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Abstract Previously, we demonstrated that precise temporal coordination between slow oscil-
lations (SOs) and sleep spindles indexes declarative memory network development (Hahn et al., 
2020). However, it is unclear whether these findings in the declarative memory domain also apply 
in the motor memory domain. Here, we compared adolescents and adults learning juggling, a 
real-life gross-motor task. Juggling performance was impacted by sleep and time of day effects. 
Critically, we found that improved task proficiency after sleep lead to an attenuation of the learning 
curve, suggesting a dynamic juggling learning process. We employed individualized cross-frequency 
coupling analyses to reduce inter- and intragroup variability of oscillatory features. Advancing our 
previous findings, we identified a more precise SO–spindle coupling in adults compared to adoles-
cents. Importantly, coupling precision over motor areas predicted overnight changes in task profi-
ciency and learning curve, indicating that SO–spindle coupling relates to the dynamic motor learning 
process. Our results provide first evidence that regionally specific, precisely coupled sleep oscilla-
tions support gross-motor learning.

Editor's evaluation
The authors used a clever design, in which adolescents and adults learned to juggle, to study the 
impact of sleep and associated oscillations on the consolidation of motor memory across age 
groups. Overall, the topic and the results of the present study are interesting and timely, and 
extends previous findings in the declarative memory domain to the motor memory domain.

Introduction
Sleep actively supports learning (Diekelmann and Born, 2010). The influential active system 
consolidation theory suggests that long-term consolidation of memories during sleep is driven 
by a precise temporal interplay between sleep spindles and slow oscillations (SOs; Diekelmann 
and Born, 2010; Klinzing et  al., 2019). Memories acquired during wakefulness are reactivated 
in the hippocampus during sharp-wave ripple events in sleep (Wilson and McNaughton, 1994; 
Zhang et al., 2018). These events are nested within thalamocortical sleep spindles that mediate 
synaptic plasticity (Niethard et al., 2018; Rosanova and Ulrich, 2005). Sleep spindles in turn are 
thought to be facilitated by the depolarizing phase of cortical SOs thereby forming SO–spindle 
complexes during which the subcortical–cortical network communication is optimal for information 
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transfer (Chauvette et al., 2012; Clemens et al., 2011; Helfrich et al., 2019; Helfrich et al., 2018; 
Latchoumane et al., 2017; Mölle et al., 2011; Ngo et al., 2020; Niethard et al., 2018; Schreiner 
et al., 2021; Staresina et al., 2015).

Several lines of research recently demonstrated that precisely timed SO–spindle interaction 
mediates successful memory consolidation across the lifespan (Hahn et al., 2020; Helfrich et al., 
2018; Mikutta et  al., 2019; Mölle et  al., 2011; Muehlroth et  al., 2019). Critically, SO–spindle 
coupling as well as spindles and SOs in isolation are related to neural integrity of memory struc-
tures such as medial prefrontal cortex, thalamus, hippocampus, and entorhinal cortex (Helfrich 
et  al., 2021; Helfrich et  al., 2018; Ladenbauer et  al., 2017; Mander et  al., 2017; Muehlroth 
et al., 2019; Spanò et al., 2020; Winer et al., 2019). Thus, converging evidence suggests that 
SO–spindle coupling does not only actively transfer mnemonic information during sleep but also 
indexes general efficiency of memory pathways (Helfrich et al., 2021; Mander et al., 2017). In 
our recent longitudinal work, we found that SO–spindle coordination was not only becoming 
more consistent from childhood to late adolescence but also directly predicted enhancements in 
declarative memory formation across those formative years (Hahn et al., 2020). However, because 
the active system consolidation theory assumes a crucial role of hippocampal memory replay for 
sleep-dependent memory consolidation, most studies, including our own, focused on the effect 
of SO–spindle coupling on hippocampus-dependent declarative memory consolidation. Therefore, 
the role of SO–spindle coordination for motor learning or consolidation of procedural information 
remains poorly understood.

While sleep’s beneficial role for motor memory formation has been extensively investigated and 
frequently related to individual oscillatory activity of sleep spindles and SO (Barakat et al., 2011; 
Boutin et al., 2018; Fogel et al., 2017; Huber et al., 2004; King et al., 2017; Nishida and Walker, 
2007; Pinsard et al., 2019; Tamaki et al., 2013; Tamaki et al., 2008; Vahdat et al., 2017; Walker 
et al., 2002), there is little empirical evidence for the involvement of the timed interplay between 
spindles and SO. In rodents, the neuronal firing pattern in the motor cortex was more coherent during 
spindles with close temporal proximity to SOs after engaging in a grasping motor task (Silversmith 
et  al., 2020). In humans, stronger SO–spindle coupling related to higher accuracy during mirror 
tracing, a motor adaption task where subjects trace the line of a shape while looking through a mirror 
(Mikutta et al., 2019). So far, research focused on laboratory suitable fine-motor sequence learning 
or motor adaption tasks, which has hampered our understanding of memory consolidation for more 
ecologically valid gross-motor abilities that are crucial for our everyday life (for a review see King 
et al., 2017).

Only few studies have investigated the effect of sleep on complex real-life motor tasks. Overnight 
performance benefits for riding an inverse steering bike have been shown to be related to spindle 
activity in adolescents and adults (Bothe et al., 2019; Bothe et al., 2020). Similarly, juggling perfor-
mance was supported by sleep and juggling training induced power increments in the spindle and 
SO frequency range during a nap (Morita et al., 2012; Morita et al., 2016). Remarkably, juggling has 
been found to induce lasting structural changes in the hippocampus and midtemporal areas outside of 
the motor network (Boyke et al., 2008; Draganski et al., 2004), making it a promising expedient to 
probe the active system consolidation framework for gross-motor memory. Importantly, this complex 
gross-motor skill demands accurately executed movements that are coordinated by integrating visual, 
sensory, and motor information. Yet, it remains unclear whether learning of these precisely coordi-
nated movements demand an equally precise temporal interplay within memory networks during 
sleep.

Previously, we demonstrated that SO and spindles become more tightly coupled across brain 
maturation which predicts declarative memory formation enhancements (Hahn et al., 2020). Here, 
we expand on our initial findings by investigating early adolescents and young adults learning how to 
juggle as real-life complex gross-motor task. We first sought to complete the picture of SO–spindle 
coupling strength development across brain maturation by comparing age ranges that were not 
present in our initial longitudinal dataset. Second, we explicitly tested the assumption that precisely 
coordinated SO–spindle interaction supports learning of coordinated gross-motor skills.

By leveraging an individualized cross-frequency coupling approach, we demonstrate that adults 
have a more precise interplay of SO and spindles than early adolescents. Importantly, the consistency 
of the SO–spindle coupling dynamic tracked the dynamic learning process of a gross-motor task.

https://doi.org/10.7554/eLife.66761
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Results
Healthy adolescents (n = 28, age: 13.11 ± 0.79 years, mean ± standard deviation [SD]) and young 
adults (n = 41, age: 22.24 ± 2.15 years) performed a complex gross-motor learning task (juggling) 
before and after a full night retention interval as well as before and after a retention interval during 
wakefulness (Figure 1). To assess the impact of sleep on juggling performance, we divided the partici-
pants into a sleep-first group (i.e., sleep retention interval followed by a wake retention interval) and a 
wake-first group (i.e., wake retention interval followed by a sleep retention interval). Polysomnography 
(PSG) was recorded during an adaptation night and during the respective sleep retention interval (i.e., 
learning night) except for the adult wake-first group (for sleep architecture descriptive parameters 
of the adaptation night and learning night as well as for adolescents and adults see Supplementary 
file 1—tables 1 and 2). Participants without prior juggling experience trained to juggle for 1 hr. We 
measured the amount of successful three-ball cascades (i.e., three consecutive catches) during perfor-
mance tests in multiple 3-min blocks (3 × 3 min for adolescents; 5 × 3 min for adults) before and 
after the respective retention intervals. Adolescents performed fewer blocks than adults to alleviate 
exhaustion from the extensive juggling training.
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Figure 1. Study design. Adolescents (N = 28; 23 males) and adults (N = 41; 25 males) without prior juggling experience were divided into sleep-first 
and wake-first groups. Participants in the sleep-first group trained to juggle for 1 hr with video instructions in the evening. Juggling performance was 
tested before and after a retention interval containing sleep (1), followed by a third juggling test after a retention interval containing wakefulness (2). 
Participants in the wake-first group followed the same protocol but in reverse order (i.e., training in the morning, first retention interval containing 
wakefulness and second retention interval containing sleep). Polysomnography was recorded during an adaptation night and a learning night at the 
respective sleep retention interval. Psychomotor vigilance tasks were conducted before each performance test. Adolescents only performed three 
juggling blocks per test to avoid a too excessive training load.

https://doi.org/10.7554/eLife.66761
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Behavioral results: juggling performance and disentangling the learning 
process
Adolescents improved their juggling performance over the course of all nine blocks (Figure 2A, top; 
F3.957, 94.962 = 6.948, p < 0.001, η2 = 0.23). There was neither an overall difference in performance 
between the sleep-first and wake-first groups (F1, 24 = 1.002, p = 0.327, η2 = 0.04), nor did they differ 
over the course of the juggling blocks (F3.957, 94.962 = 1.148, p = 0.339, η2 = 0.05). Similar to the adoles-
cents, adults improved in performance across all 15 blocks (Figure 2B, top; F4.673, 182.241 = 11.967, p 
< 0.001, η2 = 0.24), regardless of group (F4.673, 182.241 = 0.529, p = 0.742, η2 = 0.01). Further, there was 
no overall difference in performance between the sleep-first and wake-first groups in adults (F1, 39 = 
1.398, p = 0.244, η2 = 0.04). Collectively, these results show, that participants do not reach asymptotic 
level juggling performance (for single subject data of good and bad performers, see Figure 2—figure 
supplement 1A, B). In other words, the gross-motor skill learning process is still in progress in adoles-
cents and adults. Therefore, we wanted to capture the progression of the learning process, rather 
than absolute performance metrics (i.e., mean performance) that would underestimate the dynamics 
of gross-motor learning.

Since subjects did not reach asymptotic level performance, but learning was ongoing, we parame-
terized the juggling learning process by estimating the learning curve for each performance test using 
a first-degree polynomial fit to the different blocks (Figure 2A–C, black lines). We considered the slope 
of the resulting trend as learning curve. The learning process of complex motor skills is thought to 
consist of a fast initial learning stage during skill acquisition and a much slower skill retaining learning 
stage (Dayan and Cohen, 2011; Doyon and Benali, 2005). In other words, within-learning session 
performance gains are rapid at the beginning, but taper off with increased motor skill proficiency, 
resembling a power-law curve. Therefore, we also estimated the task proficiency per performance test 
at the first time point as predicted by the model, since the learning curve is expected to be influenced 
by the individual juggling aptitude. Importantly, the estimated task proficiency was comparable to the 
observed values in the corresponding first juggling block (performance test 1: rhos = 0.98, p < 0.001; 
performance test 2: rhos = 0.97, p < 0.001). Besides having a more accurate picture of juggling perfor-
mance, this parameterization also allowed us to compare performance of adolescents and adults on 
a similar scale because of the different number of juggling blocks. A mixed ANOVA with the factors 
performance test (pre- and postretention interval), condition group (sleep-first and wake-first) and age 
group (adolescents and adults) showed a significant interaction between performance test and condi-
tion group (F1, 65 = 4.868, p = 0.031, η2 = 0.07). This result indicates that regardless of age, the juggling 
learning curve becomes steeper after sleep than after wakefulness, thus indicating that sleep impacts 
motor learning (Figure 2D). No other interactions or main effects were significant (for the complete 
ANOVA report, see Supplementary file 1—table 3). When analyzing the task proficiency before and 
after the first retention interval, depending on condition and age group, we found a significant inter-
action between condition and age group (Figure 2E; F1, 65 = 5.210, p = 0.026, η2 = 0.07), showing that 
the adult sleep-first group had better overall task proficiency than the wake-first group, whereas the 
adolescent sleep-first group was worse than the wake-first group. The interaction (performance test × 
condition group) did not reach significance (F1, 65 = 1.882, p = 0.175, η2 = 0.03; also see Supplemen-
tary file 1—table 4). Collectively, these results suggest that sleep influences learning of juggling as a 
gross-motor task.

Figure 2A, B indicates that performance tests in the morning might be characterized by a steeper 
learning curve than the evening tests. We confirmed this observation using a linear mixed model 
(Supplementary file 1—table 5A, B). While this finding might also indicate a circadian influence on 
learning in our task, we did not find evidence for a circadian effect on sensitive psychomotor vigi-
lance task reaction times. Neither when comparing sleep-first and wake-first groups (Figure 2—figure 
supplement 1C), nor when specifically probing evening and morning performance tests (Supplemen-
tary file 1—table 5E, F). However, these analyses cannot exclude all circadian effects. Therefore, we 
modeled learning curve and task proficiency with time of day (morning session, evening session) and 
sleep after learning as fixed effects and subjects as random effects to further disentangle circadian and 
sleep specific effects. Results for learning curve were inconclusive for both fixed effects (time of day: 
Beta = −1.008, t(202) = −1.625, p = 0.106, CI95 = [−2.231, 0.215]; sleep after learning: Beta = 0.172, 
t(202) = 0.268, p = 0.789, CI95 = [−1.093, 1.437]; Supplementary file 1—table 6A). Task proficiency 
was overall better in the evening performance tests (Beta = 5.751, t(202) = 2.252, p = 0.011, CI95 = 

https://doi.org/10.7554/eLife.66761
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Figure 2. Behavioral results and parameterizing juggling performance. (A) The number of successful three-ball cascades (mean ± standard error of 
the mean [SEM]) of adolescents (circles) for the sleep-first (blue) and wake-first groups (green) per juggling block. Grand average learning curve (black 
lines) as computed in (C) are superimposed. Dashed lines indicate the timing of the respective retention intervals that separate the three performance 
tests. Note that adolescents improve their juggling performance across the blocks. (B) Same conventions as in (A) but for adults (diamonds). Similar to 

Figure 2 continued on next page
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[1.310, 10.192]) and additionally trended to benefit from sleep after learning (Beta = 3.795, t(202) = 
1.672, p = 0.096, CI95 = [−0.680, 8.271]; Supplementary file 1—table 6B). These results suggest that 
both time of day and sleep contribute to the overall juggling performance.

Next, we further dissected the relationship between changes in the learning curve and task profi-
ciency after the first retention interval. We hypothesized, that a stronger increase in task proficiency 
across sleep would lead to a flatter learning curve based on the assumption that motor skill learning 
involves fast and slow learning stages. Indeed, we confirmed a strong negative correlation between 
the change (postretention values − preretention values) in task proficiency and the change in learning 
curve after the retention interval (Figure 2F; rhos = −0.71, p < 0.001), which also remained strong 
after outlier removal (Figure 2—figure supplement 1D). This result indicates that participants who 
consolidate their juggling performance after a retention interval show slower gains in performance. 
Note, that the flattening of the learning curve does not necessarily indicate worse learning but rather 
mark a more progressed learning stage. These results demonstrate a highly dynamic gross-motor 
skill learning process. Given that sleep influences the juggling learning curve, we aimed to determine 
whether sleep oscillation dynamics track the dynamics of gross-motor learning.

Electrophysiological results: interindividual variability and SO–spindle 
coupling
To determine the nature of the timed coordination between the two cardinal sleep oscillations, we 
adopted the same principled individualized approach we developed earlier (Hahn et al., 2020). First, 
we compared oscillatory power between adolescents and adults in the frequency range between 
0.1 and 20 Hz during NREM (2 and 3) sleep, using cluster-based permutation tests (Maris and Oost-
enveld, 2007). Spectral power was elevated in adolescents as compared to adults across the whole 
tested frequency range (Figure 3—figure supplement 1A left for representative electrode Cz; cluster 
test: p < 0.001, d = 1.88). Similar to the previously reported developmental patterns of sleep oscilla-
tions from childhood to adolescence (Hahn et al., 2020), this difference was explained by a spindle 
frequency peak shift and broadband decrease in the fractal or 1/f trend of the signal, thus directly 
replicating and extending our previous findings in a separate sample. After estimating the fractal 
component of the power spectrum by means of irregular-resampling autospectral analysis (Wen and 
Liu, 2016), we found that adolescents exhibited a higher offset of fractal component on the y-axis 
than adults (Figure 3—figure supplement 1A middle; cluster test: p < 0.001, d = 1.99). Next, we 
subtracted the fractal component from the power spectrum, which revealed clear distinct oscilla-
tory peaks in the SO (<2 Hz) and sleep spindle range (11–16 Hz) for both adolescents and adults 
(Figure 3—figure supplement 1A, right). Importantly, we observed the expected spatial amplitude 
topography with stronger frontal SO and pronounced centroparietal spindles for both age groups 
(Figure 3A left).

Critically, the displayed group averages of the oscillatory residuals (Figure 3—figure supplement 
1A, right) underestimate the interindividual variability of the spindle frequency peak (Figure 3A, right; 
oscillatory residuals for all subjects at Cz). Even though we found the expected systematic spindle 
frequency increase in a frontoparietal cluster from adolescence to adulthood (Figure  3—figure 

adolescents, adults improve their juggling performance across the blocks regardless of group. (C) Schematic representation of the juggling learning 
process parameterization. We used a linear fit across all juggling blocks within a performance test to estimate the learning curve (m) and the task 
proficiency (linear line equation solved for x = 1) for each corresponding performance test. (D) Comparison of the juggling learning curve (mean ± 
standard error of the mean [SEM]) between the sleep-first (blue) and wake-first groups (green) of adolescents (circles) and adults (diamonds) before and 
after the first retention interval to investigate the influence of sleep. Single subject data are plotted in the corresponding group color and age icon. 
Participants in the sleep-first group showed a steeper learning curve than the wake-first group after the first retention interval. (E) Same conventions as 
in (D) but for the task proficiency metric. Adolescents in the wake-first group had better overall task proficiency than adolescents in the sleep-first group. 
Adults in the sleep-first group displayed better overall task proficiency than adults in the wake-first group. (F) Spearman rank correlation between the 
overnight change in task proficiency (post–preretention interval) and the overnight change in learning curve with robust linear trend line collapsed over 
the whole sample. Gray-shaded area indicates 95% confidence intervals of the trend line. Adolescents are denoted as red circles and adults as black 
diamonds. A strong inverse relationship indicated that participants with an improved task proficiency show flatter learning curves.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Additional behavioral results and control analyses.

Figure 2 continued

https://doi.org/10.7554/eLife.66761
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Figure 3. Interindividual variability, slow oscillation (SO)–spindle coupling development, and neural correlates of gross-motor learning dynamics. (A) 
Left: topographical distribution of the 1/f corrected SO and spindle amplitude as extracted from the oscillatory residual (Figure 3—figure supplement 
1A, right). Note that adolescents and adults both display the expected topographical distribution of more pronounced frontal SO and centroparietal 
spindles. Right: single subject data of the oscillatory residual for all subjects with sleep data color coded by age (darker colors indicate older subjects). 
SO and spindle frequency ranges are indicated by the dashed boxes. Importantly, subjects displayed high interindividual variability in the sleep spindle 

Figure 3 continued on next page
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supplement 1B; cluster test: p = 0.002, d = −0.87), both respective age groups showed a high degree 
of variability of the interindividual spindle peak.

Based on these findings, we separated the oscillatory activity from the fractal activity for every 
subject at every electrode position to capture the individual features of SO and sleep spindle oscilla-
tions. We then used the extracted individual features from the oscillatory residuals to adjust SO and 
spindle detection algorithms (Hahn et al., 2020; Helfrich et al., 2018; Mölle et al., 2011; Staresina 
et al., 2015) to account for the spindle frequency peak shift and high interindividual variability. To 
ensure the simultaneous presence of the two interacting sleep oscillations in the signal, we followed 
a conservative approach and restricted our analyses to NREM3 sleep given the low co-occurrence 
rate in NREM2 sleep (Figure 3—figure supplement 1C, D) which can cause spurious coupling esti-
mates (Hahn et al., 2020). Further, we only considered spindle events that displayed a concomitant 
detected SO within a 2.5-s time window.

We identified an underlying SO component (2 Hz low-pass filtered trace) in the spindle peak locked 
averages for adolescents and adults on single subject and group average basis (Figure 3—figure 
supplement 1E), indicating a temporally precise interaction between sleep spindles and SO that is 
clearly discernible in the time domain.

To further assess the interaction between SO and sleep spindles, we computed SO-trough-locked 
time–frequency representations (Figure 3—figure supplement 1F). Adolescents and adults revealed 
a shifting temporal pattern in spindle activity (11–16 Hz) depending on the SO phase. In more detail, 
spindle activity decreased during the negative peak of the SO (‘down-state’) but increased during the 
positive peak (‘up-state’). This temporal pattern and the underlying SO component in spindle event 
detection (Figure 3—figure supplement 1E) confirm the coordinated nature of the two major sleep 
oscillations in adolescents and adults.

Next, we determined the coordinated interplay between SO and spindles in more detail by 
analyzing individualized event-locked cross-frequency interactions (Dvorak and Fenton, 2014; Hahn 
et al., 2020; Helfrich et al., 2019). In brief, we extracted the instantaneous phase angle of the SO 
component (<2 Hz) corresponding to the positive spindle amplitude peak for all trials at every elec-
trode per subject. We assessed the cross-frequency coupling based on z-normalized spindle epochs 
(Figure 3B) to alleviate potential power differences due to age (Figure 3—figure supplement 1A) 
or different EEG-amplifier systems that could potentially confound our analyses (Aru et al., 2015). 
Importantly, we found no amplitude differences around the spindle peak (point of SO-phase readout) 

range and a gradual spindle frequency increase by age that is critically underestimated by the group average of the oscillatory residuals (Figure 3—
figure supplement 1A, right). (B) Spindle peak locked epoch (NREM3, co-occurrence corrected) grand averages (mean ± standard error of the mean 
[SEM]) for adolescents (red) and adults (black). Inset depicts the corresponding SO-filtered (2 Hz lowpass) signal. Gray-shaded areas indicate significant 
clusters. Note, we found no difference in amplitude after normalization. Significant differences are due to more precise SO–spindle coupling in adults. 
(C) Top: comparison of SO–spindle coupling strength between adolescents and adults. Adults displayed more precise coupling than adolescents in 
a centroparietal cluster. T-Scores are transformed to z-scores. Asterisks denote cluster-corrected two-sided p < 0.05. Bottom: Exemplary depiction 
of coupling strength (mean ± SEM) for adolescents (red) and adults (black) with single subject data points. Exemplary single electrode data (bottom) 
is shown for C4 instead of Cz to visualize the difference. (D) Cluster-corrected correlations between individual coupling strength and overnight task 
proficiency change (post–preretention) for adolescents (red, circle) and adults (black, diamond) of the sleep-first group (left, data at C4). Asterisks 
indicate cluster-corrected two-sided p < 0.05. Gray-shaded area indicates 95% confidence intervals of the trend line. Participants with a more precise 
SO–spindle coordination show improved task proficiency after sleep. Note that the change in task proficiency was inversely related to the change in 
learning curve (Figure 2F), indicating that a stronger improvement in task proficiency related to a flattening of the learning curve. Further note that the 
significant cluster formed over electrodes close to motor areas. (E) Cluster-corrected correlations between individual coupling strength and overnight 
learning curve change. Same conventions as in (D). Participants with more precise SO–spindle coupling over C4 showed attenuated learning curves after 
sleep.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Sleep oscillation features and additional SO-spindle coupling analyses.

Figure supplement 2. Supplemental behavioral analyses of the adolescent group, additional coupling strength with behavior correlations, and control 
analyses.

Figure supplement 3. Partial correlations controlling for age, PVT reaction time, and sleep architecture. 

Figure supplement 4. Partial correlations controlling for sleep oscillation event features.

Figure 3 continued
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between adolescents and adults using cluster-based random permutation testing (Figure 3B), indi-
cating an unbiased analytical signal. This was also the case for the SO-filtered (<2 Hz) signal (Figure 3B, 
inset). Critically, the significant differences in amplitude from −1.4 to −0.8 s (p = 0.023, d = −0.73) 
and 0.4–1.5 s (p < 0.001, d = 1.1) are not caused by age-related differences in power or different EEG 
systems but instead by the increased coupling strength (i.e., higher coupling precision of spindles 
to SOs) in adults giving rise to a more pronounced SO-wave shape when averaging across spindle 
peak locked epochs. Further, we specifically focused our analyses on spindle events to account for 
the higher variability in the spindle frequency band than in the SO band (Figure 3A). Based on these 
adjusted phase values, we derived the coupling strength defined as 1 − circular variance. This metric 
describes the consistency of the SO–spindle coupling (i.e., higher coupling strength indicates more 
precise coupling) and has previously been shown to accurately track brain development and memory 
formation (Hahn et al., 2020). As expected, adults had a higher coupling strength in a centroparietal 
cluster than adolescents (Figure 3C; cluster test: p < 0.001, d = 0.88), indicating a more precise inter-
play between SO and spindles during adulthood.

SO–spindle coupling tracks gross-motor learning
After demonstrating that SO–spindle coupling becomes more precise from early adolescence to 
adulthood, we tested the hypothesis, that the dynamic interaction between the two sleep oscillations 
explains the dynamic process of complex gross-motor learning. When taking the behavioral analyses 
into account, we did not find any evidence for a difference between the two age groups on the impact 
of sleep on the learning curve (Figure 2D). Therefore, we did not differentiate between adolescents 
and adults in our correlational analyses. Furthermore, given that we only recorded PSG for the adults 
in the sleep-first group and that adolescents in the wake-first group showed enhanced task proficiency 
at the time point of the sleep retention interval due to additional training (Figure 3—figure supple-
ment 2A), we only considered adolescents and adults of the sleep-first group to ensure a similar 
level of juggling experience (for summary statistics of sleep architecture and SO and spindle events 
of subjects that entered the correlational analyses; see Supplementary file 1—table 7). Notably, 
we found no differences in electrophysiological parameters (i.e., coupling strength, event detection) 
between the adolescents of the wake-first and sleep-first groups (Figure 3—figure supplement 2B 
and Supplementary file 1—table 8). To investigate whether coupling strength in the night of the first 
retention interval explains overnight changes of task proficiency (postretention interval 1 − prereten-
tion interval 1), we computed cluster-corrected correlation analyses. We identified a significant central 
cluster (Figure 3D; mean rho = 0.37, p = 0.017), indicating that participants with a more consistent 
SO–spindle interplay have stronger overnight improvements in task proficiency.

Given that we observed a strong negative correlation between task proficiency at a given time 
point and the steepness of the subsequent learning curve (Figure 2F) as subjects improve but do 
not reach ceiling level performance, we conversely expected a negative correlation between learning 
curve and coupling. Given this dependency, we observed a significant cluster-corrected correlation 
at C4 (Figure 3E; rhos = −0.45, p = 0.039, cluster-corrected), showing that participants with a more 
precise SO–spindle coupling exhibit a flatter learning curve overnight. This observation is in line with a 
trade-off between proficiency and learning curve, which exhibits an upper boundary (100% task profi-
ciency). In other words, individuals with high performance exhibit a smaller gain through additional 
training when approaching full task proficiency.

Critically, when computing the correlational analyses separately for adolescents and adults, we 
identified highly similar effects at electrode C4 for task proficiency (Figure 3—figure supplement 2C) 
and learning curve (Figure 3—figure supplement 2D) in each group. These complementary results 
demonstrate that coupling strength predicts gross-motor learning dynamics in both, adolescents and 
adults, and further shows that this effect is not solely driven by one group. Furthermore, our results 
remained consistent when including coupled spindle events in NREM2 (Figure 3—figure supplement 
2E) and after outlier removal (Figure 3—figure supplement 2F, G).

To rule out age as a confounding factor that could drive the relationship between coupling 
strength, learning curve and task proficiency in the mixed sample, we used cluster-corrected partial 
correlations to confirm their independence of age differences (task proficiency: mean rho = 0.40, p = 
0.017; learning curve: rhos = −0.47, p = 0.049). Additionally, given that we found that juggling perfor-
mance could underlie a circadian modulation we controlled for individual differences in alertness 
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between subjects due to having just slept. We partialed out the mean PVT reaction time before the 
juggling performance test after sleep from the original analyses and found that our results remained 
unchanged (task proficiency: mean rho = 0.37, p = 0.025; learning curve: rhos = −0.49, p = 0.040). 
For a summary of the reported cluster-corrected partial correlations as well as analyses controlling 
for differences in sleep architecture, see Figure 3—figure supplement 3. Further, we also confirmed 
that our correlations are not influenced by individual differences in SO and spindle event parameters 
(Figure 3—figure supplement 4).

Finally, we investigated whether subjects with high coupling strength have a gross-motor learning 
advantage (i.e., trait effect) or a learning-induced enhancement of coupling strength is indicative 
for improved overnight memory change (i.e., state effect). First, we correlated SO–spindle coupling 
strength obtained from the adaptation night with the coupling strength in the learning night. We 
found that overall, coupling strength is highly correlated between the two measurements (mean rho 
across all channels = 0.55, Figure 3—figure supplement 2H), supporting the notion that coupling 
strength remains rather stable within the individual (i.e., trait). Second, we calculated the difference in 
coupling strength between the learning night and the adaptation night to investigate a possible state 
effect. We found no significant cluster-corrected correlations between coupling strength change and 
task proficiency—as well as learning curve change (Figure 3—figure supplement 2I).

Collectively, these results indicate the regionally specific SO–spindle coupling over central EEG 
sensors encompassing sensorimotor areas precisely indexes learning of a challenging motor task.

Discussion
By comparing adolescents and adults learning a complex juggling task, we critically advance our 
previous work about the intricate interplay of learning and memory formation, brain maturation, and 
coupled sleep oscillations: First, we demonstrated that SO–spindle interplay precision is not only 
enhanced from childhood to late adolescence but also progressively improves from early adoles-
cence to young adulthood (Figure 3C). Second and more importantly, we provide first evidence that 
the consistency of SO–spindle coordination is a promising model to track real-life gross-motor skill 
learning in addition to its key role in declarative learning (Figure 3D, E). Notably, this relationship 
between coupling and learning occurred in a regional specific manner and was pronounced over 
frontal areas for declarative and over motor regions for procedural learning (Hahn et  al., 2020). 
Collectively, our results suggest that precise SO–spindle coupling supports gross-motor memory 
formation by integrating information from subcortical memory structures to cortical networks.

How do SO–spindle interactions subserve motor memory formation? Motor learning is a process 
relying on complex spatial and temporal scales in the human brain. To acquire motor skills the brain 
integrates information from extracortical structures with cortical structures via cortico-striato-thalamo-
cortico loops and cortico-cerebello-thalamo-cortico circuits (Dayan and Cohen, 2011; Doyon and 
Benali, 2005; Doyon et al., 2018; Pinsard et al., 2019). However, growing evidence also advocates 
for hippocampal recruitment for motor learning, especially in the context of sleep-dependent memory 
consolidation (Albouy et al., 2013; Boyke et al., 2008; Draganski et al., 2004; Pinsard et al., 2019; 
Sawangjit et al., 2018; Schapiro et al., 2019). Hippocampal memory reactivation during sleep is one 
cornerstone of the active systems consolidation theory, where coordinated SO–spindle activity route 
subcortical information to the cortex for long-term storage (Diekelmann and Born, 2010; Helfrich 
et al., 2019; Klinzing et al., 2019; Ngo et al., 2020). Quantitative markers of spindle and SO activity 
but not the quality of their interaction have been frequently related to motor memory in the past 
(Barakat et al., 2011; Bothe et al., 2019; Bothe et al., 2020; Huber et al., 2004; Morita et al., 2012; 
Nishida and Walker, 2007; Tamaki et al., 2008). Our results now complement the active systems 
consolidation theories’ mechanistic assumption of interacting oscillations by demonstrating that a 
precise SO–spindle interplay subserves gross-motor skill learning (Figure 3D, E). Of note, we did not 
derive direct hippocampal activity in the present study given spatial resolution of scalp EEG record-
ings. Nonetheless, as demonstrated recently, coupled spindles precisely capture corticohippocampal 
network communication as well as hippocampal ripple expression (Helfrich et al., 2019). Thus, higher 
SO–spindle coupling strength supporting gross-motor learning in our study points toward a more 
efficient information exchange between hippocampus and cortical areas.

Remarkably, hippocampal engagement is especially crucial at the earlier learning stages. Recently, 
it has been found that untrained motor sequences exhibit hippocampal activation that subsides for 
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more consolidated sequences. This change was further accompanied by increased motor cortex acti-
vation, suggesting a transformative function of sleep for motor memory (Pinsard et al., 2019). In 
other words, hippocampal disengagement likely indexes the transition from the fast learning stage 
to the slower learning stage with more proficient motor skill (Dayan and Cohen, 2011; Doyon and 
Benali, 2005). The dynamics of the two interacting learning stages of motor skill acquisition are likely 
reflected by the inverse relationship between task proficiency increases and learning curve attenua-
tion (Figure 2F). Given that our subjects did not reach asymptotic performance level (Figure 2A, B) 
and that SO–spindle coupling tracks gross-motor skill learning dynamics as it relates to both, learning 
curve attenuation and task proficiency increments, it is plausible that SO-coupling strength represents 
the extent of hippocampal support for integrating information to motor cortices during complex 
motor skill learning.

Interestingly, SO and spindles are not only implicated in hippocampal–neocortical network commu-
nication but are also indicative for activity and information exchange in subcortical areas that are 
more traditionally related to the shift from fast to slow motor learning stages. For example, striatal 
network reactivation during sleep was found to be synchronized to sleep spindles, which predicted 
motor memory consolidation (Fogel et  al., 2017). In primates, coherence between M1 and cere-
bellum in the SO and spindle frequency range suggested that coupled oscillatory activity conveys 
information through cortico-thalamo-cerebellar networks (Xu et al., 2021). One testable hypothesis 
for future research is whether SO–spindle coupling represents a more general gateway for the brain to 
exchange subcortical and cortical information and not just hippocampal–neocortical communication.

Critically, we found that the consistency of the SO–spindle interplay identified at electrodes over-
lapping with motor areas such as M1 was predictive for the gross-motor learning process (Figure 3D, 
E). This finding corroborates the idea that SO–spindle coupling supports the information flow between 
task-relevant subcortical and cortical areas. Recent evidence in the rodent model demonstrated that 
neural firing patterns in M1 during spindles became more coherent after performing a grasping motor 
task. The extent of neural firing precision was further mediated by a function of temporal proximity 
of spindles to SOs (Silversmith et al., 2020). Through this synchronizing process and their Ca2+ influx 
propagating property, coupled spindles are likely to induce neural plasticity that benefits motor 
learning (Niethard et al., 2018).

How ‘active’ is sleep for real-life gross-motor memory consolidation? We found that sleep impacts 
the learning curve but did not affect task proficiency in comparison to a wake retention interval 
directly after learning (Figure 2D, E). Three accounts might explain the absence of a sleep effect on 
task proficiency. (1) Sleep rather stabilizes than improves gross-motor memory, which is in line with 
previous gross-motor adaption studies (Bothe et al., 2019; Bothe et al., 2020). This parallels findings 
in finger tapping tasks were the narrative evolved from sleep-related performance improvements 
(Walker et al., 2002) to stabilization (Brawn et al., 2010). (2) Presleep performance is critical for sleep 
to improve motor skills (Wilhelm et  al., 2012). Participants commonly reach asymptotic presleep 
performance levels in finger tapping tasks, which is most frequently used to probe sleep effects on 
motor memory. Here, we found that using a complex juggling task, participants do not reach asymp-
totic ceiling performance levels in such a short time. Indeed, the learning progression for the sleep-
first and wake-first groups followed a similar trend (Figure 2A, B), suggesting that more training and 
not in particular sleep drove performance gains. (3) Sleep effects are intermingled with time of day 
effects on juggling performance. Indeed, the steeper learning curve after the first retention interval 
in the sleep-first group can also be interpreted as a time of day effect. However, when modeling time 
of day and sleep specific effects across all performance blocks, we found a trend that sleep after 
learning supports task proficiency. Note, that the correlative nature of both factors in the model likely 
resulted in insufficient statistical power to produce independently significant results. Additionally, we 
did not find evidence for a circadian modulation of cognitive engagement based on objective reaction 
time data in our study (Figure 2—figure supplement 1C). However, a null-result does not exclude 
all possible circadian effects and ample evidence suggests that cognitive performance and motor 
learning are influenced by the time of day (Blatter and Cajochen, 2007; Keisler et al., 2007; Tandoc 
et al., 2021). Therefore, we cannot fully disentangle circadian and sleep effects with our study design, 
which should be considered a limitation to our findings.

Importantly, SO–spindle coupling still predicted learning dynamics on a single subject level advo-
cating for a supportive function of sleep for gross-motor memory. Moreover, we found that SO–spindle 
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coupling strength remains remarkably stable between two nights, which also explains why a learning-
induced change in coupling strength did not relate to behavior (Figure 3—figure supplement 2I). 
Thus, our results primarily suggest that strength of SO–spindle coupling correlates with the ability to 
learn (trait), but does not solely convey the recently learned information. Note that state and traits 
effects are not mutually exclusive. The overlap of state and trait effects is a long-standing issue in 
spindle literature, which also seems so apply to their coordinated interplay with SOs (Lustenberger 
et al., 2015; Schabus et al., 2006). This set of findings is in line with recent ideas that strong coupling 
indexes individuals with highly efficient subcortical–cortical network communication (Helfrich et al., 
2021).

This subcortical–cortical network communication is likely to be refined throughout brain devel-
opment, since we discovered elevated coupling strength in adults compared to early adolescents 
(Figure 3C). This result compliments our earlier findings of enhanced coupling precision from child-
hood to adolescence (Hahn et  al., 2020) and the recently demonstrated lower coupling strength 
in preschool children (Joechner et al., 2021). We speculate that, similar to other spindle features, 
the trajectory of SO-coupling strength is likely to reach a plateau during adulthood (Nicolas et al., 
2001; Purcell et al., 2017). Importantly, we identified similar methodological challenges to assess 
valid cross-frequency coupling estimates in the current cross-sectional study to the previous longitu-
dinal study. Age severely influences fractal dynamics in the brain (Figure 3—figure supplement 1A) 
and the defining features of sleep oscillations (Figure 3, Figure 3—figure supplement 1B). Remark-
ably, interindividual oscillatory variability was pronounced even in the adult age group (Figure 3A), 
highlighting the critical need to employ individualized cross-frequency coupling analyses to avoid its 
pitfalls (Aru et al., 2015; Muehlroth and Werkle-Bergner, 2020).

Taken together, our results provide a mechanistic understanding of how the brain forms real-life 
gross-motor memory during sleep. However, how time of day additionally affects and interacts with 
sleep to support gross-motor learning remains an open question. As sleep has been shown to support 
fine-motor memory consolidation in individuals after stroke (Gudberg and Johansen-Berg, 2015; 
Siengsukon and Boyd, 2008), SO–spindle coupling integrity could be a valuable, easy to assess 
predictive index for rehabilitation success.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Software, 
algorithm

Brain Vision Analyzer 
2.2

Brain Products  
GmbH https://www. 
brainproducts.com RRID:SCR_002356  �

Software, 
algorithm CircStat 2012

Berens, 2009 https://
philippberens. 
wordpress.com/ 
code/circstats/ RRID:SCR_016651  �

Software, 
algorithm EEGLAB 13_4_4b

Delorme and Makeig, 2004  
https://sccn. 
ucsd.edu/eeglab/ 
index.php RRID:SCR_007292  �

Software, 
algorithm FieldTrip 20161016

Oostenveld et al., 2011  
http://www. 
fieldtriptoolbox.org/ RRID:SCR_004849  �

Software, 
algorithm IRASA

Wen and Liu, 2016 https://purr. 
purdue.edu/ 
publications/1987/1  �

Software, 
algorithm MATLAB 2017a MathWorks Inc RRID:SCR_001622  �

Software, 
algorithm RStudio RStudio Team RRID:SCR_000432  �
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Software, 
algorithm Somnolyzer 24 × 7

Koninklijke Philips N.V.
https://www.philips.co.in  �

Other
‘Jonglieren und 
Bewegungskünste’

Sobota and Hollauf, 2013 
Austrian ministry of Sports Juggling video instructions

 Continued

Participants
We recruited 29 adolescents (mean ± SD age, 13.17 ± 0.85 years; 5 females, 24 males) from a local 
boarding school and 41 young adults (mean ± SD age, 22.24 ± 2.15 years; 16 females, 25 males) from 
the student population of the University of Salzburg. All participants were healthy, right-handed and 
without prior juggling experience. However, we excluded one adolescent for all analyses post hoc for 
violating the prior juggling experience criteria. Two adolescents did not participate in the third perfor-
mance test. We randomly divided adolescents and adults into a sleep-first (adolescents: N = 17, 12.94 
± 0.75 years; 3 females, 14 males; adults: N = 25, 21.95 ± 2.42 years; 8 females, 17 males) and a wake-
first group (adolescents: N = 11, 13.36 ± 0.81 years; 2 females, 9 males; adults: N = 16, 22.69 ± 1.62 
years; 8 females, 8 males). See experimental design for more detailed information about the groups. 
We recorded PSG during full night sleep for all participants except adults in the wake-first group. 
Therefore, comparison of electrophysiological data between adults and adolescents was based on the 
adult sleep-first group and both adolescent groups. To ensure similar juggling learning experience, we 
only included adults and adolescents in the sleep-first group when analyzing the relationship between 
electrophysiological measures and behavioral performance. All participants and the legal custodians 
of the adolescents provided written informed consent before participating in the study. The study 
protocol was conducted in accordance with the Declaration of Helsinki and approved by the ethics 
committee of the University of Salzburg (EK-GZ:16/2014). Adults received monetary compensation or 
student credit for their participation. Adolescents received a set of juggling balls.

Experimental design
Adults in the sleep-first group visited the sleep laboratory on three occasions (Figure 1). At the first 
day subjects slept in the sleep lab with full night PSG for adaptation purposes. On the second visit, 
subjects learned and practiced juggling by video instructions in the evening (8.45 pm to 9.45 pm). 
Juggling performance was assessed three times in total. The first performance test was conducted 
after the training session (10.00 pm to 10.18 pm). The second performance test (7.30 am to 7.48 am) 
took place after the first retention interval containing a full night of sleep with PSG (11 pm to 7 am). 
The third and last performance tests were executed after the second retention interval (9.00 pm to 
9.18 pm) containing wakefulness. Adults in the wake-first group followed a similar protocol but with 
reversed order of the retention intervals (i.e., first retention interval containing wakefulness and the 
second interval containing sleep). Therefore, participants performed the juggling training (10.15 am 
to 11.15 am) and the first performance test (11.30 am to 11.48 am) in the morning, the second perfor-
mance test after wakefulness (9.00 pm to 9.18 pm), and the third performance test after sleep (11.00 
am to 11.18 am). We did not record PSG in the wake-first group because participants slept at home. 
To objectively assess attentiveness and potential circadian influences, all participants completed a 
psychomotor vigilance task (Dinges and Powell, 1985) before the performance tests. Actigraphy 
(Cambridge Neurotechnology Actiwatch, Cambridge, UK) and a sleep log (Saletu et al., 1987) veri-
fied compliance with a regular sleep schedule throughout the study.

Adolescents went through a study protocol comparable to the adults. However, we adjusted the 
protocol to adhere to the schedule of the boarding school and to control the training load. First, we 
recorded ambulatory PSG for both groups in their habitual sleep environment at the boarding school 
and second, we reduced the number of juggling blocks during the performance tests (for details see 
gross-motor task) because the study regime was already exhausting for our adult participants and we 
wanted to avoid a too excessive training load. The sleep-first group performed the juggling training 
(6.30 pm to 7.30 pm) and performance test in the evening (7.45 pm to 7.58 pm) followed by a reten-
tion interval containing sleep (21.00 pm to 6.00 am). The second performance test was conducted 
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after sleep (7.30 am to 7.43 am) and the third performance test after wakefulness (7.30 pm to 7.43 
pm). The wake-first group learned to juggle (7.30 am to 8.30 am) with a subsequent performance test 
(8.45 am to 8.58 am) in the morning. The second performance test was executed after wakefulness 
in the evening (7.30 pm to 7.43 pm) and the third performance test was completed after sleep (7.30 
am to 7.43 am).

Gross-motor task
To investigate the involvement of SO–spindle coupling in acquiring a real-life gross-motor skill, we 
implemented a juggling paradigm, which has been shown to induce neural plasticity (Boyke et al., 
2008; Draganski et al., 2004) and to be sensitive for sleep-dependent memory consolidation (Morita 
et al., 2012; Morita et al., 2016). Adults and adolescents completed the same juggling training, 
which was based on short video clips from the ‘Juggling and Movement Arts’ DVD (‘Jonglieren und 
Bewegungskünste’; Sobota and Hollauf, 2013) containing step-by-step instructions from the correct 
stance to a full five-ball cascade (i.e., five continuous catches). We used 14 video clips demonstrating 
the exercises followed by a practice opportunity for the participants. The training session lasted 
approximately 1 hr with a short break after half an hour. During the performance tests, participants 
were instructed to juggle as accurately and continuously as possible. Adults juggled for five blocks a 
3 min, which was always separated by a 30-s break. To alleviate the physical strain, adolescents only 
juggled for three blocks a 3 min during the performance tests. Training and performance tests were 
videotaped to evaluate the juggling performance.

Parameterizing juggling performance
We evaluated the juggling performance by counting consecutive catches based on the video material. 
We used the number of three-ball cascades (i.e., three catches in a row, Figure 2A, B) as index for 
juggling performance by dividing the number of consecutive catches by three. We opted for three-ball 
cascades as a performance index because we considered three consecutive catches as the criteria for 
the motor task to qualify as juggling (Boyke et al., 2008; Draganski et al., 2004). Because juggling is 
a complex motor task where it is unlikely to reach ceiling level performance, we were interested in the 
progression of the learning process and how it is influenced by task proficiency. Therefore, we calcu-
lated a first-degree polynomial fit using the least-squares method to parameterize the learning curve 
(m, slope) per performance test block (Figure 2A, B, black lines and Figure 2C, D), using the formula:

	﻿‍
m =

∑n
i=1

(
xi−X́

)
∗
(

yi−Ý
)
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)
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Next, we calculated the intercept c according to the following formula:

	﻿‍ c = Ý − m ∗ X́ ‍�

Finally, task proficiency (y1, Figure 2E) was estimated at the first time point of each performance 
test as

	﻿‍ y1 = m + c‍�

PSG and sleep staging
We recorded PSG with two systems. We conducted the ambulatory sleep recordings of the adoles-
cents with a portable amplifier system (Alphatrace, Becker Meditec, Karlsruhe, Germany) with a 
sampling rate of 512 Hz. For in lab recordings of the adult participants, we utilized a 32-channel 
Neuroscan amplifier system (Scan 4.3.3 Software, Neuroscan Inc, Charlotte, NC) with a sampling 
rate of 500 Hz. Electrode placement was identical between the two recording systems and in accor-
dance with the 10–20 system. Signals were recorded with gold cup electrodes placed at F3, Fz, F4, 
C3, Cz, C4, P3, Pz, P4, O1, and O2 on the scalp, as well as at A1 and A2 placed at the mastoids. To 
allow for sleep staging and to control for muscle artifacts, we recorded an electromyogram (bipolar 
electrodes at the musculus mentalis), a horizontal electrooculogram (EOG, above the right outer 
canthus and below the left outer canthus) and a vertical EOG (above and below the left eye). We 
used Cz as online reference and AFz as ground electrode. For sleep staging, we re-referenced the 
signal offline against contralateral mastoids. Sleep was semi-automatically staged in 30-s epochs 

https://doi.org/10.7554/eLife.66761
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using the Somnolyzer 24 × 7 algorithm (Koninklijke Philips N.V.; Eindhoven, The Netherlands) and 
subsequently controlled by an expert scorer according to standard sleep staging criteria (Iber et al., 
2007). For all other data analyses, we demeaned and re-referenced the EEG signal to a common 
average.

Individualized cross-frequency coupling
To assess the precise interplay between SO and spindles, we used the same individualized cross-
frequency coupling pipeline we developed earlier in order to account for network changes induced 
by aging, that are known to cause spurious coupling estimates (Aru et al., 2015; Cole and Voytek, 
2017; Hahn et al., 2020; Scheffer-Teixeira and Tort, 2016). In brief, our approach was based on the 
following principles: (1) establishing the presence of sleep oscillations, (2) individually detecting tran-
sient oscillatory events, (3) alleviating power differences, and (4) ensuring co-occurrence of SO (phase 
providing signal) and sleep spindles (amplitude providing signal).

Establishing sleep oscillations
First, we z-normalized the EEG signal in the time domain to mitigate prominent power differ-
ences and computed averaged power spectra from 0.1 to 30  Hz using a Fast Fourier Transform 
(FFT) routine with a Hanning window on 15 s of continuous NREM sleep (i.e., NREM2 and NREM3, 
Figure 3—figure supplement 1A, left) with a 1-s sliding window. Data are presented in the semi-log 
space. Next, we sought to isolate the oscillatory activity in the normalized data by means of irreg-
ular autospectral analysis (IRASA, Wen and Liu, 2016). We first derived the 1/f fractal component 
(Figure 3—figure supplement 1A, middle) from 15 s NREM sleep data in 1-s sliding steps and subse-
quently subtracted it from the power spectrum (Figure 3—figure supplement 1A, left) to obtain an 
unbiased estimate of the oscillatory activity for every subject on every electrode (Figure 3—figure 
supplement 1A, right and Figure 3A). To separate the 1/f component from the power spectrum, we 
used the same parameters as specified previously (Hahn et al., 2020). In short, the signal is stretched 
and compressed by the same noninteger factor (e.g., stretching by a factor of 1.1 and compressing 
by a factor of 0.9). We repeated the resampling with factors from 1.1 to 1.9 in 0.05 steps. This pair 
wise stretching and compressing systematically causes frequency peak shifts in the regular oscilla-
tory activity but leaves the more random 1/f background activity unaffected. Because the oscillatory 
activity becomes faster by a similar factor as it becomes slower, the oscillatory activity is averaged 
out by median averaging across all pair wise resampled segments thus extracting the 1/f component. 
We then detected individual SO (<2 Hz) and spindle peak frequencies (10–17 Hz, Figure 3—figure 
supplement 1B) and the corresponding 1/f corrected amplitude (Figure 3A, left) in the oscillatory 
residual (Figure 3—figure supplement 1A, right). We considered the highest peak within the spec-
ified SO and spindle frequency ranges above as the most representative oscillatory event in each 
electrode. We then utilized the individual frequency peaks to inform the algorithms for discrete SO 
and spindle event detection.

Individually detecting transient oscillatory events
We employed widely used spindle and SO detection algorithms (Helfrich et al., 2018; Mölle et al., 
2011; Staresina et  al., 2015) and adjusted them according to the 1/f corrected SO and spindle 
features for a fully individualized event detection (Hahn et al., 2020).

We detected spindle events (Figure 3, Figure 3—figure supplement 1E) by band-pass filtering 
the continuous signal ±2  Hz around the individual spindle peak per electrode. After filtering, we 
computed the instantaneous amplitude via a Hilbert transform. Next, we smoothed the signal with 
a running average in a 200-ms window. A sleep spindle was detected, when the signal exceeded 
the 75-percentile amplitude criterion for a time span of 0.5–3 s. We segmented the raw data ±2.5 s 
centered on the positive spindle peak.

We detected SO events (Figure 3—figure supplement 1F) by first high-pass filtering the contin-
uous EEG signal at 0.16  Hz and then low-pass filtering at 2  Hz. Based on the filtered signal, we 
detected the zero-crossings that fulfilled the time criterion (length 0.8–2 s). The signal between two 
consecutive zero-crossings was considered a valid SO if its amplitude exceeded the 75-percentile 
threshold. We then segmented the raw data ±2.5 s centered on the negative peak.

https://doi.org/10.7554/eLife.66761
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Alleviating power differences
Power differences in the signal can systematically impact cross-frequency coupling measures by 
changing the signal-to-noise ratio, which in turn influences the precision of the phase estimation 
of the signal (Aru et  al., 2015; Scheffer-Teixeira and Tort, 2016). Because power decreases are 
apparent across the lifespan (Campbell and Feinberg, 2009; Campbell and Feinberg, 2016; Hahn 
et al., 2020; Helfrich et al., 2018), we z-normalized all detected SO and spindle events in the time 
domain to alleviate this possible confound before calculating phase-amplitude coupling measures 
(Figure 3B).

Ensuring co-occurrence of SO and sleep spindles
Cross-frequency coupling renders meaningful information of network communication only when the 
suspected interacting oscillations are present in the signal. Therefore, we only analyzed SO and sleep 
spindle epochs during which they co-occurred in a 2.5-s time window (±~2 SO cycles around the 
spindle peak). Furthermore, we restricted all our coupling analyses to sleep stage NREM3 because 
of general lower co-occurrence of SO and spindles in NREM2 (Figure 3—figure supplement 1C, D), 
which can cause spurious coupling estimates (Hahn et al., 2020).

Event-locked cross-frequency coupling
To parameterize the timed coordination between sleep spindles and SO (Figure 3C), we computed 
event-locked cross-frequency coupling analyses (Dvorak and Fenton, 2014; Hahn et  al., 2020; 
Helfrich et  al., 2019; Helfrich et  al., 2018; Staresina et  al., 2015) based on individualized and 
normalized spindle peak-locked segments. In short, we used a low-pass filter of 2 Hz to extract the 
underlying SO component (Figure  3B, inset) from the EEG signal and read out the phase angle 
corresponding with the sleep spindle peak after applying a Hilbert transform. We then calculated the 
coupling strength, which is defined as 1 − circular variance using the CircStat Toolbox function circ_r 
(Berens, 2009) to assess the consistency of the SO–sleep spindle interplay.

Time–frequency analyses
We computed event-locked time–frequency representations based on −2 to 2  s epochs centered 
on the negative SO peak (Figure 3—figure supplement 1F). We used a 500-ms Hanning window 
in 50-ms steps to analyze the frequency power from 5 to 30 Hz in steps of 0.5 Hz. We subsequently 
baseline corrected the time–frequency representations by z-scoring the data based on the means and 
SDs of a bootstrapped distribution (10,000 iterations) for the –2- to −1.5-s time interval of all trials 
(Flinker et al., 2015; Helfrich et al., 2018).

Statistical analyses
To compare juggling performance between the sleep-first and wake-first group and to assess the 
learning progression, we computed mixed ANOVAs with the between factor condition group (sleep-
first, wake-first) and the repeated measure factor juggling blocks. Because number of juggling blocks 
differed between adolescents (9, Figure 2A) and adults (15, Figure 2B), we analyzed the juggling 
performance separately per age group. Influence of sleep on learning curve (Figure 2D) and task 
proficiency (Figure 2E) was assessed by a mixed ANOVA with the between factors condition group 
(sleep-first, wake-first) and age group (adolescents, adults) and the repeated factor performance 
test (preretention interval 1, postretention interval 1). To correct for multiple comparisons we clus-
tered the data in the frequency (Figure  3—figure supplement 1A), time (Figure  3B), and space 
domain (Figure  3, Figure  3—figure supplement 1B), using cluster-based random permutation 
testing (Monte-Carlo method, cluster alpha 0.05, max size criterion, 1000 iterations, critical alpha 
level 0.05 two-sided; Maris and Oostenveld, 2007). Given our sparse sampling of only 11 scalp 
electrodes, we set the minimum number of neighborhood electrodes required to be included in the 
clustering algorithm to zero. For correlational analyses we utilized Spearman rank correlations (rhos; 
Figure 2F and Figure 3D, E) to mitigate the impact of possible outliers as well as cluster-corrected 
Spearman rank correlations by transforming the correlation coefficients to t-values (p < 0.05) and 
clustering in the space domain (Figure 3D, E). Linear trend lines were calculated using robust regres-
sion. To control for possible confounding factors we computed cluster-corrected partial rank correla-
tions (Figure 3—figure supplements 3 and 4). We report partial eta squared (η2), Cohen’s d (d) and 
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averaged Spearman correlation coefficients (mean rho) as effect sizes. Cluster effect sizes are esti-
mated by first calculating Cohen’s d for every data point in the significant cluster and subsequently 
averaging across the obtained values.

Data analyses
We used functions from the Fieldtrip toolbox (Oostenveld et al., 2011), EEGlab toolbox (Delorme 
and Makeig, 2004), CircStat toolbox (Berens, 2009), and custom written code implemented in 
MatLab 2015a (Mathworks Inc) for data analyses. IRASA (Wen and Liu, 2016) was conducted using 
code obtained from the original research paper.
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