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Abstract 

 

A wide range of methods have advanced our understanding of the neural mechanisms underlying 

human memory function. For decades, the lesion approach served as the gold standard in 

localizing function and establishing causal relationships between anatomy and behavior. In the 

past 30 years, a wealth of evidence from neuroimaging (PET and functional MRI) and 

neurophysiological studies (MEG, scalp EEG, intracranial EEG and single unit recordings) has      

provided more detailed insights into the functional mechanisms of large-scale neuronal networks 

that enable memory formation. In addition, methodological advances in our ability to alter brain 

activity through electrical or magnetic stimulation has offered new insights into the role of such 

activity in causally modulating memory encoding, consolidation and retrieval. Here we review 

each of these methodological approaches and their strengths and weaknesses in addressing 

theoretical issues in memory research.       
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1. Introduction 

 

Memory constitutes one of the most powerful cognitive faculties of the human brain. Memory 

formation and recall constitute complex processes that have experimentally and theoretically 

been divided into several core concepts and principles (Chapter 1/2), including encoding, (re-

)consolidation and retrieval. Memory is typically grouped into declarative or procedural memory 

systems with further divisions made according to the assumed function including working 

memory and short-term and long-term memory. The theoretical combinations of these concepts 

already indicates that memory is a high-dimensional process with numerous facets. In this 

chapter, we review cognitive neuroscience approaches to study memory. We review several 

approaches, discuss their advantages and (dis-) advantages and highlight what a specific method 

contributes to our understanding in terms of ‘where’, ‘when’ and ‘how’ memory processing 

occurs in the human brain. Despite a surge of methods that range from single unit to whole-brain 

recordings at temporal resolution that range from µs to hours, no single method is able to fully 

address how all memory systems operate. Therefore, we also discuss evidence from multimodal 

investigations and review several novel analytical tools that integrate insights from multimodal 

imaging into the function of human memory. Note that we do not provide an exhaustive list of 

studies that have utilized a given method, but highlight several seminal findings that demonstrate 

how a specific method can be used to dissect the ‘where’, ‘when’ and ‘how’ of memory 

processes.  We do not distinguish different memory concepts, such as declarative, procedural, 

episodic or working memory, but take a methods-centric perspective to describe how different 

aspects of memory can be studied using tools from cognitive neuroscience.  
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2. A convergent approach: Cognitive neuroscience tools to study human memory 

 

The study of human memory is inextricably associated with the neuropsychological lesion 

approach (Rorden & Karnath, 2004). Over the last few centuries, the systematic assessment of 

cognitive deficits in patients with circumscribed brain lesions has provided important insights 

into the functional organization of the human brain (Scoville & Milner, 1957; Szczepanski & 

Knight, 2014). Prior to modern day neuroimaging, this approach provided the only opportunity 

to establish a direct causal link between anatomy and cognition.  

 The history of human memory research might have taken a different turn if neurosurgeon 

William Scoville had not removed both hippocampi in one patient to treat his seizure disorder. 

While surgery reduced the number of seizures, it also left the patient permanently unable to form 

new memories. Over the next few decades, neuropsychologists Brenda Milner and Suzanne 

Corkin studied the case of Henry Molaison, or patient H. M., in great detail and their findings 

provided fundamental insights into how human memory systems are organized (Corkin, 2002; 

Scoville & Milner, 1957; Squire, 2009). For instance, they demonstrated that H. M. suffered 

from anterograde as well as retrograde amnesia impacting his episodic memory as well as new 

semantic learning, but his procedural memory and working memory systems remained largely 

intact. 

 However, there are numerous brain lesions outside the medial temporal lobe that can cause 

memory disorders (Figure 1). The detailed study of different patient cohorts has shown that 

memory capacity is distributed across large-scale cortical networks, with different nodes 

supporting distinct functions. For example, memory loss can also be caused by neocortical 

lesions (e.g. trauma, ischemic strokes), circumscribed subcortical lesions (e.g. degeneration of 
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mammillary bodies caused by nutritional thiamine deficiency resulting in Korsakoff syndrome), 

or neurodegenerative diseases that impact large-scale brain networks such as Alzheimer’s (see 

Chapters 9.2 “Alzheimer’s Disease Pathology and Cognition: Normal Aging to Clinical 

Dementia”). Hence, the etiology of memory disorders is diverse, and over the decades careful 

clinical observations provided the only means to develop a neurocognitive model of memory.   

 
Figure 1 

 

Memory Disorders. (A) Shrunken mammillary bodies (red arrow) in Korsakoff’s amnesia due 
to thiamine deficiency. (B) Hippocampal infarction due to occlusion of the posterior cerebral 
artery (green arrow). (C) Global atrophy in Alzheimer’s disease.  Disease typically presents with 
anterograde amnesia due to initial pathology in the entorhinal cortex. (D) Bilateral hemorrhagic 
damage to both temporal lobes in a fatal traumatic brain injury (green arrows). Survivors have 
residual memory deficits. (E) Glutamate mediated loss of CA1 neurons due to hypoxia (red 
arrow). (F) Destruction of both temporal lobes in a survivor of Herpes Simplex encephalitis (red 
arrows).  
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There are numerous methods now available to study human memory, which differ in several 

important ways. While some methods are more suitable to localize function to a given 

anatomical structure, others offer the advantage of tracing the precise temporal evolution of 

neural processing that underlies memory formation.  

Here, we group the most important methods into those that provide correlative or causal 

evidence. For instance, with the rise of modern day whole-brain neuroimaging by means of 

functional magnetic resonance imaging (fMRI) and positron-emission tomography (PET) in the 

1990s, the lesion approach became less important as a localizer tool, but is still being used to 

establish causality as reviewed below.  

 

2.1 Correlation vs. Causality 

 

Correlative methods: 

 

Functional MRI (fMRI): FMRI was introduced in the early 1990s. The fMRI BOLD (blood 

oxygenation level dependent) response can be modeled using a hemodynamic response function 

and typically needs 4-6s to reach peak magnitude after a brief experimental manipulation, i.e. a 

sensory stimulus or movement execution and takes several seconds to decay back to baseline 

(D’Esposito et al., 2009). Despite the sluggish response of the BOLD signal, even brief 

experimental events for as short as ~30ms can be detected with fMRI and different events that 

are spaced as closely as 500ms can be disentangled (Kim et al., 1997; Savoy, 1996; Zarahn et al., 

1997). The latter requires the use of randomized inter-stimulus intervals as well as task designs 

that feature multiple conditions; otherwise discrete events need to be separated by at least 4s in a 



 

 7 

fixed inter-stimulus design (Burock et al., 1998). The BOLD signal typically consists of two 

components: First, a brief ‘initial dip’ and a second large and more sustained BOLD increase, 

which is typically utilized to detect correlations with a behavioral task. It has previously been 

observed that the initial dip of the BOLD response likely indexes the actual site of neural activity 

more closely than the later positive portion of the BOLD response (Kim & Duong, 2002). 

     fMRI allows whole-brain imaging with high spatial resolution. Owing to its ability to detect 

whole-brain activity patterns, fMRI has enjoyed enormous popularity as a tool to study human 

memory. fMRI enabled testing and directly contrasting different cognitive models of memory in 

humans (e.g. activations of long-term memory representations, recruitment of sensory or motor 

areas, working memory capacity limits; D’Esposito & Postle, 2015). In contrast to the lesion 

approach, fMRI provided a more specific localization (e.g. dissecting hierarchical 

representations in the prefrontal cortex; Koechlin et al. 2003; Koechlin & Summerfield, 2007; 

Badre & D’Esposito, 2007) and mapping of e.g. subregions of the human prefrontal cortex (e.g. 

of the prefrontal cortex; Buckner & Petersen, 2006) or the hippocampus (Carr et al., 2010; Wisse 

et al., 2012). Note that the typical voxel size is approximately 3x3x3 mm on a 1.5 or 3T MRI 

scanner. However,  at the expense of whole-brain coverage, sub-millimeter resolution can be 

obtained to image a single region in great detail. Using fMRI, researchers can account for 

structural and functional heterogeneity within a region and directly compare differences and/or 

commonalities of brain activations (Berman et al., 2006). Moreover, using fMRI inter-individual 

differences, influences of top-down cognitive control (Gazzaley et al., 2005) and compensatory 

activations in inter-connected networks can be studied (Rajah & D’Esposito, 2005).  

Studies on 7T MRI scanners will further improve this spatial resolution and increase the extent 

of brain coverage (Shah et al., 2018; Thomas et al., 2008).. Furthermore, fMRI can be integrated 
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with other methods such as brain stimulation, EEG or pharmacological interventions (Mulert & 

Lemieux, 2009). However, fMRI also several limitations, including that it does not enable  

establishing causality, has low temporal resolution and is prone to artifacts from head movement, 

air sinuses and vascular pathology. Furthermore, fMRI only measures blood flow and not neural 

activity. An important caveat is that the neurovascular coupling (association of the BOLD signal 

and neuronal firing) is not fully understood (Logothetis, 2008). 

 

Magneto- and Electroencephalography (M/EEG): M/EEG are non-invasive methods that either 

monitor the voltage fluctuations of the brains’ electric field (EEG) or the corresponding, 

orthogonal magnetic field that is being produced by intracellular electric currents (MEG) (Baillet, 

2017; Biasiucci et al., 2019; Cohen, 2017; Pesaran et al., 2018). Both methods have a high 

temporal resolution (milliseconds; typically sampled at >= 1000 Hz). The spatial resolution 

depends on the number of sensors being placed on or around the skull. Scalp EEG is typically 

recorded from as few as 19 sensors for clinical purposes, while research systems typically range 

between 64 and 256 channels offering a comparable number of sensors as state-of-the-art MEG 

(~300 sensors). The challenge of M/EEG is to infer where in the brain these electrical patterns 

emerge. The skull and skin are not ideal conductors and hence, contribute to signal attenuation in 

higher frequencies (> 30 Hz) and spatial spread of the signals since current follows the path of 

least resistance.  

Although applying source modeling methods to high-density EEG and MEG data can suggest 

potential source generators (Pascual-Marqui et al., 1994; Pesaran et al., 2018; Van Veen et al., 

1997).  However, these methods attempt to solve an inverse problem that does not possess a 
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unique solution; that is, any given pattern of scalp-measured EEG/MEG signal could result from 

several underlying source configurations.  

Over the last two decades, scalp EEG experienced a renaissance as new analytical tools became 

available (Biasiucci et al., 2019). Although the discovery of neuronal oscillations (Berger, 1929) 

emerged from early scalp EEG studies, investigation of these oscillations, and their role in 

memory function, received virtually no attention until the 1990s (Klimesch 1999; Tallon-Baudry 

and Bertrand, 1999; Tesche and Karhu, 2000; Caplan et al., 2001; Kahana et al. 2001; Kahana et 

al., 2006). Instead, EEG analyses focused on the study of stimulus and response-locked neural 

activity, referred to as event-related potentials (ERPs, requiring time-locked averaging across 

trials; Handy, 2005; Luck, 2014; Rugg & Allan, 2000). Both ERP and spectral analyses have 

been used to understand the temporal dynamics of memory processes. Several components of the 

ERP have been shown to index memory-specific computations, such as the negative slow wave, 

the contralateral delay activity or positive components, which typically emerge after ~250-400ms 

(Drew et al, 2006; Perez & Vogel, 2012; Voytek & Knight, 2010). In the spectral domain, 

memory signatures are mostly reflected in theta (4-8 Hz) or alpha oscillations (8-12 Hz; 

Klimesch et al. 1999; Kahana et al., 2001). As reviewed below, this enabled bridging findings 

from invasive recordings in rodents that showed a tight relationship between theta oscillation, 

neuronal firing and mnemonic content to human experiments. Spectral analyses have motivated 

several new investigations  demonstrating that memory recall and mnemonic reactivations are 

modulated by a theta rhythm (Leszczynski et al., 2015; Kerren et al., 2018). Furthermore, EEG 

recordings that were obtained from lesion patients enabled dissecting the contributions of 

different cortical regions over time (Voytek & Knight, 2010a/b; Johnson et al., 2017).  
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Several recent theories have proposed that frequency-specific neuronal activity might subserve 

the selective routing of task-relevant information in the brain (Engel et al., 2001; Fries, 2015; 

Kohn et al., 2020; Siegel et al., 2012; Singer & Gray, 1995; Varela et al., 2001). EEG covers a 

wide-range of frequencies and hence, spectral decomposition of EEG data combined with source 

localization algorithms, connectivity analyses or decoding approaches now constitutes an 

efficient  tool to study memory processes with high temporal and acceptable spatial resolution. 

Application of connectivity analyses have revealed that cortical memory networks are organized 

by theta rhythms (Sarnthein et al., 1998). Currently, high-density EEG recordings offer a 

comparable number of sensors as MEG. Each method has its advantages: EEG can be more 

readily obtained; MEG is less susceptible to electromyographic artifacts (Siems et al., 2016), but 

collectively both methods provide complementary views of the underlying physiology and have 

largely supported similar conclusions about the electrophysiological correlates of memory. See 

Chapter 4.5 “4.5. Oscillatory brain mechanisms for memory formation – Online and offline 

processes” which provides a detailed review of the literature on brain oscillations in memory 

research.       

 

Polysomnography (PSG): Polysomnography has emerged as an important tool in the study of the 

effect of sleep on memory, including recent work on memory consolidation (see Chapter 6.9, 

“Sleep and Memory”). The PSG technique combines scalp EEG with electromyography (EMG), 

electrooculography (EOG) and electrocardiography (ECG) to detect distinct episodes of sleep. 

Non-REM (NREM) sleep can be staged from a few scalp EEG electrodes given the prominent 

occurrence of slow oscillations (SOs; < 1.25 Hz) and spindle oscillations (12-16 Hz, named 

according to their characteristic waveform).  REM sleep is more difficult to detect from the EEG, 
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since it resembles patterns observed during wakefulness. Therefore, REM is typically defined 

based on the EOG (rapid saccade-like eye-movements) combined with a decrease in EMG 

amplitude (atonia). Recently it has become possible to stage REM sleep based on EEG features 

alone (Lendner et al., 2020) based on biophysical modeling of non-oscillatory population activity 

(Gao et al., 2017).  

After the discovery of REM sleep (Aserinsky and Kleitman, 1953), sleep was initially 

conceptualized as an alternating sequence of ‘inactive’ non-REM and ‘active’ REM epochs. It 

had been assumed that memory consolidation primarily occurs during REM sleep given that 

signal characteristics mimicked wakefulness (Boyce et al., 2017). However over the last three 

decades, there is mounting evidence that memories are primarily re-activated and consolidated 

during NREM sleep (Buzsáki, 1996; Diekelmann & Born, 2010; Rasch & Born, 2013; Skelin et 

al., 2019) (see Chapter 6.9). The analysis of neuronal oscillations with scalp or intracranial EEG 

during NREM has revealed their key role in memory consolidation (Rasch & Born, 2013). In the 

active systems consolidation model, hierarchically nested sleep oscillations are thought to 

provide scaffolding for memory formation (Clemens et al., 2007; Rasch & Born, 2013; Staresina 

et al., 2015). Hippocampal ripples are associated with the reactivation and ‘replay’ of newly 

learned memories. Replay describes the phenomenon where a firing pattern that was present 

during encoding is reinstated during sleep (Buzsáki, 2015; Foster, 2017; Skelin et al., 2019; 

Todorova & Zugaro, 2018). Ripples do not occur in isolation but are nested, i.e. temporally 

coupled, into neocortical SOs and thalamocortical spindles through cross-frequency coupling 

(Clemens et al., 2007; Helfrich et al., 2019; Latchoumane et al., 2017; Maingret et al., 2016; 

Staresina et al., 2015). Cross-frequency coupling (Canolty & Knight, 2010) typically describes 

the observation that the phase of a slower frequency (e.g. SOs) modulates the amplitude of faster 
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events (e.g. spindles or ripples). Hence, these three cardinal sleep oscillations form a temporal 

hierarchy, which is thought to reflect endogenous temporal reference frames (i.e. windows-of-

opportunity) for timed information transfer and consolidation. EEG remains the ideal tool to 

record oscillatory signatures during sleep. Novel data analysis strategies enable detailed analysis 

of coupling as well as the tracking of memory specific representations from PSG using decoding 

approaches (Helfrich et al., 2019; Schönauer et al., 2017; Zhang et al., 2018) and providing a 

more detailed picture than the sleep hypnogram.  

 

Intracranial EEG (iEEG): iEEG is used in pharmaco-resistant epilepsy patients for seizure onset 

localization to guide the surgical resection of pathologic tissue (Parvizi & Kastner, 2018). To 

localize the seizure onset zone, neurosurgeons implant patients with stereo-tactically placed 

depth electrodes (sEEG) targeting medial temporal lobe and other deep structures and/or cortical 

grid/strip electrodes (Electrocorticography; ECoG; Figure 2A). Both methods record intracranial 

EEG with high spatial (sub-centimeter) and high temporal (sub-millisecond) resolution. Patients 

are typically monitored for 1-2 weeks in the hospital, during which anti-convulsive drugs are 

weaned off and cognitive testing is carried out in the patient room while continuous iEEG is 

being collected. It is best practice to remove channels in the seizure-onset zone or channels that 

exhibit epileptiform activity prior to data analysis (Ammanuel et al., 2020). Although patients 

with temporal lobe epilepsy and hippocampal sclerosis, which constitutes approximately two 

thirds of all cases, often exhibit baseline memory deficits, the qualitative features of their 

behavioral data closely resemble data from healthy adults (Parvizi & Kastner, 2018; Hill et al., 

2020). Because epilepsy can potentially alter brain networks and physiology (Helmstaedter & 

Kurthen, 2001; Rao & Lowenstein, 2015), researchers use the patients as their own control, 
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comparing neural activity across experimental conditions within an individual. However, one 

cannot preclude that findings in this population would not generalize to healthy individuals. As 

such, findings should be corroborated through convergent evidence from other modalities (e.g., 

anatomical localization from fMRI studies; time-domain analyses from EEG/MEG).  

iEEG provides the opportunity to assess the contribution of subcortical regions. Despite 

advances in source localization, non-invasive M/EEG are biased towards cortical activity given 

the spatial proximity. The erroneous notion that only cortical regions contribute to higher 

cognitive functions has reinforced a ‘cortical myopia’ (Parvizi, 2009) and a relative neglect of 

subcortical contributions to cognition. Intracranial EEG studies offer an ideal tool to evaluate 

contributions of subcortical regions to cognitive functions, revealing previously underappreciated 

associations, such as for instance the contribution of the hippocampus to visual attention (Slama 

et al., 2021). 

 Despite its limitations, iEEG has substantially contributed to our understanding of memory 

processes and in particular the role of the MTL, which is difficult to study with high temporal 

resolution using non-invasive methods in humans. Key insights that intracranial EEG offered 

include a new appreciation of the role of oscillations in memory processes (Kahana et al., 2001). 

Specifically, intracranial recordings revealed that memory formation and recall is linked to 

patterns of regional synchronization and desynchronization (Hanslmayr et al., 2016; Johnson & 

Knight, 2015) and where different types of mnemonic information (e.g. spatial and temporal 

information) can be represented simultaneously in different frequency bands through 

multiplexing (Watrous et al., 2013). The analysis of high-frequency band activity (as surrogate of 

population spiking; Leszczynski et al. 2020; Ray & Maunsell, 2011) showed that this signal is 

also central to successful memory encoding and recall. Furthermore, typical implantation 
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schemes often involve bilateral, widely distributed electrode placement that can cover large-scale 

subcortical and cortical networks. Simultaneous recordings with high temporal resolution in the 

PFC and hippocampus have advanced our understanding of network mechanisms and the 

importance of directed information transfer for memory formation and recall (Herweg et al., 

2021; Kragel et al., 2021; Long et al., 2017; Miller et al., 2013; Solomon et al., 2018; Solomon et 

al., 2019). The discovery of place and grid cells in rodent studies (O’Keefe and Dostrovsky, 

1971; O’Keefe, 1976; Fyhn et al., 2004; Hafting et al. 2006; Sargolini et al. 2006), spawned 

interest if similar phenomena could be detected in the human brain. Several group started using 

3D spatial navigation  in a virtual reality environment to illuminate memory mechanisms in 

humans at both the single neuron and network level (Ekstrom et al., 2003; Jacobs et al., 2013; ). 

Similar to rodent studies, it became evident that theta oscillations modulate spike timing and 

coordinate network activity during virtual navigation (Caplan et al., 2003; Kahana et al., 1999; 

Lega et al., 2012; Jacobs et al. 2010; Jacobs et al., 2013; Solomon et al., 2019). Overall, a highly 

comparable theta-mediated code was observed in humans. Several lines of inquiry indicate that 

the human brain might feature a larger variety of navigation cells (Kunz et al., 2021). A 

limitation is that all of these results were obtained from virtual navigation tasks and participants 

did not actually move around freely.   

A novel treatment option for multi-focal seizure disorders, which cannot be treated by resective 

surgery, is the NeuroPace responsive neurostimulator (RNS) (Skarpaas & Morrell, 2009). RNS 

devices utilize chronic intracranial recordings, which detect epileptiform activity and 

automatically trigger electrical stimulation to disrupt the epileptic pattern. Recently, several 

studies have begun to take advantage of the opportunity to record from these chronically 

implanted electrodes and study memory processes that occur during real-world navigation 
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(Aghajan et al., 2017). This approach constitutes an exciting avenue to link rodent and human 

findings on the neurophysiological basis of spatial navigation. The first findings confirmed a key 

role of theta oscillations in coordinating network activity during real-world spatial navigation 

(Aghajan et al., 2017; Stangl et al, 2021).   

 

Figure 2 
 

 

Intracranial electrode placement. (A) Examples of intracranial EEG electrode placement: red 
dots depict individual electrode contacts. The first row highlights three examples of the 
commonly utilized ECoG grid electrodes with either 64 (left and center; 8x8 electrodes; 1cm 
inter-electrode spacing) or 256 electrodes (right; 16x16 electrodes; 4mm spacing). The second 
row illustrates stereo-tactically placed depth electrodes in the hippocampus (left), OFC (center) 
and cingulate cortex (right). Inter-electrode spacing and number of contacts is variable. Note that 
electrode contacts are present all throughout the shaft, allowing simultaneous recordings from 
subcortical and cortical regions, such as the temporal cortex (left) or PFC (center and right). (B) 
Depth electrodes might house additional wire bundles in their lumen, which allow recording of 
single and multi-unit activity at the tip of the depth electrode. Panel B is modified from Ad-Tech 
Medical Product Catalog Volume VII.  
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Single-unit activity (SUA): Several methods were introduced to obtain data at the single neuron 

level in humans (Fried et al., 2014; Ojemann et al., 2014; Rutishauser, 2019). Motivated by the 

discovery of place cells, grid cells and time cells as building blocks of the navigation system in 

rodents (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976; Eichenbaum, 2014; Fyhn et al., 2004; 

Fyhn et al., 2008; Hafting et al. 2006; MacDonald et al., 2011; Sargolini et al. 2006), researchers 

were interested if similar principles guide human navigation. As reviewed above, at the network 

level comparable theta signatures emerged. In order to record single unit activity in the human 

brain, several approaches have been introduced. The typical approach is to insert an additional 

wire bundle (9 wires; 40µm diameter per wire; 0.9-1.3mm diameter of the sEEG electrode). 

through the lumen of a sEEG electrode, which records single unit activity at the tip of the depth 

electrode and is most commonly restricted to MTL and medial prefrontal regions (Figure 2B). 

The implantation of these additional wire bundles is generally considered to be safe (Carlson et 

al., 2018; Hefft et al., 2013). Similar data can be recorded during implantation of DBS (deep 

brain stimulation) electrodes in patients with Parkinson’s disease from the sub-thalamic nucleus 

or the substantia nigra (Kamiński et al., 2018). However, DBS single-unit experiments need to be 

conducted in the operating room, a less than ideal scenario to study behavioral-physiologic 

processes yielding only 1-2 neurons per electrode. In addition, several groups have started to 

utilize microelectrode arrays (MEA; also termed the Utah array). These arrays are implanted into 

healthy cortex of tetraplegic patients to obtain high quality data to guide brain-computer-

interfaces (Aflalo et al., 2015) or into tissue that is likely to be resected during epilepsy surgery 

(Cash & Hochberg; 2015; Truccolo et al; 2011; Vaz et al., 2020). Taken together, intracranial 

research with these recording methods provides novel opportunities to study memory function at 

the single unit level (Cash & Hochberg, 2015; Rutishauser, 2019).   
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Causal methods: 

 

Lesion approach: Studying patients with brain lesions has provided important insights into 

human memory (Szczepanski & Knight, 2014; Vaidya et al., 2019). This approach requires a 

single focal lesion to the brain, which can result from various etiologies. However, lesion extent 

and etiology are often diverse and need to be taken into account when making inferences at the 

group level. Furthermore, as time since lesion onset increases, there is an increased probability 

that functional reorganization may occur. In addition, memory deficits could result from damage 

to passing fiber tracts, which further complicate functional localization. In lesion studies, one can 

typically use two types of controls: 1) patient behavioral or neural measures can be compared to 

those in a healthy, age-matched control cohort, or 2) neural measures in the healthy hemisphere 

can serve as the control in patients with unilateral brain lesions (Voytek et al, 2010; Vaidya et al., 

2019). 

 

Transcranial magnetic stimulation (TMS): TMS was developed in the late 1980s to non-

invasively stimulate the brain and measure corticospinal activity during spinal surgery. This 

method takes advantage of the interaction of electric and magnetic fields: By transmitting an 

electric current through a coil, a magnetic field is induced, which in turn induces another electric 

field in the brain. The effect of TMS on the cortex depends on current intensity, coil shape and 

orientation, as well as on the current brain state. The typical application of TMS in cognitive 

neuroscience is the ‘virtual lesion approach’, where a single pulse or repetitive stimulation 

through a pulse train temporarily impairs the function of the stimulated cortex (Pascual-Leone et 
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al., 2000). TMS has undergone several technological improvements and innovations and is 

currently used in a variety of basic science (Ruff et al., 2009) and clinical (Rossi et al., 2009) 

applications.   

 

Initially, TMS was used as a powerful tool to transiently perturb activity in a cortical area to 

study its contributions to a specific function (Pascual-Leone et al., 2000). Several stimulation 

protocols have been developed to either inhibit or excite the underlying cortex. In cognitive 

neuroscience, initial approaches stimulated with pulses, directly interfering with s cortical 

processing throughtout stimulation duration (Thut & Pascual-Leone, 2010; Censor & Cohen, 

2011), or application os short burst of stimulation in the 3-8 Hz theta frequency band (referred to 

as theta-burst stimulation; Huang et al., 2005; Ziemann 2017), causing perturbation of cortical 

activity that outlasts the duration of stimulation. Subsequently, these protocols have been refined, 

leading to their widespread use as a tool to probe the causal function of a cortical region for a 

given cognitive process (Wassermann et al., 2008; Yeh & Rose, 2019; Bergmann et al., 2021; 

Pitcher et al., 2021).  

Abundant evidence suggests that brain rhythms and population synchrony play an important role 

for cognition and several stimulation methods have been developed to modulate neural 

processing in a frequency-specific manner (Hanslmayr et al., 2014; Riddle et al., 2019; Thut, 

Veniero, et al., 2011). For example, frequency-tuned TMS is employed to selectively perturb or 

modulate function in a region or network (Hanslmayr et al., 2019). Synchronization of 

frequency-specific neural activity by stimulation (termed neural entrainment = directed 

synchronization through an external driving force) constitutes a powerful approach since it 

allows establishing the causal role of brain oscillations for memory and cognition (Herrmann et 
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al., 2016; Thut al., 2011). More recently, TMS has been used in a novel way to infer hidden or 

activity-silent network states (Rose et al., 2016) (see below section 3.2).  

A shortcoming of TMS is that only cortical regions that are close to the skull, and not subcortical 

regions like the hippocampus, can be stimulated. However, several recent reports have 

demonstrated that the hippocampus can be influenced indirectly. For example, stimulation of 

parietal regions that are directly connected to the hippocampus impact hippocampal processing 

(Tambini et al., 2018; Wang et al., 2014). This intervention introduces long-lasting behavioral 

and network changes and constitutes a valuable tool to non-invasively modulate hippocampal 

dynamics in support of memory formation (Nilakantan et al., 2019). 

Over the course of two decades, TMS has evolved significantly as a cognitive neuroscience tool, 

and is a prime example how one technique can be leveraged in several different ways to inform 

the study of human memory. 

 

 

Transcranial electrical stimulation (tES): Researchers employ low intensity current stimulation 

(typically <= 2mA) to modulate neural activity below the threshold of action potentials (Nitsche 

& Paulus, 2000). In particular, the findings from Nitsche & Paulus suggested that passing a low 

intensity direct current (tDCS; transcranial direct current stimulation) through the brain slightly 

shifts the resting membrane potential up- or down-wards, resulting in an increase  or decrease in 

cortical excitability. Subsequent research has demonstrated that this view is overly simplistic 

(Batsikadze et al., 2013; Giordano et al., 2017). However, multiple studies have shown that tDCS 

can modulate cognitive processes and improve memory function (Hill et al., 2016). Based on the 

idea that electrical activity patterns, such as theta (4-8 Hz) oscillations, are causally involved in 
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information processing (Kahana et al., 2001; Colgin 2013), studies have shown that alternating 

current stimulation (tACS) can produce a selective, frequency-specific modulation of neuronal 

activity (Helfrich et al., 2014; Polanía et al., 2012; Zaehle et al., 2010) This idea is rooted in non-

linear systems theory and implies that neuronal oscillations can be entrained through an external 

driving force (Thut, Schyns, et al., 2011). Entrainment requires two narrow-band oscillators, one 

in the input stream and one that is being driven, which interact through directed synchronization 

(Pikovsky et al., 2003). Specifically the work by Polania et al. demonstrates that a selective 

modulation of neuronal population synchrony has direct effects on behavior, establishing a 

causal link between brain oscillations and behavior (Hanslmayr et al., 2019; Herrmann et al., 

2016). tES methods are being refined and the precise mechanism-of-action is actively debated 

(Asamoah et al., 2019; Lafon et al., 2017; Vöröslakos et al., 2018).  

 

Deep brain stimulation (DBS): DBS was originally developed as a therapeutic tool to treat 

deficits due to movement disorders, such as Parkinson’s disease or essential tremor (Bronstein et 

al., 2011). More recently, it has also been explored as a tool to treat epilepsy and psychiatric 

disorders, such as obsessive-compulsive disorder (Mayberg et al., 2005). While several studies 

investigated the effects of chronic DBS of the hippocampus (Boëx et al., 2011; McLachlan et al., 

2010; Miatton et al., 2011; Velasco et al., 2007), the effects on memory were often not 

significant, especially when compared to stimulation protocols that were only executed during 

specific phases of the task, such as the encoding or retrieval periods of memory tasks. A 

shortcoming of these studies was that an instantaneous read-out of the brain state was often not 

possible. The recently introduced NeuroPace RNS device combines continuous intracranial EEG 

recordings with the capacity for closed-loop stimulation (Suthana et al., 2018). 
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In the context of memory, another common target is the thalamus. For example, several studies 

have targeted the anterior nucleus (ANT) of the thalamus to stimulate ascending pathways to 

treat seizures in multi-focal pharmaco-resistant epilepsy (Peräkylä et al., 2017; Sweeney-Reed et 

al., 2014). These probes often also capture activity from adjacent nuclei, such as the medial 

dorsal (MD) nucleus, which exhibits prominent connections to the prefrontal cortex and might 

play a key role in coordinating large-scale memory networks (Schmitt et al., 2017). To date, 

stimulation-specific results on cognitive functions, such as memory, remain equivocal (Oh et al., 

2012; Tröster et al., 2017). 

Taken together, the reported effects of chronic DBS on memory processing and cognitive 

performance have been mixed. A major shortcoming of all studies was that stimulation was not 

tailored to specific phases of encoding, consolidation or retrieval, but rather often was 

determined the clinical protocol. In addition, electrodes for chronic DBS were not necessarily 

placed in central memory hubs. In order to test the more immediate effects of DBS, several 

groups utilized direct electrical stimulation during invasive EEG monitoring, which more 

regularly targets regions that are relevant for memory formation. 

 

Direct electrical stimulation (DES): Direct electrical stimulation of the cortex can be carried out 

either during brain surgery or in the epilepsy monitoring unit (Selimbeyoglu & Parvizi, 2010). 

Typically, electric mapping of ‘eloquent’ cortex (i.e. speech and motor areas) is done prior to 

epilepsy or tumor resection surgery. During mapping, the cortex is stimulated with relatively 

high intensities in the range from 4-10 mA to disrupt neuronal processing. In cognitive 

experiments, the stimulation intensity is typically adjusted to values below the clinical mapping 

intensity (0.5 – 2mA) to modulate neuronal processing. Several studies take advantage of this 
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approach and combine cognitive testing with DES (Ezzyat et al., 2017; Fox et al., 2020; Jacobs 

et al., 2016; Kucewicz et al., 2018; Mankin & Fried, 2020; Suthana et al., 2012). In order to 

study human memory, electrical stimulation has been applied to medial temporal lobe structures, 

such as the entorhinal cortex or the hippocampus (Ezzyat et al., 2017; Fell et al., 2013; Hansen et 

al., 2018; Khan et al., 2019; Mankin & Fried, 2020), but modulatory effects have also been 

observed after stimulation of other structures of the limbic system, such as the fornix (J. P. Miller 

et al., 2015), lateral temporal cortex (Ezzyat et al., 2017; Ezzyat et al., 2018) or the amygdala 

(Inman et al., 2018). To date, experimental findings have been equivocal, with some studies 

demonstrating an improvement of memory (Suthana et al., 2012), while others observed 

detrimental effects of stimulation (Jacobs et al., 2016). In an attempt to reconcile divergent 

findings, it has been argued that the effects of stimulation might be dependent on the 

performance at baseline, the current network state, the stimulation location (e.g. white or gray 

matter) or the precise task phase (Titiz et al., 2017). In order to overcome some of these 

limitations (Suthana et al., 2018), several recent studies utilized a closed-loop approach, where 

stimulation is individually tailored according to the instantaneous electrophysiological brain state 

(Ezzyat et al., 2018). For example, the above mentioned RNS device delivers stimulation 

whenever an epileptic discharge is detected. In the context of the study of memory, stimulation 

could be tailored to theta features (power or phase) to modulate ongoing activity in a close-loop 

fashion. Jointly, all of these studies suggest that stimulation constitutes a promising avenue to 

modulate human memory processes in-vivo (Hanslmayr et al., 2019), however, additional work 

is necessary to clarify where, when and how stimulation should be delivered to reliably boost 

memory performance or to alleviate memory decline in patients suffering from memory loss. 
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Microstimulation: In contrast to regular DBS or DES, microstimulation is delivered through 

delivery of low-current electrical stimulation via microelectrodes (typical diameter <100µm vs. 

>1mm in DBS/DES). A major advantage of this approach is that spatial targeting is easier, since 

the effects of stimulation are spatially more confined. To date, stimulation protocols have often 

been inspired by protocols that were pioneered in animals and have been proven to induce long-

term plasticity, such as theta-burst stimulation (Histed et al., 2013). Critically, and unlike DBS, 

stimulation intensities are in the range of physiologic level currents (~150µA). Therefore, it is 

believed that microstimulation mimics the natural conditions that drive plasticity in the brain. To 

date, most evidence stems from animal experiments (Fetsch et al., 2014; Logothetis et al., 2010). 

More recently, several groups pioneered this approach in humans (Schmidt et al., 1996) and 

demonstrated that microstimulation can influence reinforcement learning (Ramayya et al., 2014) 

as well as memory specificity for novel items (Titiz et al., 2017). Given that microstimulation 

requires the additional implantation of microwires in addition to macroelectrodes, this approach 

has not been widely adopted to date. 

 

Electroconvulsive therapy: ECT is a clinical procedure designed to induce a seizure by applying 

high currents through the skull, typically under general anesthesia. It is a powerful tool to treat 

pharmaco-resistant depression (Pagnin et al., 2004)., but may also have long-term detrimental 

effects on cognition and memory (Sackeim, 2000). In a series of experiments, Squire and 

colleagues studied the effects of ECT on memory performance (Squire, 1977; Squire et al., 1976, 

1984). They observed that ECT induced a profound, but temporally-graded amnesia for previous 

testing sessions. Moreover, they showed that skill learning was preserved. As the interval 

between learning and ECT is increased, the resulting retrograde amnesia diminished (Squire et 
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al., 1976). Thus, after ECT the patient may describe a past event accurately but be unable to 

report when the event occurred. More, recently this seminal work has been extended from studies 

of consolidation to studies focusing on reactivation (information is brought from an inactive to 

an active state) and reconsolidation (stabilization of the memory trace).  

In the past, ECT had been used as a tool to study temporally graded retrograde amnesia (Cohen 

& Squire, 1981; Devanand et al., 1995; Squire et al., 1975; Squire et al., 1976). Using this 

approach, it had been observed that ECT affects recent memories more profoundly than past 

memories. For example, memories that have been acquired years ago were less affected. This 

finding supported the notion that over time memories undergo a consolidation process 

(Frankland & Bontempi, 2005; Winour & Moscovitch, 2011). 

Recent work has combined behavioral testing prior to ECT to study memory consolidation 

demonstrating that ECT selectively disrupts memory consolidation of recently reactivated 

information (Kroes et al., 2014; Figure 3), thus, further supporting the reconsolidation 

hypothesis. Typically, subjects experience a benefit from the reactivation (relative to control 

group C who did not receive ECT). However, if memories reactivate just prior to ECT (group 

A), subjects do not consolidate these memories. ECT did not affect non-reactivated memories 

(Kroes et al., 2014). Thus, ECT can be utilized as a tool to study the temporal evolution of 

memories. Depending on the experimental design, studies using ECT as an intervention may 

unravel the time-course of memory formation, consolidation and reactivation. A critical 

shortcoming is that the method can only be applied in subjects who are prescribed ECT as a 

treatment for medication refractory depression, which in itself is already often associated with 

impaired memory (See Chapter 9.8, “Memory, Depression and Anxiety”).  
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Figure 3 

 

Probing memory consolidation following ECT. Patients with pharmacoresistant depression 
who underwent ECT where randomly assigned to one of three groups (Only groups A and B 
received ECT). Prior to ECT one of two previously learned memory associations was reactivated 
(solid vs. empty bars). As expected, memory recall was improved for reactivated items over non-
reactivated items – but only in group C, which did not receive ECT. In group A, which received 
ECT after reactivation but was tested after a 24h delay, performance dropped to chance and 
below the non-reactivated items. Critically, group B was tested after 90mins and reactivated 
memories remained unaffected. This finding suggests a specific disruption of a time-dependent 
consolidation process by ECT. Schematic according to the findings as described by (Kroes et al., 
2014). 
 

 

2.2      Integration of distinct neuroscientific methods  

 

Each of the methods presented above has  strengths and limitations, such as the restricted 

temporal resolution of fMRI, the limited spatial resolution of M/EEG or the uncertain 
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physiological efficacy of non-invasive brain stimulation. Furthermore, patient studies involve 

inferences affected by variable lesions, damaged neural tissue, and brain reorganization 

(D’Esposito, 2010).  

To address these limitations, researchers can combine data from multiple neuroscientific 

methods, leading to enhanced group-level inference. One successful approach is combining 

fMRI and EEG (Mulert & Lemieux, 2009). Albeit correlative, combining localization 

information from fMRI with timing information from EEG revealed that frequency-specific 

activity in the theta/alpha/beta-range provides a functional mechanism to bind MTL and PFC 

networks during memory encoding, maintenance or recall (Hanslmayr et al. 2011; Herweg et al., 

2016; Scheeringa et al., 2008). While iEEG has a high spatiotemporal resolution, data can only 

be obtained from a few brain regions of the network and      does not allow whole-brain coverage 

(but see Solomon et al., 2017 for an exception). Simultaneous iEEG and fMRI or M/EEG can 

potentially overcome this limitation to some degree (Dalal et al., 2013). Likewise, simultaneous 

fMRI or EEG, and transcranial magnetic stimulation suffer from concurrent artifacts that are 

introduced into the recordings by the magnetic pulses (Ruff et al., 2009; Thut et al., 2011). 

Lesion studies are most powerful if behavioral testing is combined with either EEG or fMRI to 

directly link their deficits to physiological recordings (Vaidya et al., 2019).  

 This multimodal approach has recently been used to investigate network-dependent working 

memory function in patients with prefrontal damage. Patients and healthy controls were 

presented with two visual items, which they had to remember over a few seconds and then had to 

make a judgement about the second pair with respect to the first one. As expected, healthy 

subjects (controls) performed better than lesion patients, however, even the PFC lesion patients 

performed significantly above chance (~85 % correct; chance level: 50%; Figure 4) (Johnson et 
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al., 2017). Simultaneous scalp EEG and network connectivity analysis revealed that prefrontal 

damage attenuated a prefrontal-dependent theta network (4-8 Hz), but left a parieto-occipital 

alpha/beta network (10-30 Hz) intact. Given that the patients still demonstrated  some degree of 

task proficiency, Johnson  et al concluded that working memory relied on the parieto-occipital 

alpha/beta network more so than the prefrontal theta network. Although technically challenging, 

integrating information across neuroscientific methods confers significant advantages over 

single-method studies.        

 
 
Figure 4 
 

 

Bidirectional Frontoparietal Connectivity Supports Working Memory. (A) Behavioral 
results. Memory recall performance was better in healthy controls than in PFC lesion patients, 
but patients performed well above chance level (0.5). (B) Schematic illustration of two distinct 
bidirectional systems supporting WM. While the bottom-up (posterior to PFC; purple to green) 
system in the alpha-/beta-range remained intact in PFC patients, the top-down PFC-dependent 
delta-/theta-system was attenuated in patients. Given that the PFC lesion patients still 
demonstrated task proficiency, it suggests that the bottom-up system may be sufficient for WM, 
whereas the top-down system is not, perhaps only exerting moderate modulatory influences on 
performance. 
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3. Analytical approaches to understanding human memory      

 

In this section we consider how the methodological tools described above have advanced our 

current understanding of memory function. Specifically, we provide illustrative examples of how 

these techniques have been employed to study human memory.  As the succeeding chapters of 

the handbook provide detailed reviews in specific areas our goal here is to provide a general      

overview of how novel analysis strategies have shaped our view of human memory. 

 

3.1 Activation vs. Representation 

 

      Traditionally, researchers inferred memory processing from activity patterns (Curtis & 

D’Esposito, 2003; Fuster & Alexander, 2001; Goldman-Rakic et al., 1995; Miller & Cohen, 

2001; Pasternak & Greenlee, 2005). For example, memory-encoding processes have been linked 

to differences in BOLD signals, event-related potentials or neuronal firing rates by contrasting 

activity patterns for remembered and forgotten items. However, several studies focusing on 

neocortical association areas have reported that subjects can hold information in their mind 

without any discernible cortical activation (Stokes, 2015); thus, raising the question of whether 

mnemonic representations might be encoded in large-scale synaptic dependent connectivity 

patterns. 

To address this question, several novel analytical tools have been employed, ranging from 

information-theoretical tools (Quian Quiroga & Panzeri, 2009) to decoding analyses 

(Grootswagers et al., 2017) and representational similarity analysis (Kriegeskorte et al., 2008). 

These tools are all geared towards defining spatiotemporal patterns (representation) of memory 
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processes. In this framework, representation does not require activation per se (as defined as an 

activity increase relative to baseline, which is often used in univariate analyses), but relates the 

overall observed pattern across space (channels or voxels) and/or across time to the mnemonic 

information (Kriegeskorte et al., 2008). By aggregating information from multiple brain signals, 

this approach offers greater statistical power for detecting subtle differences. Furthermore, 

representation could not only entail the joint activity pattern at multiple spatial locations, but this 

framework also allows quantifying connectivity patterns of distributed networks (Eichenbaum, 

2017; Yuste, 2015). Below we outline several recent concepts that go beyond the activation-

based framework and highlight how using novel analytical tools has shaped our understanding of 

memory processing. 

 

 

3.2 New tools lead to new concepts about human memory 

 

Activity-silent coding: Activity-silent coding proposes that mnemonic information can be 

maintained through rapid shifts in synaptic weights within local neural networks (Stokes, 2015; 

Wolff et al., 2017). In this framework, the encoding of new information is proposed to trigger 

short-term plasticity, contributing to changes in synaptic weights. However, despite the technical 

progress, it is currently not possible to image neuronal networks at the level of synapses in 

humans, hence, Wolff et al. devised an indirect approach to detect short-term plasticity. This 

framework implies that shifting in synaptic weights is not associated with a change in the overall 

activity pattern, as observed using fMRI or M/EEG (Stokes, 2015). In other words, the activity-

silent coding framework posits that mnemonic information can be encoded in the brain, but in a 
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latent state, which cannot directly be quantified by studying overt activity patterns. In a novel 

approach that was utilized to infer these hidden network states, Wolff and colleagues devised a 

‘pinging’ approach (illustrated in Figure 5A). The method can be compared to a ship sonar that 

searches the ocean floor using repetitive sound waves. They provided repeated sensory input 

(reflecting the sonar signal) into the brain (Wolff et al., 2017) and then recorded the neural 

response (reflecting the sonar echo). Wolff et al. reasoned that the response will be modulated as 

a function of the underlying brain state (similar to a modulation of the sonar echo frequency once 

an object is detected on the ocean floor). In their experiment, Wolff et al. approach utilizes a 

non-informative high-contrast visual stimulus (analogous to emitted sound waves), which is 

presented during the delay period when the information is kept in memory to probe the network 

(Wolff et al., 2017). Critically, the network response (the echo) differed according to the item 

held in memory, and indexing the underlying cortical state.  This approach offers the opportunity 

to indirectly infer the content of memories from hidden or latent cortical states conceptually 

similar to assessing the unobservable bottom of the sea (Sreenivasan & D’Esposito, 2019).  

The key interpretation of this finding is that memories might be stored in ‘activity-silent’ states 

and that mnemonic information might be encoded in connectivity profiles at the level of synaptic 

weights in distributed cell assemblies.  

 In a related study, Rose et al (2016) used a TMS pulse instead of a visual stimulus, but the key 

idea remained the same: Probing the network and reading out its response (echo), which should 

differ as a function of the contents of memory. By keeping the external pulse the same, one can 

infer the current network state (and indirectly the mnemonic content) from the evoked response. 

Hence, the authors concluded that depending on the content of memory a transient perturbation 
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will lead to a distinct network response, hence, offering an instantaneous read-out of items held 

in memory (Figure 5). 

 

Figure 5 
 

How to infer latent states through perturbation. (A) Schematic of ‘pinging’ approach: One 
constant impulse into a network may generate differential responses (R1 and R2) depending on 
the instantaneous network configuration. The precise network depends on the content of 
memory. (B) Data from a sensory perturbation experiment: There is significant decodability after 
stimulus presentation, which however, returns to baseline after approximately 800ms. However, 
the subjects still hold on to the same mnemonic information, thus, raising the question why this 
information is not accessible by decoding strategies. (C) If an uninformative, high contrast visual 
stimulus is presented during the time of non-decodability to perturb the system, then one can 
successfully ‘read-out’ the content of working memory. This finding indicates that one can 
decode latent states from a network perturbation suggesting that the precise network pattern 
contains content-specific information. Figure panel B and C are reproduced with permission 

(Wolff et al., 2015) under the Creative Commons Attribution (CC BY) license. 
 

 

Static vs. dynamic coding:  The concept of static and dynamic coding directly emerged from the 

multivariate analyses of brain data. Multivariate analyses reflect a diverse set of algorithms that 

can detect unique patterns in high-dimensional datasets, hence often termed multivariate pattern 
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classifiers (MVPC) or analysis (MVPA) (Haxby, 2012; Hebart & Baker, 2018). These 

algorithms are sensitive to subtle differences. The major difference to univariate analyses is that 

pattern classifiers can distinguish differences in the configuration (e.g. across space: pattern 

across electrodes in response to stimulus A differs to pattern in response to stimulus B). This 

approach is commonly utilized when no difference in the average response is apparent (ERP to 

stimulus A = ERP to stimulus B) (Grootswagers et al., 2017). Multivariate analyses of neural 

data can adjudicate between different neural coding strategies that would appear identical under 

univariate metrics. MVPC analyses always require partitioning the data into a ‘training’ dataset 

(where the classifier knows which trial belongs to which condition) and a ‘test’ dataset to which 

the classifier is being applied. When compared to the ground truth, one can infer if the classifier 

correctly classified more trials than expected by chance.   

In the context of memory research, MVPCs have been used to test whether the neural pattern that 

is present during encoding of a memory at an earlier time remains the same at a later time      

(King & Dehaene, 2014). If the classifier still performs significantly better than chance, then one 

can infer that the overall pattern, which discriminates both conditions, has not changed, which 

would indicate ‘stable’ coding. In contrast, if classifier performance drops to chance, then one 

can conclude that the representation must have changed, i.e. the neural coding scheme is 

‘dynamic’ (Figure 6).   
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Figure 6 
 

Principles of using classification to assess static vs. dynamic neural codes. The temporal 
cross-generalization matrix (lower row) depicts the relationship of training and testing time. If a 
temporal code is specific for a time-point, then one will only observe significant decoding if the 
decoder is trained and tested on the same time points (panel 1 and 3). This is visible by 
significant ‘on-diagonal’ decoding. This time-varying coding scheme is also termed dynamic 
coding. In contrast, if one observes significant ‘off-diagonal’ decoding (panel 2 and 6), then 
training on one time point is generalizable to a different testing time point, suggesting that the 
neural code remained the same (or static). Several additional scenarios are possible, which reflect 
variants of the static and dynamic frameworks (e.g. temporally selective reactivation: panel 4; 
oscillatory modulation of coding: panel 5; temporal blurring since cognitive processes are not 
perfectly aligned across trials: panel 7).  
 

Mixed selectivity: Mixed selectivity describes the context-dependent coding of information 

(Figure 7) . This concept suggests that neurons or neuronal populations in association cortex can 

engage in several processes. To date, mixed selectivity has only been observed at the single 

neuron level, but might be an important concept for understanding human memory (Ekstrom et 

al., 2003; Rigotti et al., 2013). For example, Rigotti et al. showed that the same neuron fires in 

response to a stimulus only during passive recognition (context 1) but not during active recall 

(context 2). It has been argued that mixed selectivity might reflect the fact that different network 

states subserve distinct cognitive functions and that neurons are recruited into a transient cell 

assembly through neural synchrony (Saxena & Cunningham, 2019). In other words, neurons can 
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be engaged in different networks, which are formed through neural synchrony (Fries, 2015; 

Siegel et al., 2012). In the context of memory, this idea implies that a neuron could code more 

than one piece of information. The coding scheme might be dynamic and the precise encoded 

information might depend on whether a particular neuron is recruited into a transient coalition of 

synchronously active neurons. This notion contradicts the classic neuron doctrine that viewed 

neurons as passive feature detectors, but rather suggests that a single neuron can contribute to a 

wide-range of behaviors (Yuste, 2015). 

 

Figure 7 
 

Mixed selectivity and network connectivity. (A) Context-dependent activity: The black arrow 
indicates that there is only a significant activation in response to stimulus A in context 1, but not 
in context 2.  There is no response to stimulus B in either context. (B) Different neurons could 
become engaged in different operations depending on network coherence, where multiple 
canonical computations can be mapped on the same network depending on the frequency-
specific network organization. Panel B summarizes data from Buschman et al. (Buschman et al., 
2012). 
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Sustained vs. transient activity: Temporally sustained activity patterns have been reported across 

a range of studies, including single unit recordings in primates, BOLD fMRI, EEG event-related 

potentials and oscillatory power (Sreenivasan & D’Esposito, 2019). Neural responses in fMRI 

and EEG are typically quantified as trial averages given the relatively low signal-to-noise ratio of 

the method. In the case of EEG, averaging in the time-domain reveals prominent phase-locked 

components, also termed event-related potentials, such as the P300 (Sutton et al., 1965) or the 

contingent negative variation (Walter et al., 1964), which have successfully been assessed in a 

variety of cognitive experiments (Helfrich & Knight, 2019a; Polich, 2007; Soltani & Knight, 

2000). While this approach is powerful in isolating phase-locked components, it averages out 

non-phase-locked components, which often have been considered to reflect ‘noise’. In addition, 

non-phase-locked components typically occur in beta/gamma frequencies, thus, averaging in the 

time-domain is implicitly biased towards lower frequencies (David et al., 2006; Tallon-Baudry & 

Bertrand, 1999). In the context of memory, sustained responses have been observed in the trial-

averaged spike traces recorded in monkey prefrontal cortex (Fuster & Alexander, 1971; 

Goldman-Rakic, 1995), which has often been conceptualized as the neurophysiological signature 

that reflects ‘keeping a memory in mind’ (E. K. Miller & Cohen, 2001).  More recent evidence 

suggested that this sustained response may in part be an artifact of averaging across many trials 

with slightly different spike timing (Lundqvist et al., 2016). When inspecting single trials, 

researchers noticed that single trials rarely exhibit sustained responses. When focusing on spikes 

in the memory-delay interval, Lundqvist et al. noticed spike-locked beta and gamma signatures, 

which did not show in the trial-averaged spectrograms due to their variable nature (Lundqvist et 

al., 2016). These activity bursts were only discernible at the single-trial level, which led to a 

series of empirical (Lundqvist et al., 2018; Spaak et al., 2017) as well theoretical (Earl K. Miller 
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et al., 2018; M. Stokes & Spaak, 2016) investigations. Moving from trial-averaged to single-trial 

analyses has led to a reconceptualization of delay activity in memory processes (Sreenivasan & 

D’Esposito, 2019), thus, requiring a different tool set that does not solely rely on time-averaged 

data to understand how mnemonic information is represented. 

      

Rhythmic reactivation of memories: Much EEG activity is non-oscillatory in nature and 

characterized by a power law (He et al., 2010; Lendner et al., 2020; Miller et al., 2009; Voytek & 

Knight, 2015). Cognitive operations, and specifically memory tasks, are often hallmarked by the 

emergence of 3-8 Hz theta oscillations (Anderson et al., 2010; Herweg et al., 2021; Lisman & 

Jensen, 2013; Johnson et al., 2017). It had previously been observed that the phase of theta 

oscillations structures neuronal firing and providing temporal reference frames for different 

spikes (Colgin, 2013), Furthermore, theta has been suggested to provide a mechanism of how 

spatial information can be represented in a temporal code as discussed earlier, where theta 

groups e.g. place cell activity and mapping out spatial trajectories over time (Skaggs et al., 1996; 

Wilson & McNaughton, 1993).       

In addition, the emergence of theta is often accompanied by gamma oscillations. Theta and 

gamma power correlate with successfully memory encoding, but might constitute two distinct 

entities with distinct origins (Sederberg et al., 2003; Fellner et al., 2019). However, it had been 

observed that theta phase also structures gamma-band activity (Lisman & Jensen, 2013) in a  

process called theta-gamma cross-frequency coupling (CFC; Mormann et al., 2005; Canolty et 

al., 2006; Canolty & Knight, 2010; Tort et al., 2010) where theta phase predicts the instantaneous 

gamma-band amplitude. Theta-gamma CFC has been shown to support memory formation in the 

hippocampus (Axmacher et al., 2010; Lega et al., 2012; Staudigl & Hanslmayr, 2013; Tort et al., 
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2009). More recently, it had been shown that theta-gamma CFC segregates the representation of 

different pieces of mnemonic information within a single oscillatory cycle (Bahramisharif et al., 

2018). Contemporary theories posit that theta-gamma CFC may represent a potential biophysical 

mechanism that explains how information can be encoded, even after a single stimulus 

presentation (Hanslmayr et al., 2016; Lisman & Jensen, 2013). Different phases of neuronal 

oscillations might provide temporal reference frames to separate representations of multiple 

items held in memory, and thereby reduce conflict and increase the fidelity of mnemonic 

information (Leszczyński et al., 2015; Lisman & Jensen, 2013; Siegel et al., 2009).  

In addition to structuring the content of memory, a related hypothesis suggests that encoding and 

retrieval might be linked to distinct theta phases providing temporal segregation (Hasselmo, 

2005; Hasselmo et al., 2002). Additional support for this hypothesis has recently been provided 

by Kerren and colleagues (2018) who showed that only certain theta phases trigger the 

reactivation of mnemonic information (Figure 8). They utilized multivariate-pattern classifiers 

to track mnemonic representations and observed that decoding peaks were systematically 

predicted by theta phase alignment, thus, indicating that tight link between theta phase and 

memory reactivation (Hasselmo, 2005). Taken together, multiple lines of research indicate that 

memory encoding, maintenance and retrieval critically relies on theta-rhythmic processes in the 

human brain. 
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Figure 8 
 

 

 
Information reactivation is nested in theta oscillations. (A) A pattern classifier was used to 
decode object categories from working memory in a time-resolved manner. (B) Schematic of the 
relationship of decoding output (classifier confidence) and the underlying theta oscillation. Note 
the classification peaks coincide with distinct phases of the theta oscillation. (C) Realignment of 
the data to the classification peaks (time point 0) demonstrates significant theta phase 
concentration prior to reactivation and category information peaks. These results highlight a tight 
relationship between information reactivation and theta oscillations.  
 

4. The network structure of human memory 

 

 Mnemonic representations can be found at every level of the cortical hierarchy, which highlights 

the need to understand both the contribution of individual nodes of a network, such as the 

prefrontal cortex or hippocampus, as well the brain-wide network structure (Johnson & Knight, 

2015). To study networks, data must be collected simultaneously from extended brain regions, 

which is not easily accomplished with single-unit physiological techniques, but is possible with 

tools such as fMRI, M/EEG or intracranial EEG (Solomon et al., 2017), which will be the focus 

of this section.  
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4.1 How to assess network connectivity 

 

 Connectivity between brain regions can be classified into either structural or functional 

connections. Here, we focus on functional connectivity, which allows tracking of dynamic 

changes over a short period of time during memory formation, consolidation and reactivation. 

Functional connectivity can further be grouped into undirected and directed interactions (Bastos 

& Schoffelen, 2015).  

 Because the hemodynamic response function is relatively slow, connectivity derived from fMRI 

BOLD signal primarily captures very slow fluctuations over time. Correlation of FMRI time 

series amplitudes provides a metric of undirected functional connectivity, which can also be 

spectrally decomposed (~0.01 – 1 Hz). Time-domain Granger causality allows assessing directed 

connectivity, i.e. node A driving node B or vice versa (Seth et al., 2015).  Information-theoretical 

metrics such as mutual information and transfer entropy constitute a model-free approach to 

study network connectivity (Quian Quiroga & Panzeri, 2009). 

 M/EEG data has a rich temporal structure and captures a wide range of frequencies (~0.1 – 100 

Hz). Several seminal theories emphasized that synchronization of band-limited oscillatory 

activity might subserve information transfer in large-scale networks; hence, it is best practice to 

spectrally decompose the signal prior to connectivity analysis (Fries, 2015; Pesaran et al., 2018; 

Siegel et al., 2012).   Furthermore, spectral power of M/EEG signals declines with the reciprocal 

of frequency (the so-called 1/f^a power spectrum) implying that low frequencies dominate 

correlations in the time domain (Miller et al., 2009). Most methods for undirected connectivity 

are derived from the coherence metric, which considers both phase- and amplitude-based 

connectivity (Engel et al., 2013). Several variations have been introduced, either suppressing the 
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amplitude contribution (e.g. phase-locking value, phase-lag index, pairwise phase consistency) or 

ignoring the phase contribution (e.g. amplitude-envelope correlations). Effects of electrical 

volume spread in the cortical tissue can be attenuated using bipolar referencing in intracranial 

EEG (Solomon et al., 2019) recordings combined with connectivity metrics (i.e. imaginary 

coherence, weighted phase-lag index, orthogonalized amplitude-envelope correlations) that 

suppress zero-phase lag interactions to extract true inter-areal interactions (Bastos & Schoffelen, 

2015). In addition, there is a growing literature on connectivity as measured directly from 

intracranial electrodes (Foster et al., 2013; Johnson et al., 2018; Solomon et al., 2017). Findings 

obtained from intracranial recordings, for example, assessed information flow within in the 

hippocampus formation (Axmacher et al., 2008; Fell et al., 2006), between amygdala and 

hippocampus (Inman et al., 2018; Zheng et al., 2017), between prefrontal and association 

cortices (Johnson et al., 2018; Watrous et al., 2013) and between mesial and lateral temporal 

cortices (Vaz et al., 2019), confirming and extending rodent studies (Buzsáki, 2015; Johnson & 

Knight, 2015). Collectively, these studies provide the necessary scientific context and validation 

to relate intra- and extracranial studies and interpret connectivity effects.  

However, the directionality of the interactions cannot be inferred from most connectivity metrics, 

i.e. whether a given region is the sender or the receiver (information flow from region A to B or 

vice versa). Several methods, such as Granger causality (Seth et al., 2015), phase-slope index 

(Nolte et al., 2008) or transfer entropy (Lobier et al., 2014), cab quantify directional interactions 

(see Phan et al., 2019 for a critical discussion a possible solution using multivariate modeling). 

These methods typically quantify if the history of a signal in region A can predict the future of 

the signal in region B. If so, then one can infer information flow from A to B. Despite featuring 

the word ‘causality’, these metrics do not actually measure ‘causal’ interactions, but only enable 
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model-based inferences about the directionality of these effects (i.e. flow from A to B is more 

likely than B to A). Notably, similar metrics can be used to study interactions across temporal 

scales (coordination of activity with different frequencies), i.e. cross-frequency coupling (CFC) 

(Aru et al., 2015; Canolty et al., 2006). CFC is as a powerful concept to explain information 

transfer across different temporal scales and has been shown to play a pivotal role for both short-

term (theta-gamma coupling) (Lisman & Jensen, 2013) as well a long-term memory formation 

(SO-spindle coupling during sleep) (Helfrich et al., 2019; Staresina et al., 2015). There are a 

multitude of connectivity metrics but it is still unclear how different modes of interaction (e.g. 

amplitude- or phase-based) or the metrics derived from different imaging modalities are related 

(Hall et al., 2014). Several studies report prominent differences in phase- and amplitude-based 

connectivity metrics, suggesting that phase- and amplitude-based connectivity might reflect 

distinct connectivity modes to support multiplexing in large-scale networks (Engel et al., 2013). 

Comparative fMRI and M/EEG connectivity studies have not found a clear relationship between 

the metrics derived from these two methods (Hipp & Siegel, 2015). Hence, there is not a direct 

transfer function between metrics derived from fMRI and M/EEG.  

 

4.2 The importance of timing in large-scale networks 

Memory formation likely depends on the precise timing between different cortical regions. 

Information transfer in large-scale networks depends on the coordinated interplay between 

specialized cortical nodes (Helfrich & Knight, 2016; Siegel et al., 2012). Over the last two 

decades, several lines of research have indicated that phase-aligned activity across different 

network nodes is necessary for information transfer in large-scale networks (Engel et al., 2001; 

Fries, 2015; Siegel et al., 2012). Critically, a shift of the precise delay or a temporal dispersion 



 

 42 

(Kohn et al., 2020) impacts the flow of information in neuronal networks (Johnson et al., 2018), 

and thus, is detrimental for memory formation or recall (Hanslmayr et al., 2016; Polanía et al., 

2012). More recently, the same mechanism was implicated in coordinating different temporal 

scales (Griffiths, Parish, et al., 2019; Siebenhühner et al., 2016). Helfrich et al. compared 

overnight memory formation in younger (~20 years) and older adults (~70 years) who performed 

a hippocampus-dependent memory task (Helfrich et al., 2018). As expected, younger 

participants, on average, exhibited a higher recall performance the next morning than older 

subjects. However, brain activity during sleep as measure by EEG was remarkably similar: Both 

groups exhibited numerous oscillatory events (distinct events detected in the time domain), such 

as slow oscillations (SOs; < 1.25 Hz) and spindle (~12-16 Hz) oscillations, indicating that these 

cardinal sleep oscillations alone did not predict differences in memory function. When probing 

the fine-tuned temporal interaction between SOs and spindles by cross-frequency coupling, 

Helfrich et al. found that spindles arrived too early during the SO cycle in older adults (Figure 

9). Crucially, we observed the same pattern in both groups: Memory performance declined with 

more spindles missing the optimal coupling phase. Deviations as small as 50-100ms predicted 

impaired memory performance and correlated with increased gray matter atrophy in the medial 

prefrontal cortex in older adults, where SOs are generated. Taken together, when considering 

timing in a large-scale network, both timed information transfer across space, as well as across 

temporal scales, are necessary for successful memory formation and recall. 
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Figure 9 
 

 

 
Impaired slow-wave spindle coupling predicts memory deficits. (A) SO trough-locked time-
frequency representation (TFR) reveals elevated spindle power just prior to the SO peaks 
(dashed lines) in older adults. The inset highlights the average SO-spindle coupling phase across 
32 older adults. (B) SO trough-locked TFR demonstrates that states of high spindle power 
coincide with SO peaks in younger adults. Same conventions as in panel A. (C) The precise SO-
spindle coupling phase predicts overnight memory retention. In both groups, less forgetting was 
associated with more optimal coupling closer to the SO up-state (around 0°). (D) The strength of 
the directional influence of the SO phase on spindle power correlates with grey matter (GM) 
volume in the mPFC suggesting that aging impairs the temporal coordination of SOs and 
spindles and impairs memory performance.  
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5. Conclusions and future directions 

 

This chapter surveyed neuroscientific methods to study human memory. In addition to 

approaches in animals and healthy humans, we have also provided several examples of 

neuroscientific approaches originally designed for clinical applications that have been be utilized 

to elucidate the principles and concepts of human memory. Our understanding of human memory 

will continue to be shaped by the development of novel data acquisition and analysis approaches. 

In particular, multimodal investigations that bridge single-unit and population-based techniques 

will illuminate the functional basis of memory in humans. Furthermore, we foresee that 

information-theoretical analysis tools that link experimental and computational approaches will 

provide the necessary means to integrate evidence across different modalities into a coherent 

model of human memory (Griffiths, Mayhew, et al., 2019), while refined stimulation protocols 

will help to establish causality (Hanslmayr et al., 2019).  

Scientists have long searched for mnemonic engrams, i.e. the long-lasting physiologic changes in 

the brain caused by a stimulus, which reflect a memory. To date, it remains unclear which level 

of observation is needed to detect an engram. In humans, memory traces have been observed 

with fMRI BOLD signal, EEG, local field potentials and single neuron activity. In rodents, 

engrams are often directly associated with the replay of a particular neuronal firing sequence 

(Foster, 2017). The quest for the identification of mnemonic engrams not only requires a 

methodological choice, but also awareness that certain methods can only test a certain 

framework: Does one expect that the single neuron is the unit of cognition (Barlow, 1953) as 

famously suggested by Horace Barlow, where neurons are thought to serve as feature detectors, 

which are precisely tuned to a very specific stimulus property (Eichenbaum, 2017; Hubel & 



 

 45 

Wiesel, 1962), or does one conceptualize the engram according to Donald Hebb (Hebb, 1949) 

who highlighted the importance of cell assemblies for cognition? While Barlow’s idea is very 

much in line with the concept of neuronal replay, where the specific reactivation of a certain cell 

is thought to consolidate memories, the majority of available methods in humans favor Hebb’s 

idea that cell assemblies and analyzing activity at the population level  will better inform 

behavior (Saxena & Cunningham, 2019). Hebb’s concept is advantageous to explain cognitive 

flexibility, since many memories can be mapped on a given neural circuit (Fusi et al., 2016; 

Rigotti et al., 2013; Saxena & Cunningham, 2019). Note that the finding that single neuron 

activity correlates with behavior is not inconsistent with the view that cell assemblies code 

information (Rutishauser, 2019). An important question is how we conceptualize cell assemblies. 

Are cell assemblies composed of specialized neurons that code for e.g. objects, space, time or do 

cell assemblies reflect transient coalitions of ‘multi-tasking’ neurons that can code for more than 

one concept. This idea has previously been referred to as mixed selectivity (Rigotti et al, 2013; 

Fusi et al., 2016), which might provide a powerful conceptual framework for future 

investigations into memory functions. 

Hence, a multimodal approach across several spatiotemporal scales is needed not only to test 

existing theoretical frameworks, but also to bridge and integrate these diverse findings into a 

coherent framework that can explain memory formation in humans. We predict that  methods 

that have been pioneered in rodents will be used in humans to illuminate the inner workings of 

memory. Recent developments include NeuroPixel recordings from hundreds to thousands of 

neurons (Paulk et al., 2021; Steinmetz et al., 2021; Stringer et al., 2019), imaging the brain using 

light (i.e. near infrared spectroscopy; Obrig & Villringer, 2003), modulating the brain using 

focused ultrasound (Folloni et al., 2019; Verhagen et al., 2019) or possibly even optogenetics 
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(Deisseroth; 2011; Boyden et al., 2015). Irrespective of the method, we are convinced that 

closed-loop interventions hold great potential to establish causality and offer a potential 

treatment of memory disorders in the future. Despite a surge of new methods, it is evident that 

not a single method can solve how human memory systems operate. It will be critical to integrate 

methods to bridge spatial (units, cell assemblies, local populations, network-wide activity) and 

temporal scales (µs to years).  

Taken together, the field of human memory has benefited from a wealth of new methods that 

have helped to pinpoint the ‘when’ and ‘where’ of memory formation, while the main challenge 

for future studies is the understanding of ‘how’ memories are (trans-)formed. 
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