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Introduction 

Modern day neuroimaging provides unprecedented spatiotemporal resolution to study cognitive 

processing at the level of whole-brain large-scale network interactions. For decades whole-head 

electroencephalography (EEG) was restricted to only 19 channels as defined by the international 

10-20 electrode layout (a practice that prevails in the clinical setting). In contrast, modern day 

amplifiers enable simultaneous recordings of a few hundred channels (Biasiucci et al., 2019; 

Cohen, 2017; Lopes da Silva, 2013). For example, current high-density EEG systems offer up to 

256 channels, which can be sampled at >1,000 data points per second. When combined with 

inverse solutions to project 2D sensor-level data into 3D source space, as informed by individual 

high-resolution structural MRI (magnetic resonance imaging) scans, one can obtain densely 

sampled time series data for >4,000 voxels inside the brain at 1 mm3 resolution. A thorough 

discussion of inverse solutions exceeds the scope of this chapter, for a detailed discussion see 

(Lopes da Silva, 2013; Pascual-Marqui et al., 1994; Van Veen et al., 1997). This development 

now places high-density EEG recordings on par with magnetoencephalography (MEG; Baillet, 

2017; Gross et al., 2013) in terms of spatiotemporal resolution and approaches the spatial 

resolution of functional magnetic resonance imaging (fMRI). This wealth of data poses a 

challenge for extraction of meaningful information about the functional architecture underlying 

human perception, cognition and action.  
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In this chapter, we focus on analysis techniques of time series data. First, we provide a 

brief overview of current methods that enable imaging the human brain with high spatial and 

temporal resolution. Throughout the chapter we emphasize that time series analyses can be 

applied to different types of electrophysiological data. Second, we review analyses strategies for 

high-dimensional time-series data. Methods are introduced according to their practical 

importance during data analysis (i.e., univariate analysis approaches in the time-domain are 

covered first, before advancing into spectral decomposition, bivariate connectivity analyses and 

finally multivariate analysis strategies). We then review methods that go beyond established 

linear time- and/or frequency analyses and discuss non-linear approaches, including information-

theoretical approaches as well as recent machine-learning inspired strategies. Finally, we take 

recent developments of the last five years into account, as exemplified by strategies to analyze 

background ‘noise’, which has recently been shown to contain important behaviorally relevant 

information. In addition, we highlight how analysis strategies can be synergistically combined to 

maximize insight into neurophysiological processes underlying human cognition. Throughout the 

chapter, we highlight potential caveats, with the goal to provide a roadmap for state-of-the-art 

electrophysiological data analysis. 

Neural recordings 

Traditionally, neural recordings mainly referred to invasive single unit and local field potential 

recordings in animal models (Buzsáki et al., 2012). In the human literature, there is often a 

distinction between direct neurophysiological recordings, as for instance EEG, and indirect 

measures, such as the fMRI BOLD (blood oxygen level dependent) response. The goal of this 

chapter is not to provide an exhaustive list of imaging modalities, but rather to survey the 

analytical possibilities in the context of time-series analyses and highlight the similarities 
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between different methods. To accomplish this, we adopt a liberal definition of neural 

recordings, which encompasses every method that enables quantification of a brain process, 

irrespective whether it refers to direct electrophysiological recordings (voltage differences in 

scalp and intracranial EEG), magnetic fields (MEG), indirect oxygen-dependent responses (fMRI 

BOLD) or functional near-infrared spectroscopy; fNIRS) or motor signals that are obtained at the 

output stage, such as time-resolved behavior (quantified by time-resolved hit rates or reaction 

times), electromyography (EMG; voltage trace) or pupillometry and pupil size (recorded in 

millimeters, degree angles or pixels). These considerations can also be extrapolated to other 

types of recordings, such as two-photon calcium imaging data in rodents. One exception that we 

discuss in detail is that certain analysis approaches are limited by the sampling rate and recording 

location, such as extracting single unit responses from continuous local field potential 

recordings, which require recordings at a fine-grained spatial scale at high temporal resolution 

above 30,000 Hz. 

To illustrate the analytical approaches, we focus on electrophysiological recordings in 

humans, both by means of scalp EEG as well as intracranial electrophysiology, which 

encompasses intracranial EEG, local field potentials and single unit activity (Parvizi and Kastner, 

2018). While most readers will be familiar with scalp EEG, which will not be reviewed in detail 

(Biasiucci et al., 2019), we provide a more in-depth account of intracranial recordings in humans 

(Fried et al., 2014; Parvizi and Kastner, 2018).  

Intracranial electrophysiological signals can be obtained from electrodes placed within 

the human brain for diagnostic and/or therapeutic purposes (Figure 1). The two most common 

entities that require a surgical placement of leads in the human brain are either placement to 

deliver therapeutic deep brain stimulation electrodes for Parkinson’s disease (target: subthalamic 
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nucleus or internal globus pallidus; (Bronstein et al., 2011)), dystonia (ventral intermediate 

nucleus of the thalamus) or epilepsy (anterior nucleus of the thalamus; (Fisher et al., 2010)). In 

addition, implanted electrodes are used to guide surgical decision-making for intratractable 

epilepsy (Parvizi and Kastner, 2018). Here, leads are inserted into multiple nodes of the 

suspected seizure network to identify the seizure onset zone. Target areas are identified 

according to the non-invasive work-up, which includes scalp EEG, high-resolution imaging and 

neuropsychology and can be complemented by various other diagnostic tools, including positron-

emission tomography (PET), voxel-based morphometry (VBM) or MEG (Zijlmans et al., 2019). 

An important feature of some electrodes is that they feature a hollow lumen, enabling insertion 

of additional wire bundles, which protrude by 2-4 mm at the electrode tip for recording local 

field potentials and unit activity (Fried et al., 2014). Several studies have demonstrated the 

feasibility and safety of this approach (Carlson et al., 2018; Chari et al., 2020; Despouy et al., 

2020; Hefft et al., 2013). Over the last decade, intracranial recordings in humans have yielded 

important insights into the functional architecture of cognition, such that the method is now 

widely regarded as an ideal tool to bridge the gap between invasive recordings in animal models 

and non-invasive recordings in humans. 

Figure 1 

Ultimately, only a few factors determine the application of time-series analysis strategies. 

Foremost are the sampling rate and the duration of the recordings. These factors determine the 

resulting Nyquist frequency (i.e., the highest frequency that can be resolved from the data is half 

the sampling rate – at 1,000 Hz sampling rate, all frequencies up to 500 Hz can be resolved; 

practically one should rather aim for a 3rd or 4th of the sampling rate). The duration further 

determines the Rayleigh frequency resolution, which is defined by 1 divided by the temporal 
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window. For example, a two second segment at 1,000 Hz can be analyzed in steps of 0.5 Hz 

(1/2), while a 10 second segment allows a more fine-grained resolution at 0.1 Hz (1/10). The 

signal duration also determines the digital filtering that can be applied to the data. The lower cut-

off needs to match at the least one whole cycle of the lower boundary (i.e., filtering a 1 s second 

segment at 1 Hz is theoretically possible, but pushes the limits of signal processing leading to 

unstable results). However, filtering at a lower cut-off of 10 Hz (10 cycles in 1 second) is 

feasible, while a cut-off of 0.5 Hz is impossible (only half a cycle can be fit into the segment). 

Lastly, one needs to be aware of the noise floor of both the environment as well the recording 

equipment. For typical EEG amplifiers, the noise floor where the amplifier yields meaningful 

results is > 100 Hz. However, the environmental noise floor is already present at ~30-40 Hz 

given muscle activity in this recording range. This issue is largely mitigated in intracranial EEG 

recordings, which are less impacted by muscle artifacts. For instance, analyses in the high-

frequency activity band (70-200 Hz) have yielded important insights into cognitive functioning 

(Leszczyński et al., 2020). 

Keeping those theoretical principles in mind now enables applying spectral analyses to 

different recording modalities with theoretical and practical implications (Prerau et al., 2017). 

For example, intracranial EEG data that was recorded over one hour at a frequency resolution of 

5,000 Hz can easily be filtered and spectrally decomposed in a broad-range of frequencies up to 

2,500 Hz at a fine-grained resolution of <<0.1 Hz (in practice an upper threshold of 250 Hz and a 

resolution of 0.5 Hz is often sufficient). In contrast, whole-brain fMRI BOLD over one hour 

typically provides one data point per voxel every second, thus, resulting in a frequency resolution 

of 0.33 Hz, which limits both the ability to filter as well as to spectrally decompose the data (Fox 

et al., 2005). For fMRI using these parameters, he upper frequency cut-off is at 0.16 Hz, so 
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frequencies between 0.01 and 0.1 Hz can best analyzed at a resolution in the 10-2 to 10-3 Hz 

range. 

Electrophysiological data analysis 

The improved spatiotemporal resolution of human electrophysiological recordings has benefited 

the development of numerous algorithms and methods to extract behaviorally meaningful 

information. However, these high-dimensional and complex data sets that are governed by non-

linear dynamics, posing unique challenges. For example, there are multiple correct answers for 

the questions regarding (1) how to analyze the data, (2) which method to choose and (3) how to 

statistically quantify the results. More commonly, the right answer will be ‘it depends’. Here, we 

provide a practical road map with an initial focus on EEG analyses that helps narrow the 

immense search space and justify analytical choices and their interpretations.  

General analysis strategies 

Data analysis does not begin once data collection ended, but rather starts with data recording and 

the experimental structure. During data recording, researchers make a number of explicit (e.g., 

number of EEG sensors, sampling rate) as well as implicit choices (task design, duration of trials, 

event structure) that limit the subsequent analyses. Important considerations include whether 

distinct events are present (task-based time-locked events that can be contrasted) or whether a 

continuous design (e.g., resting state or experience sampling) were employed. Within the 

historical context of EEG, Hans Berger’s seminal experiments on alpha oscillations (cf. Berger, 

2004) first constituted a continuous analysis (spontaneous fluctuations in the trace were 

quantified). Subsequently, he employed an event-locked approach (eyes open/close), which later 

gave rise to the discovery of event-related potentials by averaging across several repetitions 

(Polich, 2007). To illustrate these methods, we will assume a task-based design with distinct 
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events that require a behavioral response and thereby, enable time-locked analyses either relative 

to the event or the action.  

Event-related analysis in the time-domain 

Averaging across several events is typically done to improve the signal-to-noise ratio and to 

quantify the average response across a number of events. In the context of EEG, averaging can 

be done on the raw trace, thus, yielding event-related potentials (ERP; Handy, 2005)). Likewise, 

averaging can be performed after extraction of a distinct spectral component. For example, it had 

been observed that the 70-150 Hz (termed high gamma or high frequency band activity, 

HFA/HFB) in intracranial EEG recordings reflects a proxy of multi-unit activity and contains 

more behaviorally relevant information than the broadband signal (Edwards et al., 2005; Flinker 

et al., 2015; Kanth and Ray, 2020; Leszczyński et al., 2020; Ray and Maunsell, 2011; Rich and 

Wallis, 2017). Thus, filtering and extracting the signal envelope by means of (e.g., a Hilbert 

transform; Figure 2), are used to distil the relevant signal component prior to subsequent 

averaging (Figure 2A).   

Figure 2 

In continuous task designs, such as resting state or sleep recordings, there are no external 

temporal structure for time locking analyses. Therefore, researchers rely on identification of 

intrinsically generated events for subsequent analysis. Many events have first been described in 

the time domain (e.g., alpha waves by Berger as characteristic 10 Hz bursts of activity in the raw 

trace). Likewise, slow waves (< 4 Hz) and sleep spindles (~12-16 Hz) have been identified based 

on the characteristic waveform shape in continuous recordings (Buzsáki, 1996; Diekelmann and 

Born, 2010). Detection of these events in the time domain can be algorithmically formalized, 

typically by introducing constrains with respect to (a) the frequency content (through band pass 
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filtering), (b) an amplitude criterion, (c) a duration criterion and (d) exclusion of unrelated 

activity (Helfrich et al., 2019; Staresina et al., 2015). For example, detection of sleep spindles 

only considers bursts in the amplitude series of the 12-16 Hz filtered signal that exceed a z-score 

of (e.g., 3 SDs above the signal mean) for anywhere between 0.5 to 3 seconds. Based on the 

individual detections, averaging can be performed in the time domain to obtain the average 

waveform shape (Figure 3).  

Figure 3 

Furthermore, the detected event can be conceptualized as a point process, i.e. an event 

that occurred precisely at one moment in time (e.g. activity peak). To again employ the example 

of sleep spindles, time-locking of the raw signal relative to spindle peaks reveals the presence of 

a second spectral signatures in the raw signal. The spindle does not occur in isolation, but is 

nested with a slow wave. This approach exemplifies how detection of endogenous temporal 

events can reveal temporal regularities that otherwise could not be detected from the raw trace. 

The same principle applies to the extraction of single unit spikes from broadband local 

field potentials (LFP). LFPs are sampled at >30,000 Hz, spikes are again extracted based on 

amplitude and time criteria (sharp transient in the range from 2-4 ms) before all waveform 

shapes are further characterized in a process called spike sorting (Fried et al., 2014; Rutishauser 

et al., 2006). Here, different waveform shapes are disentangled in order to isolate activity from 

distinct neurons. Subsequently, every spike from every identified neuron is regarded as one 

distinct time stamp; thus, the dimensionality of the data has been reduced, benefiting subsequent 

analyses. For example, spike-triggered averaging of the raw broadband signal has revealed that 

spikes preferentially occur at distinct phases of the underlying population oscillation, which are 

already present in the down-sampled signals. Hence, subsequent analyses can be carried out on 
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signals sampled at 1000 Hz and not 30,000 Hz, enhancing computational efficacy and speed. 

Furthermore, from these point events (‘Spikes’), peri-stimulus time histograms (PTSH) can be 

created, which are commonly smoothed into a trace of overall spiking activity; hence, yielding a 

signal that is comparable to an event-related potential, only based on a number of distinct 

neuronal spikes. Collectively, this demonstrates how temporal events can be extracted from 

continuous data and then again be analyzed in a time-locked fashion, either relative to external or 

internal events. 

Spectral analysis 

Electrophysiological signals are rich and complex. Ever since Berger’s seminal observation, the 

community was well aware that different frequency bands might contain distinct information. 

Over recent decades, several methods were introduced to either spectrally decompose the signal 

to obtain activity in multiple frequency bands or to isolate activity in a distinct frequency band. 

The most common approach is based on the Fourier transformation, which decomposes 

the signal into (co-)sines and provides estimates of the relative contribution of every frequency 

band to the entire signal. Using this approach, the time domain is typically lost (translation of 

time- into frequency-domain), but can be recovered by means of repeating the analysis in 

different time windows by means of convolution. Electrophysiological power spectra exhibit 

distinct characteristics, including a steep 1/fx drop-off, where x typically scales in the range from 

-2 to -4 in the healthy brain (for extended discussion see section on aperiodic activity; (He et al., 

2010; Miller et al., 2009)). Band-limited oscillations arise as distinct ‘bumps’ (Donoghue et al., 

2020) above the background activity (Figure 4). 

Figure 4 
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In addition to the Fourier transform, several other methods have been introduced, such as 

Morlet wavelets (sines multiplied with Gaussians, which are convoluted with the signal) or the 

Hilbert transform, which requires band-pass filtering first and then estimates the instantaneous 

amplitude and phase series. One important caveat is that all spectral decomposition techniques 

only provide ‘estimates’, which differ as a function of (e.g., signal length, sampling rate, noise 

and pre-processing). A common approach to improve estimates is to ‘window’ the data (also 

caller taper; multiplication of a data segment with (e.g., Boxcar window, where the edges are 

Gaussian shaped, thus, attenuating edge artifacts). The signal-to-noise ratio can be improved if 

multiple windows are combined and estimates are averaged (as for instance done when using 

Welch’s method or the multi-taper approach based on discrete prolate spheroidal sequences 

(Prerau et al., 2017); Figure 5). 

Figure 5 

Another major drawback that all methods share is that they are based on sinusoidal basis 

functions (i.e., if these methods are applied to brain data, then the results will be systematically 

biased to reveal sinusoidal oscillations). Inspection of raw EEG traces reveals that most neuronal 

oscillations are not sinusoidal in nature, but are characterized by biased rise- and decay-times 

with skewed and often sharp waveform shapes (Cole and Voytek, 2017). Application of 

sinusoidal methods can introduce severe artifacts, which are prone to misinterpretation (Aru et 

al., 2015; Gerber et al., 2016). One example is sensorimotor Mu-Rhythm at ~8-12 Hz, which is 

named ‘Mu’ given that is often shaped like a ‘M’. The Fourier transform will extract the main 

component at ~10 Hz, but also yield peaks at ~20 Hz as well as all other subsequent harmonics, 

given that the sharp peak is incompletely captured by a single sine wave (Voytek et al., 2010). In 

electrophysiological recordings, researchers are then faced with the presence of true beta-band 
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activity at ~20 Hz (a hallmark of the motor system), which is contaminated by Mu-harmonics at 

~20 Hz (Stolk et al., 2019). In recent years, several methods have been introduced to disentangle 

true from spurious oscillatory brain activity (Donoghue et al., 2020; Kosciessa et al., 2020; Wen 

and Liu, 2016). For example, empirical mode decomposition (EMD) does not rely on sinusoidal 

basis functions and can also model a change in the precise peak frequency over time (Quinn et 

al., 2021). The same issues apply when the interaction of multiple frequency bands is assessed. 

To date, there is no unique solution for this issue, but several recent publications suggest that a 

set of criteria could be applied to the data to infer whether non-sinusoidality is present (Aru et 

al., 2015). 

Separating aperiodic from oscillatory activity 

The electrophysiological power spectrum encompasses oscillations (discrete ‘bumps’), 

exceeding the general 1/fx drop-off. For decades, both phenomena have been studied together 

and were not explicitly disentangled (Donoghue et al., 2021). Hence, elevated ‘alpha power’ 

could either be the results of an amplitude increase of the oscillatory component or a general 

increase in activity in all frequency bands (Figure 4). This distinction has gained more traction 

recently, since several groups demonstrated that the background activity – which had been 

previously considered to mainly reflect neuronal noise – in fact contains behaviorally relevant 

information (Donoghue et al., 2020; He et al., 2010; Lendner et al., 2020; Voytek et al., 2015). 

Importantly, the level of information content about the behavioral state is on par with neuronal 

information encoded in band-limited oscillatory activity. To date, the exact physiological role of 

both components is not fully understood, but they can be conceptualized as providing 

complementary insights into cognitive processes (Wainio-Theberge et al., 2021, 2022). Over the 

last decade, several approaches have been introduced to parameterize oscillations and to 
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disentangle oscillatory from broadband (also termed aperiodic, fractal or scale-free) background 

activity. The simplest solution to isolate oscillations entails a linear fit to the power spectrum in 

double-log space (thus the linear fit reflects the aperiodic component) and subtraction from the 

original spectrum (Lendner et al., 2020; Miller et al., 2009). More sophisticated algorithms 

employ robust fitting (Kosciessa et al., 2020), irregular spectral resampling (Wen and Liu, 2016) 

or additive fitting of Gaussian components to the oscillatory peaks (Donoghue et al., 2020). All 

methods have in common that they now provide two components that are derived from the same 

underlying signal, which can be related to behavior and brain state. Currently, these concepts are 

actively being explored, with several new notions, such as the concept of population time 

constants of relative stability (also termed temporal integration windows, autocorrelation 

window or intrinsic neural timescales; Gao et al., 2020; Golesorkhi et al., 2021; Ito et al., 2020; 

Raut et al., 2020; Wolff et al., 2022), which can be approximated by characteristic bends in the 

shape of the power spectrum in the frequency domain or from the decay of the autocorrelation 

function in the time domain. Population time constants are thought to provide the necessary 

means for temporal integration and exhibit a clear cortical gradient with short timescales in 

sensory cortex and longer timescales in association areas (Gao et al., 2020; Raut et al.; 2020; 

Wolff et al., 2022). 

Oscillatory and waveform shape features 

Definition of oscillations, including their bandwidth and amplitude (i.e., power), is most 

commonly done in the spectral domain. However, as outlined above, spectral analysis also omit 

important wave form features as well as instantaneous signal characteristics, which are 

inherently time dependent, such as oscillatory phase. Hence, it is best practice to return from the 

spectral to the time domain to quantify and assess the oscillatory features after the presence of an 
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oscillation was established using spectral methods. These analyses can either be applied on band-

limited or broadband data. It is important to consider that both linear as well as non-linear 

variables can be obtained from time- and frequency-domain data, with amplitude reflecting a 

linear variable, while phase constitutes a circular, and thereby, non-linear variable. Both features 

can be extracted from the Hilbert transform and can be related to behavior using either linear or 

circular-linear correlations (Berens, 2009; Fiebelkorn et al., 2018; Helfrich, Fiebelkorn, et al., 

2018). In this case, one needs to assume a fixed frequency band to obtain reliable phase 

estimates. Again, Fourier methods are ill suited to assess if the peak frequency changes over time 

(jitter in peak frequency reflects a broadening of the spectral peak in the electrophysiological 

power spectrum). Several recent developments, including the EMD, now aim at mitigating these 

effects (Quinn et al., 2021; Watrous and Buchanan, 2020). 

Another recent development is the appreciation of waveform shapes (Cole et al., 2017). 

Previously, waveform shapes have largely been ignored given that the Fourier basis functions 

were sinusoidal. The role of physiologic non-sinusoidal waveform shapes came into focus after it 

was realized that non-sinusoidality introduces artifacts in (e.g., cross-frequency coupling 

analyses; see below; Aru et al., 2015; Gerber et al., 2016); Figure 6). Novel tools now enable 

assessing waveform shapes with the goal to relate distinct features (such as rise- or decay-times, 

asymmetries or amplitude bias) to distinct physiological processes. However, there is currently 

only limited evidence that supports a distinct role in cortical processing.  

Figure 6 

Network connectivity across spatial and temporal scales 

We have focused on univariate analyses that can be carried out at the single electrode or single 

voxel level. In contrast, network approaches quantify the interaction between multiple regions. 
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This interaction is often also termed functional connectivity, to contrast it to structural 

connectivity, which can be obtained from tracing or fiber tracking studies (Buzsáki and Draguhn, 

2004; Engel et al., 2001; Varela et al., 2001). Functional connectivity is undirected (i.e., it is not 

quantified who drives the interaction). Directed connectivity is referred to effective connectivity 

implying information flow from node A to node B. Here, we first discuss undirected connectivity 

between different nodes, and then we discuss directed connectivity methods across spatial scales. 

The concept of connectivity can also be extended to interactions in the temporal domain (i.e., the 

interaction between different oscillations or between the LFP and spikes. Lastly, we discuss the 

use of information theoretical approaches in this context.   

Undirected connectivity is most commonly studied by means of coherence or magnitude-

squared coherence as it is more correctly termed (Bastos and Schoffelen, 2015). This distinction 

indicates that the coherence formula encompasses both the relationship of amplitude as well the 

relationship of phase. Collectively, this relationship is then normalized to yield a number 

between 0 and 1. If the amplitude term in the formula is replaced by a 1, then the formula 

become amplitude-independent and only the contribution of phase synchronization is estimated; 

this normalized variant is also known as the phase-locking value (Lachaux et al., 1999). 

Likewise, one can focus only on the amplitude contribution by (e.g., correlation of the amplitude 

time series; Hipp et al., 2012). The literature often distinguished between phase-based and 

amplitude-based connectivity and several theoretical accounts postulated distinct roles for 

cortical communication (Engel et al., 2013). Both metrics have in common that they are 

susceptible to volume spread in the cortical tissue, which inflates connectivity metrics. Solutions 

by means of orthogonalized amplitude correlations (Hipp et al., 2012) or imaginary coherence 

(Nolte et al., 2004) as well as several variants have been proposed (Bastos and Schoffelen, 
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2015), which minimize this confound by attenuating the contribution of zero phase-lag 

interactions. 

Both approaches share that they are undirected in nature, so it remains equivocal whether 

node A is driving node B, or vice versa. Several metrics that take advantage of statistical 

regularities in the data have been introduced to infer directionality, such as Granger causality 

(model-based assessment; (Seth et al., 2015)) or the phase slope index (dependence across 

multiple frequency bands; (Nolte et al., 2008). However, these methods operate on statistical 

dependencies, are susceptible to noise and do not provide a true ‘causal’ explanation. 

The concept of directed and undirected connectivity has also been formalized in an 

information-theoretical framework (Ince et al., 2017; Panzeri et al., 2015). Shannon Information 

Theory (Shannon and Weaver, 1998) is centered on entropy to quantify the observed distribution 

of a given variable (here activity in one region). Connectivity between two regions can be 

inferred if knowledge about the activity in one region reduces uncertainty about the state of the 

other region. This interaction has also been termed Mutual Information and is undirected. An 

important extension of this idea called sample entropy basically takes a third signal into account 

to infer directionality (Lobier et al., 2014): Does knowledge about the past of region A provide 

more information about the future of region B than the past of region B alone? If the answer is 

yes, then this can be interpreted as information flow from A to B. Again, this approach is not 

causal, but enables a statistical comparison based on empirical signal distributions. One 

disadvantage of information theoretical metrics is that they typically require binning of the data 

and thus, reduce the signal complexity into a finite number of bins at the expense of losing fine-

grained details (Panzeri et al., 2015).  
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Lastly, the concepts that apply to interactions between spatial nodes can be extended to 

the spectral domain to infer if two frequency bands interact (Figure 7). This coupling across 

temporal scales is widely known as cross-frequency coupling (CFC; (Canolty and Knight, 2010) 

and has most prominently studied in the context of phase-amplitude coupling (PAC), where the 

phase of slow frequency (e.g., theta or alpha) predicts broadband high frequency activity 

(Canolty et al., 2006). However, amplitude-amplitude as well as phase-phase couplings have also 

been described for CFC (Aru et al., 2015). CFC analyses are susceptible to signal artifacts (cf. 

Figure 6) and signal processing choices; hence, several papers formulated concrete guidelines to 

circumvent these issues (Aru et al., 2015; Gerber et al., 2016). Similar considerations apply also 

for LFP-spike coupling.  

Figure 7 

Multivariate representations and analyses 

The analysis of electrophysiological data constitutes an extensive multivariate problem. In order 

to better understand the data and help the interpretation, the most common analytical approaches 

condense this complex analytical space into serial univariate tests, which are oftentimes easier to 

interpret. From a conceptual standpoint, univariate analyses seem reasonable when data is 

approached with the ‘Neuron Doctrine’ in mind, which states that the single neuron is the central 

computational unit of the nervous system (cf. Yuste, 2015). Within this framework, it is 

reasonable to employ univariate analyses approaches. However, in recent years it became 

obvious that the single neuron framework falls short in explaining several cognitive phenomena, 

such as flexible context-dependent behavior, which inspired the concept of a ‘Population 

Doctrine’ (Ebitz and Hayden, 2021; Eichenbaum, 2017; Saxena and Cunningham, 2019; Yuste, 

2015). This population framework suggests that transient coalitions of neurons form the central 
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computational unit of the nervous system (Eichenbaum, 2017; Siegel et al., 2012). Therefore, 

gaining a deeper understanding into cognitive mechanisms requires large-scale recordings, which 

are not amendable to classic univariate analyses. This novel framework was motivated by a 

series of new artificial-intelligence inspired algorithms, which enable uncovering the organizing 

principles of seemingly chaotic population activity. This is a rapidly emerging field with many 

new technical innovations in recent years, and we are unable to provide a thorough review, but 

will focus on two representative examples to illustrate how to approach population-based 

analyses. 

The first important approach is that multivariate data can be represented in a so-called 

state-space representation (Ebitz and Hayden, 2021; Gervasoni et al., 2004). Instead of analyzing 

individual time series, the entire channel (or neuron) x time matrix is conceptualized as a single 

time series of adjacent points which travels through a N-dimensional coordinate system along a 

trajectory, which is spanned by the individual data points. Here N refers to the number of 

observations (e.g., channels or neurons). If one considers recordings from three neurons, then the 

first time point is a point in a 3D coordinate system. Hence, using linear algebra, we can infer the 

Euclidean distance to either the center point of coordinate system or to adjacent time points. Here 

the critical advantage is that Euclidean distance is again a single number, hence, the high 

dimensional data can effectively be condensed into a single vector. Thus, the entire matrix can be 

regarded as a trajectory traveling through N-dimensional space and given that Euclidean 

distances can be calculated, one can also infer (e.g., the velocity (distance/time) or acceleration 

(velocity/time) of the system ─ Figure 8).  

Figure 8 
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As humans, we cannot effectively visualize more than three dimensions, hence, it is 

common practice to visualize state space trajectories in 2D or 3D, and after dimensionality 

reduction has been performed (Ebitz and Hayden, 2021). This conceptualization of population 

activity gave rise to several emerging concepts in neuroscience, including attractor states (points 

in the system where the activity patterns are naturally drawn to and converge on) or neuronal 

manifolds (activity patterns fall onto certain planes in the state space and are not completely 

randomly distributed along all possible dimensions, hence, all possible activity patterns are 

constrained to a subspace that houses most observations). To date, these techniques have mainly 

been applied in the motor domain, where they provide additional explanatory power over 

univariate analyses, but they are gaining traction in the cognitive domain (Chaisangmongkon et 

al., 2017; Goudar et al., 2021; Murray et al., 2017; Weber et al., 2021). The second common 

technique to address multivariate brain data relies on multivariate pattern analysis (MVPA; 

(Grootswagers et al., 2017; Hebart and Baker, 2018; Kriegeskorte et al., 2006; Quian Quiroga 

and Panzeri, 2009), which is also sometime called pattern classification or more commonly 

‘brain decoding’ (Figure 9).  

Figure 9 

Here, researchers take advantage of classification algorithms, such as the linear 

discriminant analysis (LDA) or support vector machines (SVM), which learn patterns that are 

associated with certain conditions or responses. Importantly, the classifiers require splitting the 

data into a training dataset, where the classifier has access to the ground truth, and a testing 

dataset, which consists of held-out samples. Based on the performance on the held-out samples, 

one can infer the accuracy of the classifier. Critically, these algorithms often work as a ‘black 

box’, where the algorithm learns a given association and then is used to predict held-out data 
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points, but one cannot visualize the classifier per se. Therefore, it often remains ambiguous 

whether the classifier utilizes information that is also accessible by the brain itself or whether it 

picks up epiphenomenal or noise influences. In the context of neurophysiological experiments, 

classifiers are used to infer if a population contains behaviorally relevant information or not, i.e. 

whether the classifier performs better than chance. In contrast to engineering, the goal is not to 

maximize classifier performance, but the goal is to test if the classifier performs significantly 

better than chance. If above-chance performance is observed, this is taken as evidence that the 

brain contains information about the classified behavior (i.e., context or movement execution).  

In practice, state-space and classification analyses are often combined (Mante et al., 

2013). Jointly these methods enable extraction of coding dimensions (i.e., finding a latent or 

hidden dimension in the data that cannot be accessed using univariate analyses, that maximizes a 

given behavioral contrast). This approach enables disentangling (i.e., cognitive from motor 

contributions, which can appear superimposed when using univariate analysis tools; Vyas et al., 

2020). Disentangling the respective contributions provides the opportunity to study their 

contribution to the overall population activity and provides new insights into the coding 

mechanisms. For example, it had repeatedly been shown that motor activity is confined to a low-

dimensional sub-space (i.e., can be described by only few activity patterns, which often cycle 

along a low-dimensional ring structure; Churchland et al., 2012; Shenoy et al., 2013). In contrast, 

more complex higher-order cognitive operations also require higher dimensional neuronal 

representations, since they rely on distributed computing (Ebitz and Hayden, 2021). Collectively, 

novel population-based analysis strategies extend the explanatory power of univariate tests and 

open a new conceptual space to interpret the functional architecture underlying human behavior.  

Scale-free phenomena 
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Scale-free phenomena refer to the analysis of statistical regularities in electrophysiological data 

that are not governed by a defining temporal scale (He et al., 2010). For example, scalp EEG is 

governed by alpha oscillations at ~10 Hz as their defining temporal scale, while many 

intracranial EEG contact often do not exhibit a clear oscillatory peak. The absence of oscillatory 

peaks raises the question if there is any underlying hidden temporal structure present and if yes, 

then how could this be quantified. An important concept that borrowed from physics is fractality, 

which describes the self-similarity of a signal irrespective of the chosen temporal window 

(Pritchard, 1992). Critically, this self-similarity follows a power-law (i.e., a law of nature; Miller 

et al., 2009). A typical example from nature is the structure of a Romanesco cauliflower, which 

exhibits characteristic florets, which always look similar, irrespective of their size or 

magnification (Hardstone et al., 2012; Linkenkaer-Hansen et al., 2001). In the context of 

electrophysiological data, this means that an EEG trace always exhibits similar fluctuations, 

irrespective of whether one hour, one minute or one second is displayed. While this phenomenon 

is difficult to describe in the temporal domain, it can easily be captured in the frequency domain 

(Figure 10).  

Figure 10 

After applying a Fourier transform, one can easily appreciate the general 1/f drop-off (cf. 

aperiodic activity in EEG), which indicates a stable relationship between frequency and 

amplitude, irrespective of the precise frequency and therefore irrespective of the precise temporal 

scale. In the past two decades, several methods have been introduced to quantify this type of 

behavior, either in the temporal or spatial domain. For example, linear fitting of the 1/f 

background activity is a common approach to extract the spectral exponent and thereby, quantify 

the underlying statistical regularities. A related approach is the detrended fluctuation analysis 
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(Hardstone et al., 2012), which assesses long-range temporal correlations, i.e. signal correlations 

that obey the same scaling behavior irrespective of the chosen temporal window. Similar 1/f 

phenomena have been observed in the spatial domain, where activity peaks across many 

electrodes coincide in time and the distribution of the duration and amplitude again follow a 

power law with 1/f-like characteristics (Palva et al., 2013). Going beyond the activity peaks, 

analysis of microstates (i.e., quasi-static scalp topographies in EEG) revealed that brain activity 

alternates between four major scalp topographies, where again a 1/f-like power law can describe 

the duration of each topography (Ville et al., 2010). To date, it remains unclear how these 

different phenomena are related, but several lines of research suggest that they might constitute 

emergent analytical tools to quantify temporal regularity, which cannot be appreciated by the 

naked eye, unlike neuronal oscillations (Cocchi et al., 2017). It has been argued that the 

characterization of temporal regularities in the form of scale-free dynamics constitutes a 

promising avenue to understanding the neural correlates of consciousness (Lendner et al., 2020; 

Tagliazucchi et al., 2013, 2016; Zhang et al., 2018). 

Statistical considerations 

Since brain activity is non-linear, non-stationary and non-normally distributed, classic analyses 

such as t-tests, analysis-of-variance (ANOVA), linear correlation or regression often fall short in 

capturing the data complexity (Maris and Oostenveld, 2007). However, these methods are still 

widely employed, since they are easy to use and most researchers know how to interpret their 

outcomes (Piai et al., 2015).  

To mitigate the issue of unknown distributions of brain data, which violate the 

assumptions of many statistical tests, the currently most accepted approach includes cluster-

based permutation tests (Maris and Oostenveld, 2007). Here a new surrogate distribution is build 
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based on randomly assigning all observations to distinct groups (i.e., shuffling the condition 

label), then to repeat the analysis 1,000-10,000 times and then compare the true observed value 

to the surrogate distribution. If the observed value falls outside of the mean ± 2 SDs, then 

significance can be assumed (at p < 0.05). This approach is elegant, since it allows that any type 

of primary test statistic can be employed to build the surrogate distribution. Hence, this test is 

inherently non-parametric and can be used in a wide variety of contexts. An alternative solution 

that emerged in recent years, is the use of general linear mixed effects models, which however, 

are often difficult to interpret and difficult to visualize and therefore, have not been adopted 

widely.  

Summary and Conclusions 

In the present chapter, we have reviewed the current state-of-the-art of neuronal time series 

analysis through the lens of scalp and intracranial EEG recordings. Notably, as outlined in 

beginning, the same analyses can be applied to other imaging modalities that produce time series 

data and most analyses are only constrained by sampling rate, signal duration and event types. 

From a practical standpoint, we emphasized the need to go from simple to more complicated 

analyses, i.e. going from univariate analyses in the time domain to univariate analyses in the 

frequency domain, before branching off into bivariate connectivity or multivariate classification 

analyses. In order to interpret the result of a bivariate connectivity or multivariate classification 

analysis in a meaningful way, one needs to ensure that the observed differences are not solely 

driven by univariate differences, in (e.g., the overall amplitude), but in fact can only be attributed 

to their joint activity. 

The example of aperiodic activity analyses nicely illustrates how one can teach an old 

dog (the Fourier transform) a few new tricks that provide additional explanatory power and 
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enable linking macroscopic signals to underlying circuit properties (Gao et al., 2017). In the case 

of aperiodic activity, computationally modeling suggested that the steepness of the exponential 

decay of the power spectrum reflects the excitation-inhibition-balance of the underlying neuronal 

population, which otherwise could not have been inferred (Chini et al., 2021).  

The wealth of available methods also enables reanalysis of available datasets, especially 

if the primary analysis was mainly concerned with univariate analysis approaches. As an 

example, a classic working memory experiment in two monkeys indicated that single neurons in 

prefrontal cortex code distinct aspect of working memory (Warden and Miller, 2007, 2010). 

Through careful reanalysis of the same dataset, a new concept of working memory emerged. In 

the first follow-up publication, the authors demonstrated that spiking is coupled to the underlying 

LFPs (Siegel et al., 2009). Subsequently, these LFP signatures were described in more detail, 

which triggered follow-up investigations on neuronal bursts and how these differ from sustained 

oscillatory activity (Lundqvist et al., 2016, 2018). Furthermore, the same dataset was used to 

infer the dimensionality of spiking activity, which supported the notion that high-dimensional 

representations are desirable for cognitive flexibility (Rigotti et al., 2013). With the emergence of 

more analytical tools and the availability of more open datasets novel concepts will be generated 

based on existing data (Fusi et al., 2016). Overall, machine learning is now established as an 

independent field, thus, we foresee that more multivariate tools will become available to 

experimental neurophysiologists to assess their data beyond classical univariate analyses 

(Grootswagers et al., 2017; Hebart and Baker, 2018).  

Overall, experimentalists are nowadays faced with a wide-array of analysis tools, which 

requires careful justification of the employed methods. However, the wealth of tools also 
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provides an exciting avenue to unravel the mechanisms behind human cognition, perception and 

action. 
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Figures Captions and Legends 

 

 
Figure 1. Intracranial human electrophysiology 

(A) Upper row: Subdural grid electrode placement from three representative subjects covering 

large portions frontal, temporal and motor areas. Lower row: Stereotactically placed depth 

electrodes targeting medial temporal, orbitofrontal or medial frontal structures. (B) Single unit 

activity can be recorded from additional wire bundles that are inserted through a hollow lumen of 

the clinical macro-electrode. Figure reproduced with permission (Helfrich & Knight, 2019). 
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Figure 2. High frequency band activity 

(A) Average high frequency band activity recorded from a motor cortex electrode relative to the 

detection of the onset of a visual target reveals activity after approximately 500ms. (B) Stacked 

single trials that are sorted relative to reaction times (black trace) reveals that HFA tracks 

behavior on a single trial basis. Unpublished (Helfrich & Knight). 
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Figure 3. Visualization of cross-frequency coupling and raw waveform shapes 

(A) Slow waves in a group of older adults (black) on top of the respective time-frequency 

decomposition, indicating an activity peak in the ~14 Hz spindle range just prior to the slow 

wave peak. Inset: Visualization in circular space of the same data, indicating that spindle activity 

peaked prior to the slow wave peak (approx. 45°, corresponding to 50-100ms). (B) Same 

visualization for a cohort of younger adults, indicating that spindles are precisely locked to the 

peak of the slow wave. (C) Visualization relative to detected spindles (colored) with the slow 

wave superimposed in black. Note that spindle peak prematurely. Inset: Illustration of the spindle 

peak relative to the slow wave (as exemplified by a cosine). (D) Histogram-based visualization 

of coupling: Relative amplitude in the spindle-band relative to different binned slow-wave 

phases, reveals a non-uniform distribution that is skewed in older adults. Note all panels depict 

the same data and illustrate different approaches to cross-frequency coupling and waveform 

shape analyses. Figure reproduced with permission from (Helfrich, Mander, et al., 2018) 
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Figure 4. Relationship of oscillatory and broadband activity 

(A) Illustration of Fourier transformation of electrophysiological data that exhibits both an 

oscillation in 8-12 Hz alpha range (‘bump’ exceeding the 1/f background activity within the gray 

shaded area) as well as broadband 1/f component. A true increase in oscillatory power between 

two conditions (red to green) is illustrated. (B) A broadband shift (i.e., change of overall offset 

along y-axis) can mimic an alpha power increase, which is not oscillatory in nature. (C) 

Likewise, a change in peak frequency can mimic power changes when power is averaged within 

a predefined range. (D) Similarly, a rotation of power spectrum (change in spectral exponent) 

can introduce changes in oscillatory power if spectra are not properly parameterized. Illustrations 

created using the FOOOF toolbox (Donoghue et al., 2020). 

 

 
Figure 5. Effect of different spectral decomposition methods 

Upper row: Sleep hypnogram from single case across 8 hours of sleep. Below: Spectral 

decomposition of entire night of sleep using either a multi-taper or single taper approach, the 

periodogram or Welch’s method. The resulting estimates become progressively more coarse-

grained. (B) Signal-to-noise ratio per frequency reveals a clear advantage of multi-tapered 

spectral analysis. (from Lendner et al., 2020). 
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Figure 6. Effects of non-sinusoidal sharp transients on cross-frequency coupling estimates 

(A-H) Eight examples of simulated EEG traces (blue) that are composed of broadband EEG 

activity (black) and sharp transients (red) as well as the accompanying phase-amplitude 

comodulogram (black outlines indicate significant coupling) revealing that sharp transients 

introduce spurious cross-frequency coupling at the primary frequency (10 Hz) as well as at the 

subsequent harmonics. (from Gerber et al., 2016). 
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Figure 7. Analysis strategy for cross-frequency coupling analyses 

(A) Raw EEG data (black) can be decomposed into different frequency bands through band-pass 

filtering. Instantaneous phase and amplitude estimates are extracted from the Hilbert transform 

and can be correlated using either linear or circular correlation analyses. (B) Visualization of the 

proposed coupling mechanism, where overall power remains constant, but power is modulated as 

a function of phase (from Helfrich et al., 2015). 

 

 

  

 
Figure 8. 2D State-space representations of cognitive dynamics 

 (Left) Tangled trajectories of three different conditions (varying degree of predictability) along 

two dimensions in human PFC indicate a complex representational pattern. (Right) In contrast, 

activity in motor cortex is neatly organized along a ring structure, indicating low-dimensional 

coding schemes (from Weber et al., 2021). 
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Figure 9. Information-theoretical and decoding approaches 

(A) Illustration of representational similarity. Across several repetitions, similarity in neuronal 

representations is inferred by correlation, indicating that the same or related concepts share 

similar spatiotemporal patterns in electrophysiological recordings. (B) Decoding or pattern 

classification analysis relies on training classifiers on distinct features, which then enable a 

validation on a held-out testing data set. Here a linear discrimination analysis is depicted with 

single points representing observations that are characterized by features along two dimensions. 

(C) Information-theoretical analyses between object and EEG features can be conceptualized as a 

non-linear correlation analysis. 

 

 
Figure 10. Power-law scaling in intracranial recordings 

(A) Experimental approach. (B) 1/fx power law fits of electrophysiological brain activity in 

relationship to recording hardware noise floors (from Miller et al., 2009). 
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