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Neural Recordings and  

Time Series Analyses

R a n d o l p h  F.  H e l f r i c h  a n d  R o b e r t  T.  K n i g h t

Introduction

Modern day neuroimaging provides unprece-
dented spatiotemporal resolution to study cogni-
tive processing at the level of whole-brain 
large-scale network interactions. For decades 
whole-head electroencephalography (EEG) was 
restricted to only 19 channels as defined by the 
international 10–20 electrode layout (a practice 
that prevails in the clinical setting). In contrast, 
modern day amplifiers enable simultaneous 
recordings of a few hundred channels (Biasiucci 
et al., 2019; Cohen, 2017; Lopes da Silva, 2013). 
For example, current high-density EEG systems 
offer up to 256 channels, which can be sampled at 
>1,000 data points per second. When combined 
with inverse solutions to project 2D sensor-level 
data into 3D source space, as informed by indi-
vidual high-resolution structural MRI (magnetic 
resonance imaging) scans, one can obtain densely 
sampled time series data for >4,000 voxels inside 
the brain at 1 mm3 resolution. A thorough discus-
sion of inverse solutions exceeds the scope of this 
chapter, for a detailed discussion see (Lopes da 
Silva, 2013; Pascual-Marqui et  al., 1994; Van 
Veen et al., 1997). This development now places 
high-density EEG recordings on par with magne-
toencephalography (MEG; Baillet, 2017; Gross 

et al., 2013) in terms of spatiotemporal resolution 
and approaches the spatial resolution of functional 
magnetic resonance imaging (fMRI). This wealth 
of data poses a challenge for extraction of mean-
ingful information about the functional architec-
ture underlying human perception, cognition and 
action.

In this chapter, we focus on analysis techniques 
of time series data. First, we provide a brief over-
view of current methods that enable imaging the 
human brain with high spatial and temporal reso-
lution. Throughout the chapter we emphasize that 
time series analyses can be applied to different 
types of electrophysiological data. Second, we 
review analyses strategies for high-dimensional 
time-series data. Methods are introduced accord-
ing to their practical importance during data anal-
ysis (i.e., univariate analysis approaches in the 
time-domain are covered first, before advancing 
into spectral decomposition, bivariate connectivity 
analyses, and finally multivariate analysis strate-
gies). We then review methods that go beyond 
established linear time- and/or frequency analyses 
and discuss non-linear approaches, including infor-
mation-theoretical approaches as well as recent 
machine-learning inspired strategies. Finally, we 
take recent developments of the last five years into 
account, as exemplified by strategies to analyze 
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background “noise,” which has recently been 
shown to contain important behaviorally relevant 
information. In addition, we highlight how analy-
sis strategies can be synergistically combined to 
maximize insight into neurophysiological pro-
cesses underlying human cognition. Throughout 
the chapter, we highlight potential caveats, with 
the goal to provide a roadmap for state-of-the-art 
electrophysiological data analysis.

Neural recordings

Traditionally, neural recordings mainly referred to 
invasive single unit and local field potential record-
ings in animal models (Buzsáki et al., 2012). In the 
human literature, there is often a distinction 
between direct neurophysiological recordings, as 
for instance EEG, and indirect measures, such as 
the fMRI BOLD (blood oxygen level dependent) 
response. The goal of this chapter is not to provide 
an exhaustive list of imaging modalities, but rather 
to survey the analytical possibilities in the context 
of time-series analyses and highlight the similari-
ties between different methods. To accomplish 
this, we adopt a liberal definition of neural record-
ings, which encompasses every method that ena-
bles quantification of a brain process, irrespective 
whether it refers to direct electrophysiological 
recordings (voltage differences in scalp and intrac-
ranial EEG), magnetic fields (MEG), indirect 
oxygen-dependent responses (fMRI BOLD) or 
functional near-infrared spectroscopy; fNIRS) or 
motor signals that are obtained at the output stage, 
such as time-resolved behavior (quantified by 
time-resolved hit rates or reaction times), electro-
myography (EMG; voltage trace) or pupillometry 
and pupil size (recorded in millimeters, degree 
angles or pixels). These considerations can also be 
extrapolated to other types of recordings, such as 
two-photon calcium imaging data in rodents. One 
exception that we discuss in detail is that certain 
analysis approaches are limited by the sampling 
rate and recording location, such as extracting 
single unit responses from continuous local field 
potential recordings, which require recordings at a 
fine-grained spatial scale at high temporal 
resolution above 30,000 Hz.

To illustrate the analytical approaches, we focus 
on electrophysiological recordings in humans, 
both by means of scalp EEG as well as intracra-
nial electrophysiology, which encompasses intrac-
ranial EEG, local field potentials, and single unit 
activity (Parvizi and Kastner, 2018). While most 
readers will be familiar with scalp EEG, which 

will not be reviewed in detail (Biasiucci et  al., 
2019), we provide a more in-depth account of 
intracranial recordings in humans (Fried et  al., 
2014; Parvizi and Kastner, 2018).

Intracranial electrophysiological signals can be 
obtained from electrodes placed within the human 
brain for diagnostic and/or therapeutic purposes 
(Figure 28.1). The two most common entities that 
require a surgical placement of leads in the human 
brain are either placement to deliver therapeutic 
deep brain stimulation electrodes for Parkinson’s 
disease (target: subthalamic nucleus or internal 
globus pallidus; Bronstein et  al., 2011), dystonia 
(ventral intermediate nucleus of the thalamus) or 
epilepsy (anterior nucleus of the thalamus; Fisher 
et  al., 2010)). In addition, implanted electrodes 
are used to guide surgical decision-making for 
intratractable epilepsy (Parvizi and Kastner, 2018). 
Here, leads are inserted into multiple nodes of the 
suspected seizure network to identify the seizure 
onset zone. Target areas are identified according 
to the non-invasive work-up, which includes scalp 
EEG, high-resolution imaging and neuropsychol-
ogy and can be complemented by various other 
diagnostic tools, including positron-emission 
tomography (PET), voxel-based morphometry 
(VBM), or MEG (Zijlmans et al., 2019). An impor-
tant feature of some electrodes is that they feature 
a hollow lumen, enabling insertion of additional 
wire bundles, which protrude by 2–4 mm at the 
electrode tip for recording local field potentials and 
unit activity (Fried et  al., 2014). Several studies 
have demonstrated the feasibility and safety of this 
approach (Carlson et al., 2018; Chari et al., 2020; 
Despouy et al., 2020; Hefft et al., 2013). Over the 
last decade, intracranial recordings in humans have 
yielded important insights into the functional archi-
tecture of cognition, such that the method is now 
widely regarded as an ideal tool to bridge the gap 
between invasive recordings in animal models and 
non-invasive recordings in humans.

Ultimately, only a few factors determine the 
application of time-series analysis strategies. 
Foremost are the sampling rate and the duration of 
the recordings. These factors determine the result-
ing Nyquist frequency (the highest frequency that 
can be resolved from the data is half the sampling 
rate – at 1,000 Hz sampling rate, all frequencies up 
to 500 Hz can be resolved; practically one should 
rather aim for a 3rd or 4th of the sampling rate). 
The duration further determines the Rayleigh fre-
quency resolution, which is defined by 1 divided 
by the temporal window. For example, a two 
second segment at 1,000 Hz can be analyzed in 
steps of 0.5 Hz (1/2), while a 10 second segment 
allows a more fine-grained resolution at 0.1 Hz 
(1/10). The signal duration also determines the 

BK-SAGE-BOYLE1E_ET_AT_V1-230093-Chp28.indd   454 19/07/23   3:14 PM



Neural Recordings and Time Series Analyses 455

digital filtering that can be applied to the data. The 
lower cut-off needs to match at the least one whole 
cycle of the lower boundary (i.e., filtering a 1 s 
second segment at 1 Hz is theoretically possible, 
but pushes the limits of signal processing leading 
to unstable results). However, filtering at a lower 
cut-off of 10 Hz (10 cycles in 1 second) is feasible, 
while a cut-off of 0.5 Hz is impossible (only half 
a cycle can be fit into the segment). Lastly, one 
needs to be aware of the noise floor of both the 
environment as well the recording equipment. For 
typical EEG amplifiers, the noise floor where the 
amplifier yields meaningful results is > 100 Hz. 
However, the environmental noise floor is already 
present at ∼30–40 Hz given muscle activity in this 
recording range. This issue is largely mitigated 
in intracranial EEG recordings, which are less 
impacted by muscle artifacts. For instance, analy-
ses in the high-frequency activity band (70–200 
Hz) have yielded important insights into cognitive 
functioning (Leszczyński et al., 2020).

Keeping those theoretical principles in mind 
now enables applying spectral analyses to dif-
ferent recording modalities with theoretical 
and practical implications (Prerau et al., 2017). 
For example, intracranial EEG data that was 
recorded over one hour at a frequency resolution 
of 5,000 Hz can easily be filtered and spectrally 
decomposed in a broad-range of frequencies 
up to 2,500 Hz at a fine-grained resolution of  
≪0.1 Hz (in practice an upper threshold of 250 
Hz and a resolution of 0.5 Hz is often sufficient). 
In contrast, whole-brain fMRI BOLD over one 
hour typically provides one data point per voxel 
every second, thus, resulting in a frequency 
resolution of 0.33 Hz, which limits both the 
ability to filter as well as to spectrally decom-
pose the data (Fox et al., 2005). For fMRI using 
these parameters, he upper frequency cut-off is 
at 0.16 Hz, so frequencies between 0.01 and 0.1 
Hz can best analyzed at a resolution in the 10-2 
to 10-3 Hz range.

Figure 28.1  Intracranial human electrophysiology.

(A) Upper row: Subdural grid electrode placement from three representative subjects cover-
ing large portions frontal, temporal and motor areas. Lower row: Stereotactically placed 
depth electrodes targeting medial temporal, orbitofrontal or medial frontal structures. (B) 
Single unit activity can be recorded from additional wire bundles that are inserted through a 
hollow lumen of the clinical macro-electrode.

Source: Figure reproduced with permission (Helfrich & Knight, 2019).
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Electrophysiological data 
analysis

The improved spatiotemporal resolution of human 
electrophysiological recordings has benefited the 
development of numerous algorithms and meth-
ods to extract behaviorally meaningful informa-
tion. However, these high-dimensional and 
complex data sets that are governed by non-linear 
dynamics, posing unique challenges. For exam-
ple, there are multiple correct answers for ques-
tions regarding (1) how to analyze the data, (2) 
which method to choose, and (3) how to statisti-
cally quantify the results. More commonly, the 
right answer will be “it depends.” Here, we pro-
vide a practical road map with an initial focus on 
EEG analyses that helps narrow the immense 
search space and justify analytical choices and 
their interpretations.

General analysis strategies

Data analysis does not begin once data collection 
ended, but rather starts with data recording and the 
experimental structure. During data recording, 
researchers make a number of explicit (e.g., 
number of EEG sensors, sampling rate) as well as 
implicit choices (task design, duration of trials, 
event structure) that limit the subsequent analyses. 
Important considerations include whether distinct 
events are present (task-based time-locked events 
that can be contrasted) or whether a continuous 
design (e.g., resting state or experience sampling) 
were employed. Within the historical context of 
EEG, Hans Berger’s seminal experiments on 
alpha oscillations (cf. Berger, 2004) first consti-
tuted a continuous analysis (spontaneous fluctua-
tions in the trace were quantified). Subsequently, 
he employed an event-locked approach (eyes 
open/close), which later gave rise to the discovery 
of event-related potentials by averaging across 
several repetitions (Polich, 2007). To illustrate 
these methods, we will assume a task-based 
design with distinct events that require a behavio-
ral response and thereby, enable time-locked 
analyses either relative to the event or the action.

Event-related analysis in the  
time-domain

Averaging across several events is typically done 
to improve the signal-to-noise ratio and to quan-
tify the average response across a number of 

events. In the context of EEG, averaging can be 
done on the raw trace, thus, yielding event-related 
potentials (ERP; Handy, 2005). Likewise, averag-
ing can be performed after extraction of a distinct 
spectral component. For example, it had been 
observed that the 70–150 Hz (termed high gamma 
or high frequency band activity, HFA/HFB) in 
intracranial EEG recordings reflects a proxy of 
multi-unit activity and contains more behaviorally 
relevant information than the broadband signal 
(Edwards et al., 2005; Flinker et al., 2015; Kanth 
and Ray, 2020; Leszczyński et al., 2020; Ray and 
Maunsell, 2011; Rich and Wallis, 2017). Thus, 
filtering and extracting the signal envelope by 
means of (e.g., a Hilbert transform; Figure 28.2), 
are used to distil the relevant signal component 
prior to subsequent averaging (Figure 28.2A).

In continuous task designs, such as resting 
state or sleep recordings, there are no external 
temporal structure for time locking analyses. 
Therefore, researchers rely on identification of 
intrinsically generated events for subsequent 
analysis. Many events have first been described in 
the time domain (e.g., alpha waves by Berger as 
characteristic 10 Hz bursts of activity in the raw 
trace). Likewise, slow waves (< 4 Hz) and sleep 
spindles (∼12–16 Hz) have been identified based 
on the characteristic waveform shape in continu-
ous recordings (Buzsáki, 1996; Diekelmann and 
Born, 2010). Detection of these events in the 
time domain can be algorithmically formalized, 
typically by introducing constrains with respect to  
(a) the frequency content (through band pass fil-
tering), (b) an amplitude criterion, (c) a duration 
criterion, and (d) exclusion of unrelated activity 
(Helfrich et al., 2019; Staresina et al., 2015). For 
example, detection of sleep spindles only consid-
ers bursts in the amplitude series of the 12–16 Hz 
filtered signal that exceed a z-score of (e.g., 3 SDs 
above the signal mean) for anywhere between 0.5 
to 3 seconds. Based on the individual detections, 
averaging can be performed in the time domain to 
obtain the average waveform shape (Figure 28.3).

Furthermore, the detected event can be con-
ceptualized as a point process, i.e. an event that 
occurred precisely at one moment in time (e.g., 
activity peak). To again employ the example of 
sleep spindles, time-locking of the raw signal 
relative to spindle peaks reveals the presence of a 
second spectral signatures in the raw signal. The 
spindle does not occur in isolation, but is nested 
with a slow wave. This approach exemplifies how 
detection of endogenous temporal events can 
reveal temporal regularities that otherwise could 
not be detected from the raw trace.

The same principle applies to the extraction 
of single unit spikes from broadband local field 
potentials (LFP). LFPs are sampled at >30,000 
Hz, spikes are again extracted based on amplitude 
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and time criteria (sharp transient in the range 
from 2–4 ms) before all waveform shapes are fur-
ther characterized in a process called spike sort-
ing (Fried et al., 2014; Rutishauser et al., 2006). 
Here, different waveform shapes are disentangled 
in order to isolate activity from distinct neurons. 
Subsequently, every spike from every identified 
neuron is regarded as one distinct time stamp; thus, 
the dimensionality of the data has been reduced, 
benefiting subsequent analyses. For example, 
spike-triggered averaging of the raw broadband 

signal has revealed that spikes preferentially occur 
at distinct phases of the underlying population 
oscillation, which are already present in the down-
sampled signals. Hence, subsequent analyses can 
be carried out on signals sampled at 1000 Hz and 
not 30,000 Hz, enhancing computational effi-
cacy and speed. Furthermore, from these point 
events (“Spikes”), peri-stimulus time histograms 
(PTSH) can be created, which are commonly 
smoothed into a trace of overall spiking activity; 
hence, yielding a signal that is comparable to an 
event-related potential, only based on a number of 
distinct neuronal spikes. Collectively, this demon-
strates how temporal events can be extracted from 
continuous data and then again be analyzed in a 
time-locked fashion, either relative to external or 
internal events.

Spectral analysis

Electrophysiological signals are rich and com-
plex. Ever since Berger’s seminal observation, the 
community was well aware that different fre-
quency bands might contain distinct information. 
Over recent decades, several methods were intro-
duced to either spectrally decompose the signal to 
obtain activity in multiple frequency bands or to 
isolate activity in a distinct frequency band.

The most common approach is based on the 
Fourier transformation, which decomposes the 
signal into (co-)sines and provides estimates of 
the relative contribution of every frequency band 
to the entire signal. Using this approach, the time 
domain is typically lost (translation of time- into 
frequency-domain), but can be recovered by means 
of repeating the analysis in different time windows 
by means of convolution. Electrophysiological 
power spectra exhibit distinct characteristics, 
including a steep 1/fx drop-off, where x typically 
scales in the range from –2 to –4 in the healthy 
brain (for extended discussion see section on 
aperiodic activity; He et  al. (2010); Miller et  al. 
(2009)). Band-limited oscillations arise as distinct 
“bumps” (Donoghue et al., 2020) above the back-
ground activity (Figure 28.4).

In addition to the Fourier transform, several 
other methods have been introduced, such as 
Morlet wavelets (sines multiplied with Gaussians, 
which are convoluted with the signal) or the 
Hilbert transform, which requires band-pass fil-
tering first and then estimates the instantaneous 
amplitude and phase series. One important caveat 
is that all spectral decomposition techniques only 
provide “estimates,” which differ as a function 
of (e.g., signal length, sampling rate, noise and 
pre-processing). A common approach to improve 

Figure 28.2 H igh frequency band activity.

(A) Average high frequency band activity 
recorded from a motor cortex electrode 
relative to the detection of the onset of a 
visual target reveals activity after approxi-
mately 500ms. (B) Stacked single trials that 
are sorted relative to reaction times (black 
trace) reveals that HFA tracks behavior on a 
single trial basis.

Source: Unpublished (Helfrich & Knight).
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estimates is to “window” the data (also called 
taper; multiplication of a data segment with, e.g., 
Boxcar window, where the edges are Gaussian 
shaped, thus, attenuating edge artifacts). The 
signal-to-noise ratio can be improved if multiple 
windows are combined and estimates are averaged 
(as for instance done when using Welch’s method 
or the multi-taper approach based on discrete pro-
late spheroidal sequences (Prerau et  al., 2017; 
Figure 28.5).

Another major drawback that all methods share 
is that they are based on sinusoidal basis functions 
(i.e., if these methods are applied to brain data, 
then the results will be systematically biased to 
reveal sinusoidal oscillations). Inspection of raw 
EEG traces reveals that most neuronal oscillations 

are not sinusoidal in nature, but are characterized 
by biased rise- and decay-times with skewed and 
often sharp waveform shapes (Cole and Voytek, 
2017). Application of sinusoidal methods can 
introduce severe artifacts, which are prone to 
misinterpretation (Aru et al., 2015; Gerber et al., 
2016). One example is sensorimotor Mu-Rhythm 
at ∼8–12 Hz, which is named “Mu” given that is 
often shaped like a “M.” The Fourier transform 
will extract the main component at ∼10 Hz, but 
also yield peaks at ∼20 Hz as well as all other 
subsequent harmonics, given that the sharp peak 
is incompletely captured by a single sine wave 
(Voytek et  al., 2010). In electrophysiological 
recordings, researchers are then faced with the 
presence of true beta-band activity at ∼20 Hz  

Figure 28.3 V isualization of cross-frequency coupling and raw waveform shapes.

(A) Slow waves in a group of older adults (black) on top of the respective time-frequency 
decomposition, indicating an activity peak in the ∼14 Hz spindle range just prior to the slow 
wave peak. Inset: Visualization in circular space of the same data, indicating that spindle 
activity peaked prior to the slow wave peak (approx. 45°, corresponding to 50–100ms).  
(B) Same visualization for a cohort of younger adults, indicating that spindles are precisely 
locked to the peak of the slow wave. (C) Visualization relative to detected spindles (colored) 
with the slow wave superimposed in black. Note that spindle peak prematurely. Inset: 
Illustration of the spindle peak relative to the slow wave (as exemplified by a cosine).  
(D) Histogram-based visualization of coupling: Relative amplitude in the spindle-band rela-
tive to different binned slow-wave phases, reveals a non-uniform distribution that is skewed 
in older adults. Note all panels depict the same data and illustrate different approaches to 
cross-frequency coupling and waveform shape analyses.

Source: Figure reproduced with permission from (Helfrich, Mander, et al., 2018).
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(a hallmark of the motor system), which is con-
taminated by Mu-harmonics at ∼20 Hz (Stolk 
et al., 2019). In recent years, several methods have 
been introduced to disentangle true from spurious 
oscillatory brain activity (Donoghue et al., 2020; 
Kosciessa et  al., 2020; Wen and Liu, 2016). For 
example, empirical mode decomposition (EMD) 
does not rely on sinusoidal basis functions and can 
also model a change in the precise peak frequency 
over time (Quinn et  al., 2021). The same issues 
apply when the interaction of multiple frequency 
bands is assessed. To date, there is no unique solu-
tion for this issue, but several recent publications 
suggest that a set of criteria could be applied to the 
data to infer whether non-sinusoidality is present 
(Aru et al., 2015).

Separating aperiodic from 
oscillatory activity

The electrophysiological power spectrum encom-
passes oscillations (discrete “bumps”), exceeding 
the general 1/fx drop-off. For decades, both phe-
nomena have been studied together and were not 
explicitly disentangled (Donoghue et  al., 2021). 
Hence, elevated “alpha power” could either be the 
results of an amplitude increase of the oscillatory 
component or a general increase in activity in all 
frequency bands (Figure 28.4). This distinction 

has gained more traction recently, since several 
groups demonstrated that the background activity 
– which had been previously considered to mainly 
reflect neuronal noise – in fact contains behavio-
rally relevant information (Donoghue et al., 2020; 
He et al., 2010; Lendner et al., 2020; Voytek et al., 
2015). Importantly, the level of information con-
tent about the behavioral state is on par with neu-
ronal information encoded in band-limited 
oscillatory activity. To date, the exact physiologi-
cal role of both components is not fully under-
stood, but they can be conceptualized as providing 
complementary insights into cognitive processes 
(Wainio-Theberge et  al., 2021, 2022). Over the 
last decade, several approaches have been intro-
duced to parameterize oscillations and to disen-
tangle oscillatory from broadband (also termed 
aperiodic, fractal or scale-free) background activ-
ity. The simplest solution to isolate oscillations 
entails a linear fit to the power spectrum in dou-
ble-log space (thus the linear fit reflects the aperi-
odic component) and subtraction from the original 
spectrum (Lendner et  al., 2020; Miller et  al., 
2009). More sophisticated algorithms employ 
robust fitting (Kosciessa et  al., 2020), irregular 
spectral resampling (Wen and Liu, 2016) or addi-
tive fitting of Gaussian components to the oscilla-
tory peaks (Donoghue et al., 2020). All methods 
have in common that they now provide two com-
ponents that are derived from the same underlying 
signal, which can be related to behavior and brain 
state. Currently, these concepts are actively being 

Figure 28.4 R elationship of oscillatory and broadband activity.

(A) Illustration of Fourier transformation of electrophysiological data that exhibits both an 
oscillation in 8-12 Hz alpha range (“bump” exceeding the 1/f background activity within the 
gray shaded area) as well as broadband 1/f component. A true increase in oscillatory power 
between two conditions (red to green) is illustrated. (B) A broadband shift (i.e., change of 
overall offset along y-axis) can mimic an alpha power increase, which is not oscillatory in 
nature. (C) Likewise, a change in peak frequency can mimic power changes when power is 
averaged within a predefined range. (D) Similarly, a rotation of power spectrum (change in 
spectral exponent) can introduce changes in oscillatory power if spectra are not properly 
parameterized. Illustrations created using the FOOOF toolbox.

Source: Donoghue et al., 2020.
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explored, with several new notions, such as the 
concept of population time constants of relative 
stability (also termed temporal integration win-
dows, autocorrelation window or intrinsic neural 
timescales; Gao et  al., 2020; Golesorkhi et  al., 
2021; Ito et  al., 2020; Raut et  al., 2020; Wolff 
et al., 2022), which can be approximated by char-
acteristic bends in the shape of the power spec-
trum in the frequency domain or from the decay of 
the autocorrelation function in the time domain. 
Population time constants are thought to provide 
the necessary means for temporal integration and 
exhibit a clear cortical gradient with short time-
scales in sensory cortex and longer timescales in 
association areas (Gao et  al., 2020; Raut et  al.; 
2020; Wolff et al., 2022).

Oscillatory and waveform shape 
features

Definition of oscillations, including their band-
width and amplitude (i.e., power), is most com-
monly done in the spectral domain. However, as 
outlined above, spectral analysis also omit impor-
tant wave form features as well as instantaneous 
signal characteristics, which are inherently time 

dependent, such as oscillatory phase. Hence, it is 
best practice to return from the spectral to the time 
domain to quantify and assess the oscillatory fea-
tures after the presence of an oscillation was 
established using spectral methods. These analy-
ses can either be applied on band-limited or 
broadband data. It is important to consider that 
both linear as well as non-linear variables can be 
obtained from time- and frequency-domain data, 
with amplitude reflecting a linear variable, while 
phase constitutes a circular, and thereby, non- 
linear variable. Both features can be extracted 
from the Hilbert transform and can be related to 
behavior using either linear or circular-linear cor-
relations (Berens, 2009; Fiebelkorn et  al., 2018; 
Helfrich, Fiebelkorn, et  al., 2018). In this case, 
one needs to assume a fixed frequency band to 
obtain reliable phase estimates. Again, Fourier 
methods are ill suited to assess if the peak fre-
quency changes over time (jitter in peak frequency 
reflects a broadening of the spectral peak in the 
electrophysiological power spectrum). Several 
recent developments, including the EMD, now 
aim at mitigating these effects (Quinn et al., 2021; 
Watrous and Buchanan, 2020).

Another recent development is the appre-
ciation of waveform shapes (Cole et  al., 2017). 
Previously, waveform shapes have largely been 
ignored given that the Fourier basis functions were 

Figure 28.5 E ffect of different spectral decomposition methods.

Upper row: Sleep hypnogram from single case across 8 hours of sleep. Below: Spectral 
decomposition of entire night of sleep using either a multi-taper or single taper approach, 
the periodogram or Welch’s method. The resulting estimates become progressively more 
coarse-grained. (B) Signal-to-noise ratio per frequency reveals a clear advantage of multi-
tapered spectral analysis.

Source: From Lendner et al., 2020.
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sinusoidal. The role of physiologic non-sinusoidal 
waveform shapes came into focus after it was real-
ized that non-sinusoidality introduces artifacts 
in (e.g., cross-frequency coupling analyses; see 
below; Aru et al., 2015; Gerber et al., 2016; Figure 
28.6). Novel tools now enable assessing waveform 
shapes with the goal to relate distinct features (such 
as rise- or decay-times, asymmetries or amplitude 
bias) to distinct physiological processes. However, 
there is currently only limited evidence that sup-
ports a distinct role in cortical processing.

Network connectivity across 
spatial and temporal scales

We have focused on univariate analyses that can be 
carried out at the single electrode or single voxel 
level. In contrast, network approaches quantify the 

interaction between multiple regions. This interac-
tion is often also termed functional connectivity, to 
contrast it to structural connectivity, which can be 
obtained from tracing or fiber tracking studies 
(Buzsáki and Draguhn, 2004; Engel et  al., 2001; 
Varela et  al., 2001). Functional connectivity is 
undirected (i.e., it is not quantified who drives the 
interaction). Directed connectivity is referred to 
effective connectivity implying information flow 
from node A to node B. Here, we first discuss undi-
rected connectivity between different nodes, and 
then we discuss directed connectivity methods 
across spatial scales. The concept of connectivity 
can also be extended to interactions in the temporal 
domain (i.e., the interaction between different 
oscillations or between the LFP and spikes. Lastly, 
we discuss the use of information theoretical 
approaches in this context.

Undirected connectivity is most commonly stud-
ied by means of coherence or magnitude-squared 

Figure 28.6 E ffects of non-sinusoidal sharp transients on cross-frequency coupling esti-
mates, (A–H) Eight examples of simulated EEG traces (upper left) that are composed of 
broadband EEG activity (center left) and sharp transients (lower left) as well as the accom-
panying phase-amplitude comodulogram (right; black outlines indicate significant coupling) 
revealing that sharp transients introduce spurious cross-frequency coupling at the primary 
frequency (10 Hz) as well as at the subsequent harmonics.

Source: From Gerber et al., 2016.
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coherence as it is more correctly termed (Bastos 
and Schoffelen, 2015). This distinction indicates 
that the coherence formula encompasses both the 
relationship of amplitude as well the relationship 
of phase. Collectively, this relationship is then nor-
malized to yield a number between 0 and 1. If the 
amplitude term in the formula is replaced by a 1, 
then the formula become amplitude-independent 
and only the contribution of phase synchroniza-
tion is estimated; this normalized variant is also 
known as the phase-locking value (Lachaux 
et al., 1999). Likewise, one can focus only on the 
amplitude contribution by (e.g., correlation of the 
amplitude time series; Hipp et al., 2012). The lit-
erature often distinguished between phase-based 
and amplitude-based connectivity and several 
theoretical accounts postulated distinct roles for 
cortical communication (Engel et al., 2013). Both 
metrics have in common that they are suscepti-
ble to volume spread in the cortical tissue, which 
inflates connectivity metrics. Solutions by means 
of orthogonalized amplitude correlations (Hipp 
et al., 2012) or imaginary coherence (Nolte et al., 
2004) as well as several variants have been pro-
posed (Bastos and Schoffelen, 2015), which mini-
mize this confound by attenuating the contribution 
of zero phase-lag interactions.

Both approaches share that they are undirected 
in nature, so it remains equivocal whether node A 
is driving node B, or vice versa. Several metrics 
that take advantage of statistical regularities in the 
data have been introduced to infer directionality, 
such as Granger causality (model-based assess-
ment (Seth et al., 2015)) or the phase slope index 
(dependence across multiple frequency bands 
(Nolte et  al., 2008)). However, these methods 
operate on statistical dependencies, are suscep-
tible to noise and do not provide a true “causal” 
explanation.

The concept of directed and undirected con-
nectivity has also been formalized in an infor-
mation-theoretical framework (Ince et  al., 2017; 
Panzeri et  al., 2015). Shannon Information 
Theory (Shannon and Weaver, 1998) is centered 
on entropy to quantify the observed distribution 
of a given variable (here activity in one region). 
Connectivity between two regions can be inferred 
if knowledge about the activity in one region 
reduces uncertainty about the state of the other 
region. This interaction has also been termed 
Mutual Information and is undirected. An impor-
tant extension of this idea called sample entropy 
basically takes a third signal into account to infer 
directionality (Lobier et  al., 2014): Does knowl-
edge about the past of region A provide more 
information about the future of region B than the 
past of region B alone? If the answer is yes, then 
this can be interpreted as information flow from A 

to B. Again, this approach is not causal, but ena-
bles a statistical comparison based on empirical 
signal distributions. One disadvantage of infor-
mation theoretical metrics is that they typically 
require binning of the data and thus, reduce the 
signal complexity into a finite number of bins at 
the expense of losing fine-grained details (Panzeri 
et al., 2015).

Lastly, the concepts that apply to interactions 
between spatial nodes can be extended to the 
spectral domain to infer if two frequency bands 
interact (Figure 28.7). This coupling across tem-
poral scales is widely known as cross-frequency 
coupling (CFC (Canolty and Knight, 2010)) and 
has most prominently studied in the context of 
phase-amplitude coupling (PAC), where the phase 
of slow frequency (e.g., theta or alpha) predicts 
broadband high frequency activity (Canolty et al., 
2006). However, amplitude-amplitude as well as 
phase-phase couplings have also been described 
for CFC (Aru et al., 2015). CFC analyses are sus-
ceptible to signal artifacts (cf. Figure 28.6) and 
signal processing choices; hence, several papers 
formulated concrete guidelines to circumvent 
these issues (Aru et al., 2015; Gerber et al., 2016). 
Similar considerations apply also for LFP-spike 
coupling.

Multivariate representations and 
analyses

The analysis of electrophysiological data consti-
tutes an extensive multivariate problem. In order 
to better understand the data and help the interpre-
tation, the most common analytical approaches 
condense this complex analytical space into serial 
univariate tests, which are oftentimes easier to 
interpret. From a conceptual standpoint, univari-
ate analyses seem reasonable when data is 
approached with the “Neuron Doctrine” in mind, 
which states that the single neuron is the central 
computational unit of the nervous system (cf. 
Yuste, 2015). Within this framework, it is reason-
able to employ univariate analyses approaches. 
However, in recent years it became obvious that 
the single neuron framework falls short in explain-
ing several cognitive phenomena, such as flexible 
context-dependent behavior, which inspired the 
concept of a “Population Doctrine” (Eichenbaum, 
2017; Ebitz and Hayden, 2021; Saxena and 
Cunningham, 2019; Yuste, 2015). This population 
framework suggests that transient coalitions of 
neurons form the central computational unit of the 
nervous system (Eichenbaum, 2017; Siegel et al., 
2012). Therefore, gaining a deeper understanding 
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into cognitive mechanisms requires large-scale 
recordings, which are not amendable to classic 
univariate analyses. This novel framework was 
motivated by a series of new artificial-intelligence 
inspired algorithms, which enable uncovering the 
organizing principles of seemingly chaotic popu-
lation activity. This is a rapidly emerging field 
with many new technical innovations in recent 
years, and we are unable to provide a thorough 
review, but will focus on two representative exam-
ples to illustrate how to approach population-
based analyses.

The first important approach is that multivari-
ate data can be represented in a so-called state-
space representation (Ebitz and Hayden, 2021; 
Gervasoni et al., 2004). Instead of analyzing indi-
vidual time series, the entire channel (or neuron) 
x time matrix is conceptualized as a single time 
series of adjacent points which travels through 
a N-dimensional coordinate system along a tra-
jectory, which is spanned by the individual data 
points. Here N refers to the number of observa-
tions (e.g., channels or neurons). If one considers 
recordings from three neurons, then the first time 
point is a point in a 3D coordinate system. Hence, 
using linear algebra, we can infer the Euclidean 

distance to either the center point of coordinate 
system or to adjacent time points. Here the criti-
cal advantage is that Euclidean distance is again 
a single number, hence, the high dimensional data 
can effectively be condensed into a single vector. 
Thus, the entire matrix can be regarded as a trajec-
tory traveling through N-dimensional space and 
given that Euclidean distances can be calculated, 
one can also infer (e.g., velocity (distance/time) 
or acceleration (velocity/time) of the system –  
Figure 28.8).

As humans, we cannot effectively visualize 
more than three dimensions, hence, it is com-
mon practice to visualize state space trajectories 
in 2D or 3D, and after dimensionality reduction 
has been performed (Ebitz and Hayden, 2021). 
This conceptualization of population activity gave 
rise to several emerging concepts in neuroscience, 
including attractor states (points in the system 
where the activity patterns are naturally drawn to 
and converge on) or neuronal manifolds (activity 
patterns fall onto certain planes in the state space 
and are not completely randomly distributed along 
all possible dimensions, hence, all possible activity 
patterns are constrained to a subspace that houses 
most observations). To date, these techniques have 

Figure 28.7 A nalysis strategy for cross-frequency coupling analyses.

(A) Raw EEG data (black) can be decomposed into different frequency bands through band-
pass filtering. Instantaneous phase and amplitude estimates are extracted from the Hilbert 
transform and can be correlated using either linear or circular correlation analyses.  
(B) Visualization of the proposed coupling mechanism, where overall power remains con-
stant, but power is modulated as a function of phase.

Source: From Helfrich et al., 2015.
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mainly been applied in the motor domain, where 
they provide additional explanatory power over 
univariate analyses, but they are gaining traction 
in the cognitive domain (Chaisangmongkon et al., 
2017; Goudar et  al., 2021; Murray et  al., 2017; 
Weber et al., 2021). The second common technique 
to address multivariate brain data relies on multi-
variate pattern analysis (MVPA (Grootswagers 
et al., 2017; Hebart and Baker, 2018; Kriegeskorte 
et  al., 2006; Quian Quiroga and Panzeri, 
2009)), which is also sometime called pattern 
classification or more commonly “brain decoding”  
(Figure 28.9).

Here, researchers take advantage of classifi-
cation algorithms, such as the linear discrimi-
nant analysis (LDA) or support vector machines 
(SVM), which learn patterns that are associated 
with certain conditions or responses. Importantly, 
the classifiers require splitting the data into a train-
ing dataset, where the classifier has access to the 
ground truth, and a testing dataset, which consists 
of held-out samples. Based on the performance 
on the held-out samples, one can infer the accu-
racy of the classifier. Critically, these algorithms 
often work as a “black box,” where the algorithm 
learns a given association and then is used to pre-
dict held-out data points, but one cannot visualize 
the classifier per se. Therefore, it often remains 
ambiguous whether the classifier utilizes informa-
tion that is also accessible by the brain itself or 
whether it picks up epiphenomenal or noise influ-
ences. In the context of neurophysiological experi-
ments, classifiers are used to infer if a population 
contains behaviorally relevant information or not, 
i.e. whether the classifier performs better than 

chance. In contrast to engineering, the goal is not 
to maximize classifier performance, but the goal is 
to test if the classifier performs significantly bet-
ter than chance. If above-chance performance is 
observed, this is taken as evidence that the brain 
contains information about the classified behavior 
(i.e., context or movement execution).

In practice, state-space and classification 
analyses are often combined (Mante et al., 2013). 
Jointly these methods enable extraction of cod-
ing dimensions (i.e., finding a latent or hidden 
dimension in the data that cannot be accessed 
using univariate analyses, that maximizes a 
given behavioral contrast). This approach ena-
bles disentangling (i.e., cognitive from motor 
contributions, which can appear superimposed 
when using univariate analysis tools; Vyas et al., 
2020). Disentangling the respective contributions 
provides the opportunity to study their contribu-
tion to the overall population activity and pro-
vides new insights into the coding mechanisms. 
For example, it had repeatedly been shown that 
motor activity is confined to a low-dimensional 
sub-space (i.e., can be described by only few 
activity patterns, which often cycle along a low-
dimensional ring structure; Churchland et  al., 
2012; Shenoy et  al., 2013). In contrast, more 
complex higher-order cognitive operations also 
require higher dimensional neuronal representa-
tions, since they rely on distributed computing 
(Ebitz and Hayden, 2021). Collectively, novel 
population-based analysis strategies extend the 
explanatory power of univariate tests and open a 
new conceptual space to interpret the functional 
architecture underlying human behavior.

Figure 28.8  2D State-space representations of cognitive dynamics.

(Left) Tangled trajectories of three different conditions (varying degree of predictability) 
along two dimensions in human PFC indicate a complex representational pattern. (Right) In 
contrast, activity in motor cortex is neatly organized along a ring structure, indicating low-
dimensional coding schemes.

Source: From Weber et al., 2021.
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Scale-free phenomena

Scale-free phenomena refer to the analysis of sta-
tistical regularities in electrophysiological data 
that are not governed by a defining temporal scale 
(He et al., 2010). For example, scalp EEG is gov-
erned by alpha oscillations at ∼10 Hz as their 
defining temporal scale, while many intracranial 
EEG contact often do not exhibit a clear oscilla-
tory peak. The absence of oscillatory peaks raises 
the question if there is any underlying hidden 
temporal structure present and if yes, then how 
could this be quantified. An important concept 
that borrowed from physics is fractality, which 
describes the self-similarity of a signal irrespec-
tive of the chosen temporal window (Pritchard, 
1992). Critically, this self-similarity follows a 
power-law (i.e., a law of nature; Miller et  al., 
2009). A typical example from nature is the struc-
ture of a Romanesco cauliflower, which exhibits 
characteristic florets, which always look similar, 
irrespective of their size or magnification 
(Hardstone et al., 2012; Linkenkaer-Hansen et al., 
2001). In the context of electrophysiological data, 
this means that an EEG trace always exhibits simi-
lar fluctuations, irrespective of whether one hour, 
one minute or one second is displayed. While this 
phenomenon is difficult to describe in the tempo-
ral domain, it can easily be captured in the fre-
quency domain (Figure 28.10).

After applying a Fourier transform, one can 
easily appreciate the general 1/f drop-off (cf. ape-
riodic activity in EEG), which indicates a stable 
relationship between frequency and amplitude, 
irrespective of the precise frequency and there-
fore irrespective of the precise temporal scale. In 
the past two decades, several methods have been 
introduced to quantify this type of behavior, either 
in the temporal or spatial domain. For example, 
linear fitting of the 1/f background activity is a 
common approach to extract the spectral exponent 
and thereby, quantify the underlying statistical 
regularities. A related approach is the detrended 
fluctuation analysis (Hardstone et  al., 2012), 
which assesses long-range temporal correlations, 
i.e. signal correlations that obey the same scaling 
behavior irrespective of the chosen temporal win-
dow. Similar 1/f phenomena have been observed 
in the spatial domain, where activity peaks across 
many electrodes coincide in time and the distri-
bution of the duration and amplitude again follow 
a power law with 1/f-like characteristics (Palva 
et  al., 2013). Going beyond the activity peaks, 
analysis of microstates (i.e., quasi-static scalp 
topographies in EEG) revealed that brain activity 
alternates between four major scalp topographies, 
where again a 1/f-like power law can describe the 
duration of each topography (Ville et al., 2010). To 
date, it remains unclear how these different phe-
nomena are related, but several lines of research 

Figure 28.9  Information-theoretical and decoding approaches.

(A) Illustration of representational similarity. Across several repetitions, similarity in neu-
ronal representations is inferred by correlation, indicating that the same or related concepts 
share similar spatiotemporal patterns in electrophysiological recordings. (B) Decoding or 
pattern classification analysis relies on training classifiers on distinct features, which then 
enable a validation on a held-out testing data set. Here a linear discrimination analysis is 
depicted with single points representing observations that are characterized by features 
along two dimensions. (C) Information-theoretical analyses between object and EEG features 
can be conceptualized as a non-linear correlation analysis.
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suggest that they might constitute emergent ana-
lytical tools to quantify temporal regularity, which 
cannot be appreciated by the naked eye, unlike 
neuronal oscillations (Cocchi et al., 2017). It has 
been argued that the characterization of temporal 
regularities in the form of scale-free dynamics 
constitutes a promising avenue to understanding 
the neural correlates of consciousness (Lendner 
et al., 2020; Tagliazucchi et al., 2013, 2016; Zhang 
et al., 2018).

Statistical considerations

Since brain activity is non-linear, non-stationary, 
and non-normally distributed, classic analyses 
such as t-tests, analysis-of-variance (ANOVA), 
linear correlation or regression often fall short in 
capturing the data complexity (Maris and 
Oostenveld, 2007). However, these methods are 
still widely employed, since they are easy to use 
and most researchers know how to interpret their 
outcomes (Piai et al., 2015).

To mitigate the issue of unknown distributions 
of brain data, which violate the assumptions of 
many statistical tests, the currently most accepted 
approach includes cluster-based permutation tests 
(Maris and Oostenveld, 2007). Here a new surrogate 
distribution is build based on randomly assigning 

all observations to distinct groups (i.e., shuffling 
the condition label), then to repeat the analysis 
1,000–10,000 times and then compare the true 
observed value to the surrogate distribution. If the 
observed value falls outside of the mean ± 2 SDs, 
then significance can be assumed (at p < 0.05). This 
approach is elegant, since it allows that any type of 
primary test statistic can be employed to build the 
surrogate distribution. Hence, this test is inherently 
non-parametric and can be used in a wide variety 
of contexts. An alternative solution that emerged 
in recent years, is the use of general linear mixed 
effects models, which however, are often difficult 
to interpret and difficult to visualize and therefore, 
have not been adopted widely.

Summary and conclusions

In the present chapter, we have reviewed the cur-
rent state-of-the-art of neuronal time series analy-
sis through the lens of scalp and intracranial EEG 
recordings. Notably, as outlined in beginning, the 
same analyses can be applied to other imaging 
modalities that produce time series data and most 
analyses are only constrained by sampling rate, 
signal duration and event types. From a practical 
standpoint, we emphasized the need to go from 
simple to more complicated analyses, i.e. going 

Figure 28.10 P ower-law scaling in intracranial recordings.

(A) Experimental approach. (B) 1/fx power law fits of electrophysiological brain activity in 
relationship to recording hardware noise floors.

Source: From Miller et al., 2009.
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from univariate analyses in the time domain to 
univariate analyses in the frequency domain, 
before branching off into bivariate connectivity or 
multivariate classification analyses. In order to 
interpret the result of a bivariate connectivity or 
multivariate classification analysis in a meaning-
ful way, one needs to ensure that the observed 
differences are not solely driven by univariate dif-
ferences, in (e.g., the overall amplitude), but in 
fact can only be attributed to their joint activity.

The example of aperiodic activity analyses 
nicely illustrates how one can teach an old dog 
(the Fourier transform) a few new tricks that pro-
vide additional explanatory power and enable 
linking macroscopic signals to underlying circuit 
properties (Gao et al., 2017). In the case of aperi-
odic activity, computationally modeling suggested 
that the steepness of the exponential decay of the 
power spectrum reflects the excitation-inhibition-
balance of the underlying neuronal population, 
which otherwise could not have been inferred 
(Chini et al., 2021).

The wealth of available methods also enables 
reanalysis of available datasets, especially if the 
primary analysis was mainly concerned with uni-
variate analysis approaches. As an example, a 
classic working memory experiment in two mon-
keys indicated that single neurons in prefrontal 
cortex code distinct aspect of working memory 
(Warden and Miller, 2007, 2010). Through careful 
reanalysis of the same dataset, a new concept of 
working memory emerged. In the first follow-up 
publication, the authors demonstrated that spik-
ing is coupled to the underlying LFPs (Siegel 
et al., 2009). Subsequently, these LFP signatures 
were described in more detail, which triggered 
follow-up investigations on neuronal bursts and 
how these differ from sustained oscillatory activ-
ity (Lundqvist et  al., 2016, 2018). Furthermore, 
the same dataset was used to infer the dimen-
sionality of spiking activity, which supported the 
notion that high-dimensional representations are 
desirable for cognitive flexibility (Rigotti et  al., 
2013). With the emergence of more analytical 
tools and the availability of more open datasets 
novel concepts will be generated based on existing 
data (Fusi et  al., 2016). Overall, machine learn-
ing is now established as an independent field, 
thus, we foresee that more multivariate tools will 
become available to experimental neurophysiolo-
gists to assess their data beyond classical univari-
ate analyses (Grootswagers et  al., 2017; Hebart 
and Baker, 2018).

Overall, experimentalists are nowadays faced 
with a wide-array of analysis tools, which requires 
careful justification of the employed methods. 
However, the wealth of tools also provides an 
exciting avenue to unravel the mechanisms behind 
human cognition, perception, and action.
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