon calcium imaging: a
modified type of fluorescence
microscopy. Different cell types can be
labeled in vivo. Laser light is then used to
excite molecules of a fluorescent dye,
and local calcium concentrations can be
inferred from fluorescence intensity
changes.
conductor that orchestrates the network organization supporting sleep-dependent memory for-
mation [7,26]. For instance, electrical or optogenetic manipulation of hippocampal ripple expres-
sion has a profound impact on cortical slow oscillation–spindle timing and subsequent memory
formation [10,27]. Similarly to work in rodents, replay of novel mnemonic information constitutes
a ripple-triggered process in humans [15]. In line with these considerations, evidence suggested
that longer ripples exert a stronger influence on neocortical circuits and subsequent behavior
[28,29]. In the same vein, low-frequency activity also exhibits multiple distinct facets. It has
been reported that slow oscillations (<1.25 Hz) and delta activity (~1–4 Hz) constitute two distin-
guishable phenomena which also subserve distinct functions [30]. Optogenetic manipulation of
spiking that was coupled to slow oscillations strengthened the hierarchical oscillatory coupling
and improved mnemonic performance. By contrast, optogenetic manipulation of delta activity
weakened memory consolidation, indicating that slow oscillations and delta activity have disso-
ciable roles in memory formation and opposite effects on behavior [30].

Taken together, these findings have further refined our perspective on systems memory consol-
idation by highlighting previously underappreciated nuances. Crucially, at first sight several recent
findings seem to contradict the classic theory. For instance, ripples were thought to constitute a
uniquely hippocampal feature, but have now also been observed in adjacent regions in the medial
temporal lobe [7,13,31] as well as in neocortical association areas [32,33]. To date, the role of
neocortical ripples is insufficiently understood, but the preliminary evidence suggests that tight
temporal coordination with their hippocampal counterparts is necessary for memory formation
during wakefulness and sleep [32,33]. Crucially, these findings also indicate that the neocortex
might bemore involved in encoding novel information thanwas previously thought. These consid-
erations are nicely paralleled by a recent set of imaging findings collectively suggesting that the
neocortex is in fact a rapid learner and does not necessarily require hippocampal input [34]. In
a related set of studies, several groups have demonstrated a reversed directionality for the hippo-
campal–neocortical dialogue and reported that neocortical activations in fact trigger and shape
the hippocampal ripple expression and associated replay. For instance, activity in the prefrontal
cortex [13,29,35], anterior cingulate [36], or temporal cortex [37] has been shown to modulate
hippocampal reactivations, which in turn again modulate neocortical areas, thus constituting bi-
directional interactions.

Currently, less is known about the role of REM sleep in memory consolidation. Although there is
growing evidence that REM sleep is also involved in memory formation [20,38], the precise mech-
anisms are unknown. A particular focus has been on the hippocampal theta rhythm (~3–8 Hz),
which is less pronounced in humans than in rodents [39], and to date it is unclear if these consti-
tute functional homologs. In a related line of inquiry, it had been argued that REMmight play a key
function in maintaining network hemostasis by adjusting the balance of excitation and inhibition
[40,41], which will be discussed in detail below.

Out of sync, out of memory: integrity of memory pathways is indexed by
precision of the temporal coordination
Sleep oscillations do not occur in isolation, but often emerge sequentially on a rapid timescale
[1,8]. Crucially, cardinal sleep signatures do not merely coincide in time, but are synchronized
to each other through phase–amplitude cross-frequency coupling (PAC) where the oscillatory
phase of the slower frequency modulates the amplitude of the faster component [1,8,13,42].
For instance, it has repeatedly been shown that the slow oscillation phase predicts the spindle
amplitude (Figure 1A) [8,43–45]. Likewise, the slow oscillation phase also modulates ripple ampli-
tude, which in turn is also comodulated by the spindle phase [8,13]. Most commonly, the cou-
pling strength (the magnitude of how strongly these events are coupled to each other, as
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 3
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Figure 1. Slow oscillation (SO)–spindle coupling across the lifespan tracks the integrity of memory pathways. (A) Spindle activity (grey) is nested in the SO
(black), preferably in the up-state (close to the SO peak or, as shown in the inset, close to 0°). (B) Coupling between SOs and spindles can be quantified by their coupling
strength (length of the vector in red) as well as by their coupling direction (where the vector is pointing). Several studies have suggested that there is a narrow (<90°, in green)
optimal window to successfully initiate the hippocampal–neocortical dialogue in support of memory formation. Crucially, SOs and spindle first grow into synchrony during
maturation, whereas temporal dispersion can be observed later in life as a function of age- or disease-related cognitive decline. Examples include age-related prefrontal
atrophy [43,44], mild cognitive impairment (MCI) [53], hippocampal damage after autoimmune encephalitis [51], and precursors of neurodegenerative disease [52,55].
(C–E) SO–spindle coupling has been found to track both task-specific behavioral performance (C) and task-independent metrics such as neuropsychological test
scores (D) or the burden of precursors of imminent cognitive decline (E). Jointly, these findings suggest that SO–spindle coupling indexes the integrity of memory
pathways, which constitute the foundation for information transfer in the prefrontal cortex (PFC)–medial temporal lobe (MTL) network. The graphs in (C–E) are adapted
from data reported in [43,45,52].

Trends in Cognitive Sciences
determined by correlation) was quantified and linked to metrics of behavioral performance
[42,46]. It recently became apparent that the precise timing is crucial [43,44]: it does not only
matter that a spindle always peaks at a consistent slow oscillation phase, but the spindle must
occur at a specific phase angle within the slow oscillation cycle (Figure 1B). The subsequent
processing cascade in the hippocampus is only triggered if the spindle hits this narrow 'sweet-
spot' [13]. In recent years it has been demonstrated that multiple age- as well as disease-related
deficiencies impair this coupling, which in turns predicts mnemonic deficits and cognitive decline
(Figure 1C–E).

The brain generates slow oscillations and spindles from early childhood, but these only become
strongly coupled during the maturation and development of the memory system (Figure 1C)
[45,47,48]. By contrast, during healthy aging, these oscillations undergo temporal dispersion
and become increasingly uncoupled and less precise in their timing [21,43,44,49,50], thus lead-
ing to increased forgetting. Crucially, pathological insults at multiple network nodes can impair the
4 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx
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coupling. For instance, age-related atrophy in the medial prefrontal cortex (PFC) diminishes slow
oscillation–spindle interactions and cognitive efficacy (Figure 1D) [43]. Similar effects can be ob-
served after autoimmune-mediated encephalitis affecting hippocampal functioning [51] or depo-
sition of precursors of neurodegenerative disease [52], and coupling precision errors increase as
degeneration commences [53–55].

Importantly, slow oscillation–spindle coupling has repeatedly been linked to mnemonic perfor-
mance. Depending on the task, both coupling strength and coupling direction are predictive of
either declarative or procedural memory tasks, respectively [43–45,56,57]. Crucially, most stud-
ies have ruled out confounding factors such as oscillatory amplitude, number of events, or broad-
band changes. Despite these careful controls, slow oscillation–spindle coupling correlates with
performance, mostly irrespective of the task. Furthermore, there are several related reports that
coupling metrics also correlated with overall neuropsychological test scores (Figure 1D) [43] or
metrics of structural integrity (Figure 1E) [52]. Given that correlations can be seen for both task-
specific (performance in a given task or reactivation of specific mnemonic traces [45,58,59]) as
well as task-unspecific variables (trait-like characteristics such as overall neuropsychological
test scores or metrics of structural integrity – i.e., grey matter density) [43,52]), one might con-
clude that coupling metrics do not necessarily index specific mnemonic content, but more likely
non-specifically index the overall functionality of memory pathways. This consideration is in line
with the observation that transient electrical volleys in the form of either direct brain stimulation
[60] or endogenous epileptic activity [61] may engage these circuits, as indicated by spindles
that exhibit physiologic waveform shapes. It is currently unknown whether these events consti-
tute pathologic pseudo-spindles that lack function or whether this phenomenon is the result of
network resonance in response to the electrical volley [61–63].

This consideration is paralleled by a set of recent findings that revealed a variable memory re-
sponse following hippocampal ripples [64]. Variability here reflects the fact that a single ripple os-
cillation can trigger multiple responses depending on the state of the receiving region, reflecting
either reactivation of specific mnemonic trace or a variable, unspecific and potentially 'content-
free' response. This lack of specificity could imply that an oscillatory burst conveys unspecific in-
formation and mainly indexes the network engagement.

Information processing in the sleeping brain: stable representations in a dynamic
system
Sleep oscillations are not a continuous phenomenon, but appear in bursts. At every occur-
rence, the precise manifestation is variable and depends on the present network state. For
instance, it has recently been shown that hippocampal ripple expression is dynamically
shaped by the precision of cortical slow oscillation–spindle coupling. Specifically, if the
spindle failed to peak within a narrow phase range, hippocampal ripple expression was
diminished [13].

Furthermore, several lines of inquiry converge on the notion that spindle bursts do not occur at
random timepoints, but follow a rhythm on a slower timescale [9,13,22]. Rhythmic spindle
bursts relative to hippocampal ripples were first described in rodents [9], albeit on a slower
timescale (approximately every 12 s). Recently, similar observations were made in humans
(~3–6 s; Figure 2A). This set of findings implies that this slower rhythm delineates episodes of
high synchrony (oscillations) from aperiodic states (absence of oscillations) because, for exam-
ple, ripple expression is intricately linked to spindles [7,8,10]. Notably, spindles might also
occur in isolation, and it is currently unknown whether spindle trains differ in their function
from isolated spindles [65].
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 5
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Figure 2. Spindle timing and information transfer. (A) 45 s of non-rapid eye movement (NREM) sleep (electrode Cz, black) with superimposed spindle oscillations (in
red). Arrows highlight distinct signatures of NREM sleep, including (left to right) spindles nested in slow oscillations (SOs), uncoupled spindles, and two examples of
aperiodic states. Note, spindles exhibit a second-order temporal structure and recur rhythmically every ~3–6 s. (B) Schematic of how the different NREM states might
contribute to memory consolidation. Note, it is currently unclear whether coupled and uncoupled spindles are functionally distinct, and it is unknown in which sequence
oscillatory and aperiodic states alternate. (Left) Coupled SO–spindles trigger bidirectional hippocampal–neocortical interactions (as indicated by the arrows). (Center)
During aperiodic states, networks might switch to local processing to enable transformation of mnemonic content (arrows indicate local processing loops). (Right)
Highly synchronized population activity is necessary to mediate synaptic plasticity to enable long-term neocortical storage. (C) (Left) Auditory-triggered disruption of
information transfer. A sound was presented directly after an oscillatory (grey box) event (0.25 s, early) or with a longer temporal delay (2.5 s, late). (Right) Only early
sound presentation selectively disrupted information transfer, as indicated by an increased forgetting rate. (C) Reproduced, with permission, from [22]. Abbreviations:
ISI, inter-spindle interval; MTL, medial temporal lobe; PFC, prefrontal cortex.

Trends in Cognitive Sciences
It remains puzzling how a dynamic system, which exhibits constant waxing and waning of ac-
tivity patterns, can implement the formation of stable and long-lasting mnemonic representa-
tions. Several approaches were recently introduced to trace mnemonic representations
during sleep. For instance, methodologies such as decoding/classification or similarity analy-
ses have all been applied to sleep recordings (Box 1) [66,67]. Crucially, most methods implicitly
assume that the underlying pattern remains mostly stable with a fixed succession of, for exam-
ple, firing cells [68]. Although the majority of evidence for replay was obtained from single-cell
firing, similar approaches have been utilized at the level of field potentials [58,59]. To date, it re-
mains unclear what level of abstraction is necessary to successfully track a memory trace
throughout consolidation [69]. Importantly, recent advances show that population activity pro-
vides an information content comparable to the underlying single-unit firing patterns [70].
Specifically, intracranial recordings in humans provide high explanatory power because it has
been shown that decoding in sensory and frontal areas based on high-frequency activity
(HFA, ~70–150 Hz) [71,72] contains more decodable information than single-unit firing or
scalp electroencephalography (EEG) activity [73]. Furthermore, this HFA signal does not solely
6 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx



Box 1. Tools to estimate information content in the sleeping brain

Sleep is thought to subserve the processing of mnemonic information. However, it is non-trivial to study endogenous in-
formation processing during sleep in the absence of external input. Several studies circumvented this issue by presenting
auditory or olfactory cues during sleep [91–93], which enabled event-related analysis. However, this technique does not
allow the study of truly intrinsic processing of memory traces during sleep. Several approaches recently moved away from
an activation-based framework and adopted an information- or representation-based framework [94,95], which can also
be applied to continuous recordings where no external events are present. Using either multivariate classification (some-
times also termed decoding or discrimination [67]) or representational similarity correlation [96]) analyses, several groups
have started to assess whether neural patterns that were present during encoding are spontaneously recapitulated during
sleep. These techniques assume a relatively stable representation during sleep, despite dramatically different electrophys-
iological features (see Figure 3B in main text). An algorithm is trained on a specific pattern that was present during learning
or awake retrieval. Next, sleep recordings are searched for evidence that a similar pattern reoccurs, which, based on like-
lihood estimations (e.g., correlation with behavior or permutation statistics), is then considered as evidence for reactivation.
The mutual information framework constitutes a related approach to detect similarities between encoding, retrieval, and
sleep patterns [13]. Recently, reactivation and decoding approaches have also been combined to study sleep-dependent
learning [97]. The authors demonstrated that periods of memory reactivation span several seconds, encompassing both
oscillatory as well as aperiodic states. Furthermore, the results indicated that the duration of memory reactivation
exceeded the typical duration of sleep spindles, further supporting the notion that processing entails aperiodic states.
One shortcoming that applies to all these techniques is that it is currently unclear what the most informative features
are. In other words, there is no consensus on which level of abstraction is necessary to extract memory-specific informa-
tion from neural recordings [98]. As an example, is it sufficient to quantify a spatial pattern, or do we need to incorporate
precise temporal information?

Trends in Cognitive Sciences
reflect population-spiking activity, but captures additional afferent inputs, thus further increas-
ing its information content [74].

Collectively, oscillations reflect highly temporally and often also spatially, structured sequences
that can be captured by a few parameters. In the Shannon entropy and information theory
framework [75,76], oscillations reflect states of high order and consequently of low Shannon en-
tropy [77,78]. Crucially, low entropy states reflect limited information capacities and are subopti-
mal for imprinting novel information [79]. By contrast, aperiodic states reflect higher levels of
entropy, thus providing additional capacity to encode new information [24,77]. In line with this
consideration, several recent studies showed that inter-areal information flow is actually en-
hanced after an oscillation and not during the oscillation itself [13,22,59]. These findings contrib-
ute to the notion that oscillations serve as a messenger signal, but that information transformation
might occur during a desynchronized state where synchrony and shared information cycle in anti-
phase (Figure 2A,B). After a hippocampal ripple, the directed influence from hippocampus to neo-
cortex does not peak immediately, but ramps up only after 1–2 s, preceded by information flow
from PFC to hippocampus [13]. Crucially, it has been observed that, if a sound is presented di-
rectly following an oscillatory event (<1 s), the processing cascade is disrupted, resulting in less
information flow and leading to increased forgetting (Figure 2C). One testable hypothesis that
emerges from these considerations is that oscillation-locked decoding should peak after, and
not during, the spindle or ripple event [58,59]. Moreover, recent evidence revealed that replay sig-
natures at the level of brain-wide networks exhibit broadband and not narrow-band signatures
[80], further substantiating the notion that information processing is maximized during asynchro-
nous network states (Figure 3A).

Collectively, this set of findings suggests that the neocortical interplay of slow oscillations and
spindles triggers hippocampal reactivations. Thereafter, the cortex goes from a synchronized
into a desynchronized state to maximize processing capacities when reactivating mnemonic in-
formation. Similar considerations might apply to episodic memory formation during wakefulness
[77,81], but is currently unknown whether the outlined principles are generalizable between
wakefulness and sleep.
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 7
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Figure 3. Non-oscillatory electrophysiological features track excitability during sleep. (A) Replay of information
(green; baseline in orange) is not frequency-specific but exhibits broadband spectral signatures. Superimposed (dark and
light grey) spectral slope estimates that show a shift along the y axis and imply a rotation of the power spectrum. (B) (Left)
Electrophysiological power spectra during sleep. During wakefulness alpha oscillations at ~11 Hz are prominent (red),
whereas slow-wave sleep (SWS, blue) is characterized by increased delta (<4 Hz) and spindle power (~16 Hz). Note that
rapid eye movement (REM) sleep (green) does not exhibit any prominent oscillations, as indicated by the absence of a
characteristic bump exceeding the 1/f drop-off. (Right) Quantification of the slope of the 1/f drop-off reliably distinguishes
between sleep stages. (C) Computational model linking the shape of the power spectrum to the balance between
excitation and inhibition (E/I balance). Increasing the level of inhibition from 1:2 (orange) to 1:6 (green) resulted in a
steepening of the power spectrum slope. (D) Two-photon calcium imaging demonstrated a relative increase in inhibition.
(Left) Inhibitory parvalbumin+ interneuron (PV-IN) activity was increased during REM sleep. (Right) Overall firing rates were
reduced during SWS and REM sleep. This effect was highly significant for unlabeled cells, including pyramidal cells as well
as somatostatin interneurons, thus nicely mimicking the distribution observed for human slope estimates at the population
level [cf (B), right side]. In summary, this set of findings indicates that a relative increase in inhibition is mediated by a
decrease in overall firing as well as by an increase in inhibitory drive. (A) Modified, with permission, under the Creative
Commons CC-BY license from [80]; (B) was published under the CC-BY license and was adapted, with permission, from
[18]; (C) adapted, with permission, from [87]; and (D) adapted, with permission, from [88]. Abbreviation: a.u., arbitrary units.
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The physiologic basis of non-oscillatory brain activity during sleep
Neuronal oscillations are thought to emerge from the synchronized firing of multiple neurons
within a population [82,83]. Conversely, it could be assumed that desynchronized electrophysio-
logical field patterns should also be the result of asynchronous neuronal firing [84]. However, to
date it is not established how the collective firing of different neuron types gives rise to the local
field potential [82]. Several lines of research suggest that there might be a region- and state-spe-
cific transfer function between spiking activity and field potentials [85].

Traditionally, spectral analyses have been used to determine neuronal oscillations, and similar
methods have been adopted to quantify the absence of oscillations (Box 2) [86]. It is also evident
that spectral transformations of sleep data exhibit rich state-dependent signatures (Figure 3B)
[18]. Although oscillations can be identified as bumps that exceed the 1/f drop-off in the power
spectrum, several recent attempts have parameterized the 1/f decay and linked it to physiology
[19]. When displayed in log–log space, the power spectrum can be estimated by a linear fit in
which both the offset on the y axis and the slope have been linked to population firing [84,87].
One model proposes that the steepness of the slope of the power spectrum is linked to the bal-
ance of excitation and inhibition in the underlying population (Figure 3C). Although the model only
accounted for ~24% of the variance in the empirical data, it provided an additional perspective
into both monkey and human recordings. Inhibition was boosted by the administration of the
GABAergic anesthetic propofol. In both species, the slope became steeper when inhibition in-
creased [18,87]. When applied to sleep data, it was found that the slope distinguished between
different sleep stages and specifically delineated REM from both wakefulness and NREM sleep,
solely based on the electrophysiological recordings (Figure 3B) [18]. Crucially, the slope during
REMwas found to bemore negative than during NREM, indicating an increased level of inhibition.
This consideration was paralleled by a recent two-photon calcium imaging study which re-
vealed a comparable pattern at the level of population firing [88]: First, overall firing activity was
decreased during REM sleep, but firing of inhibitory cells was selectively increased, thus consti-
tuting a relative shift of the E/I balance towards inhibition (Figure 3D). Moreover, a recent study
employingmagnetic resonance spectroscopy provided complementary results by demonstrating
a learning-specific shift towards inhibition during REM sleep [89]. A functional and behavioral dis-
sociation in NREM sleep was observed in which excitability and overall performance were in-
creased, irrespective of pre-sleep learning. It had previously been observed that REM sleep
subserves downscaling of excitability in cortical networks, which was accompanied by changes
Box 2. How to quantify non-oscillatory brain activity

Time-series analysis in neuroscience often utilizes spectral analyses, such as Fourier, Hilbert, or wavelet transforms, to
study the activity in distinct frequency bands [86]. For instance, in sleep EEG, the Fourier transform is commonly used
to obtain a power spectrum where individual peaks can be detected (e.g., in the spindle band [99]). Subsequently, activity
in this frequency band can be extracted using band-pass filtering combined with a Hilbert transform to extract amplitude-
and phase-specific information. However, it is less common to study timepoints in sleep electrophysiology where no
prominent spectral signatures are present [100]. This raises the question of how to quantify network states where strong
oscillations are absent. One approach that has been motivated by physics is the analysis of 1/f characteristics, which have
often been interpreted as a power law [17]. Several tools have been introduced in recent years to disentangle oscillatory
activity (which exhibits a defining temporal scale with a fixed period) from non-oscillatory or aperiodic activity
[18,19,87,101,102] which lacks defining temporal characteristics (and is therefore sometimes termed 'scale-free'). These
approaches include polynomial fitting of the power spectrum, Gaussian modeling [19], and irregular resampling [101] of
the time series. What all approaches have in common is that they enable the extraction of parameters that describe the
statistical regularities of the background activity and are well suited for quantifying states that lack prominent oscillations.
Crucially, these tools still require a spectral transformation at some point in the process. Currently, only a few approaches
solely operate in the time- and not frequency-domain [103,104]. Future developments will need to take techniques into
account that can quantify temporal regularities, for instance based on waveform shape [105], which are not obvious to
the naked eye, but might contain complementary information to more established algorithms.
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Outstanding questions
How does the sleeping brain achieve
specific reactivations? Does slow
oscillation–spindle ripple coupling
precision serve as a temporal code
to selectively retrieve information?

What are the functional roles of short-
and long-duration ripples? At which
point in the processing hierarchy is
the duration of the oscillatory burst
read out and used for subsequent
computations? Likewise, do the same
principles extend to slow oscillations
and spindles?

What are theprecise functional differences
between slow oscillation-coupled and
-uncoupled spindles? Do spindles that
occur in trains differ in their function
from spindles that occur in isolation?
What is their relationship with aperiodic
activity, and what are the organizing
principles of their interplay?

Why are sleep oscillations highly similar in
different species, despite dramatically
different cognitive capacities? Which
neural markers reflect the increased
information-coding capacity in the
human brain?

How can time-varying, ever-changing
neural activity support the emergence
of stable and long-lasting mnemonic
representations?

Are aperiodic network states a brain-
wide phenomenon, or do they also
occur locally? What is the interplay of
aperiodic activity in different network
nodes, such as the hippocampus and
PFC?

Are aperiodic states as observed during
wakefulness, NREM, and REM sleep
related? Do different aperiodic episodes
exhibit similar functional properties, or
do they reflect a multiplexed signal?
Does the duration of aperiodicity play a
functional role in memory consolidation?

How does aperiodicity relate to
plasticity, which typically requires highly
synchronized inputs? Alternatively, is
plasticity only mediated by oscillations?
in both firing as well as spectral power [40,41]. Crucially, this effect spanned almost all frequency
bands, which implied a change in the aperiodic background activity.

Collectively, although we are at the beginning of understanding how unit firing, population activity,
and network oscillations are related, several recent empirical findings have provided a perspective
on how to conceptualize both oscillatory as well non-oscillatory brain states in relationship to net-
work homeostasis between excitation and inhibition.

Concluding remarks
The mechanisms that support the self-organization of the sleeping brain to optimally
support information reactivation, processing, transfer, and consolidation remain elusive.
Converging evidence suggests that sleep oscillations may provide key messengers to co-
ordinate memory consolidation in space and time. These oscillations likely constitute an en-
dogenous timing mechanism that provides distinct windows of opportunity for information
processing, as exemplified by the spindle pulsing every 3–6 s, which might segregate reac-
tivation, transfer, and consolidation. Importantly, selective synchronization within narrow
time-windows might serve as a tuning mechanism – similar to a radio dial – to selectively
engage communication channels [13,90], as indicated by slow oscillation–spindle coupling
that precisely indexes hippocampal ripple expression and subsequent reactivation
[8,10,13,30,58].

Crucially, we argue that aperiodic states, which are interleaved with oscillatory states, provide an
information-rich state to transform, consolidate, and eventually imprint new information onto neu-
ronal circuits. However, our understanding of aperiodic episodes is limited and many questions
remain (see Outstanding questions). We have reviewed evidence suggesting that the absence
of temporal structure might actually be beneficial for information coding. This concept will also re-
quire the development of novel tools to quantify non-oscillatory activity.

Finally, it is important to highlight that this theory is fully compatible with previous considerations
because it implies that oscillations, in concert with broadband activity, jointly support information
coding. Collectively, we propose an oscillation-mediated dynamic process with rapid cycling be-
tween synchronized and desynchronized states that each subserve distinct elements of sleep-
dependent memory formation, namely triggered reactivation and subsequent processing for
consolidation.
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oscillatory and aperiodic networks
related?

Do spindle timing and inter-spindle
intervals correlate with mnemonic
capacities?

Do ripples in humans and rodents
support the same functions, despite
pronounced differences in their peak
frequency?

What is the functional significance of 1/
f-scaled background activity? How is
population firing linked to spectral
parameters? Do distinct spectral
parameters (slope, offset, autocorrelation
function, band-limited features) index
homeostasis?

What is the appropriate level of
abstraction to study memory
reactivation and its relationship to
aperiodic activity: neural firing, field
potentials, local circuit activity, or
large-scale population activity as
measured at the network level?

Do the principles of the interplay between
synchronization and desynchronization
during sleep generalize to wakefulness?
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