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Ramping dynamics and theta oscillations
reflect dissociable signatures during rule-
guided human behavior

Jan Weber 1,2, Anne-Kristin Solbakk 3,4,5,6, Alejandro O. Blenkmann 3,4,
Anais Llorens3,4,7, Ingrid Funderud3,4,6, Sabine Leske3,4,8, Pål Gunnar Larsson 5,
Jugoslav Ivanovic5, Robert T. Knight 7,9, Tor Endestad3,4,10 &
Randolph F. Helfrich 1,10

Contextual cues and prior evidence guide human goal-directed behavior.
The neurophysiological mechanisms that implement contextual priors
to guide subsequent actions in the human brain remain unclear. Using
intracranial electroencephalography (iEEG), we demonstrate that increasing
uncertainty introduces a shift from a purely oscillatory to a mixed processing
regime with an additional ramping component. Oscillatory and ramping
dynamics reflect dissociable signatures, which likely differentially contribute
to the encoding and transfer of different cognitive variables in a cue-guided
motor task. The results support the idea that prefrontal activity encodes
rules and ensuing actions in distinct coding subspaces, while theta oscillations
synchronize theprefrontal-motor network, possibly to guide action execution.
Collectively, our results reveal how two key features of large-scale neural
population activity, namely continuous ramping dynamics and oscillatory
synchrony, jointly support rule-guided human behavior.

Human decisions depend on available prior evidence and contextual
cues. A long-standing question in models of top-down guided behavior
is how prior evidence is incorporated to guide subsequent action1–3. The
active sensing framework postulates that the brain utilizes its inherent
rhythmic structure as an energy-efficient mechanism to implement
temporal predictions4,5. This framework further predicts that the
brain switches from a rhythmic to a continuous energy-costly
processing mode when less prior evidence is available. Active sensing
also implies that synchronization of endogenous oscillations is
instrumental for inter-areal information transfer, as suggested by the
communication-through-coherence hypothesis6. Active sensing has

mainly been studied in the context of sensory selection7–9 and to date it
remains unknown whether similar principles apply when context is sig-
naled by abstract cues. Recent work in non-human primates (NHP) has
demonstrated that sensorimotor cortex as well as adjacent premotor
areas, such as the frontal eye fields, encode high-level contextual infor-
mation in neural population codes10–15. Whereas the active sensing fra-
mework relies on univariate features (i.e., oscillatory power, phase, and
neural firing), the population doctrine emphasizes that information is
encoded in the entirepopulation response that canbeconceptualized as
a trajectory passing through a high-dimensional neural state space16. To
date, population coding and neural oscillations, two key signatures of
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coordinated population activity, have mainly been studied in isolation.
Consequently, it remains elusive how both features interact to guide
goal-directed behavior.

In this study, we addressed howhigh-level contextual information
is flexibly integrated into ensuing actions in humans. We specifically
tested if principles of the active sensing framework also apply to
prefrontal-motor interactions when contextual information is
rule-based and not sensory-driven9. Furthermore, we aimed to deter-
mine the population correlates of rhythmic and continuous
processing modes. Population activity has mainly been studied using
single- and multi-unit recordings in NHPs. Here we recorded intracra-
nial electroencephalography (iEEG) from prefrontal and motor cortex
in patients with epilepsy who underwent invasive monitoring for
localization of the seizure onset zone. We specifically studied high-
frequency band activity (HFA; 70−150Hz) as a proxy of population
firing to address if coding principles that have previously been iden-
tified in NHP also apply in the human brain. All participants engaged in
a cue-guided motor task, where they were instructed to continuously
track a moving target and release a button once it reached a pre-
defined spatial location. A contextual cue determined the probability
of a premature and abrupt stop when participants had to withhold
their ongoing response. Here, we defined context as the currently
active rule,which exhibitedpredictive information about a subsequent
action.

We describe a functional dissociation between population activity
and network oscillations where human PFC encodes the current con-
text (active rule) and the current action plan in distinct subspaces

using a continuous processing regime, while theta oscillationsmediate
the inter-areal communication between PFC and motor cortex to
mediate context-dependent actions. Collectively, we identified com-
putationally distinct roles of continuous and rhythmic brain activity at
the population level that jointly support context-dependent, goal-
directed human behavior.

Results
We recorded intracranial EEG (iEEG) from 19 pharmaco-resistant
patients with epilepsy (33.73 years ± 12.52, mean ± SD; 7 females)
who performed a predictive motor task (Fig. 1a). Participants had to
closely track a moving target and respond (go trial) as soon as the
target reached a predefined spatial location (hit lower limit; HLL).
They were instructed to withhold their response if the target stopped
prematurely (stop trial). A predictive cue defined the context
for the current trial by signaling the likelihood of a stop trial (green
circle = 0%, orange circle = 25%, red circle = 75%). We refer to the stop
likelihood as behavioral uncertainty or predictive context and use
these terms interchangeably. We simultaneously recorded from
prefrontal cortex (PFC) and motor cortex to study how the human
prefrontal-motor network converts predictive context into concrete
actions (Fig. 1b).

Neural and behavioral signatures of context-dependent
computations
We confirmed that participants used the predictive cue to guide
behavior using reaction time, accuracy and signal detection theory.

Fig. 1 | Task design, hypothesis, behavioral results and electrophysiological
signatures of context-dependent neural information. a Participants were pre-
sented with a predictive cue indicating the likelihood that a moving target (self-
initiated via spacebar press)would stopprior to a predefined lower limit (HLL; pink
horizontal line). Participants were asked to release the space bar as soon as the
target hit the lower limit (go trial) or withhold the response if the target stopped
before reaching the lower limit (stop trial). Afterwards, participants received
feedback. b Schematic illustration of our key hypothesis. States of high behavioral
uncertainty should introduce a switch towards stronger ramping dynamics.
c Behavioral results. Scattered dots represent single grand averages, black outlined
dots depict the group level average and histograms illustrate the probability dis-
tribution. Upper: RTs gradually scales with behavioral uncertainty (F(2,36) = 58.99,
p <0.001, n = 19; one-way RM-ANOVA). Middle: Accuracy gradually decreases as a

function of behavioral uncertainty (F(2,36) = 81.53, p <0.001, n = 19; one-way RM-
ANOVA). Lower: Interquartile range also increases from trials with no to high
behavioral uncertainty (F(2,36) = 11.36, p <0.001, n = 19; one-way RM-ANOVA).
d ROI-specific time course of context-dependent neural information (percent
explained variance, %EV) for context-encoding (solid lines) and non-encoding
electrodes (dashed lines) aligned to the HLL (left; PFC: n = 16; motor cortex: n = 11)
or the button release (right; PFC: n = 17; motor cortex: n = 11). The lower horizontal
lines show the temporal extent of significant cluster differences between context-
encoding and non-encoding electrodes for the respective ROI (cluster test; two-
tailed). Shading represents the standard error of the mean (SEM) across partici-
pants. e Context-encoding (red spheres = PFC; blue spheres =motor cortex) and
non-encoding (white spheres) electrodes overlaid on a standardized brain in MNI
space for our two regions of interest. Source data are provided as Source Data file.
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Here, reaction time was quantified as the time interval between the
moving target reaching thepredefined lower limit and theparticipants’
response. Accuracy was defined as the percentage of correct respon-
ses relative to the number of trials. Trials inwhichparticipants released
the button within the time interval between the lower and upper limit
(Fig. 1a) were considered as correct trials whereas trials in which they
released the button either before the lower limit or after the upper
limit were considered as incorrect. We found that reaction times (RT)
gradually increased as a function of uncertainty (Fig. 1c;
0% = 79.92 ± 19.66ms; 25%= 94.98 ± 23.86ms; 75% = 123.81 ± 29.34ms;
mean± SD; F(2,36) = 58.99, p <0.001, η2

ρ = 0.77; one-way RM-ANOVA;
see also Supplementary Fig. 1). Participants were also less accurate in
trials with high uncertainty (Fig. 1c; 0% = 92.08 ± 6.99%;
25%= 81.1 ± 8.33%; 75% = 71.39 ± 5.46%; mean± SD; F(2,36) = 81.53,
p <0.001, η2

ρ =0.82). We then quantified how predictive context
modulatedparticipants’ sensitivityd’ (d-prime) anddecision criterion c
(Methods).

We observed that sensitivity d’ decreased (Supplementary Fig. 2;
p =0.002, Cohen’s d = 1.03; Wilcoxon signed-rank test; two-tailed) and
criterion c increased (Supplementary Fig. 2; p =0.008, Cohen’s
d = −0.7) with uncertainty, indicating a more conservative response
strategy as stop trials becamemore likely. Furthermore, linear ballistic
accumulator modeling (Methods) revealed that prior evidence caused
a shift in the starting point (Supplementary Fig. 2; p <0.001; Friedman
test). In contrast, no statistically significant difference was observed
for the drift rate of the decision process (p =0.229). To quantify trial-
by-trial variability, we assessed the interquartile range (IQR) as a
measure of dispersion (Fig. 1c). We found that RTs were more con-
sistent for predictive trials (IQR 0.05 s ± 0.01 s; mean± SD) and more
variable under high uncertainty (IQR 0.08 s ± 0.03 s; mean± SD;
F(2,36) = 11.36, p < 0.001, η2

ρ =0.39; one-way RM-ANOVA). In sum,
these results demonstrate that states of high behavioral uncertainty
aredetrimental for the speed, accuracy, and sensitivity of action-linked
decisions. Furthermore, they demonstrate that participants altered
their response strategy, thereby providing evidence that they used the
predictive cue to guide their decisions.

We assessed the neural dynamics using HFA as a proxy for local
population activity17–19. The initial quantification of percent
variance20–24 explained by context revealed significant context-
dependent neural information in both PFC and motor cortex when
time-locked to the HLL (Fig. 1d; PFC: t(15) = 985.91, p <0.001, Cohen’s
d =0.83; motor cortex: first cluster, t(10) = 761.78, p < 0.001, Cohen’s
d = 1.24; second cluster, t(10) = 351.6, p <0.001, Cohen’s d = 0.96;
cluster test). A comparable pattern was observed when time-locked to
action execution (button release, BR; PFC: t(16) = 1144.2, p <0.001,
Cohen’s d =0.88; motor cortex: t(10) = 941.25, p =0.002, Cohen’s
d = 1.51). Neural information evolved similarly in both regions over
time (no statistically significant differenceswereobserved; allp > 0.09;
cluster test). To ensure that the difference in the ratio between correct
and incorrect trials did not confound our analysis, we orthogonalized
the factors context and accuracy using an unbalanced ANOVA (Sup-
plementary Fig. 3). This confirmed the existence of context-dependent
neural information, precluding spurious effects as driven by the ratio
of correct/incorrect trials. Note that percent variance explained is an
unsigned estimate of neural information and does not indicate the
direction of the association (positive or negative). Hence, no inference
on the sign of context-dependent effects can be drawn based on this
analysis. While this approach allows for the extraction of context-
encoding electrodes, it does neither impose any bias nor provide any
information with respect to the direction of the effect. Thus, any ran-
domly distributed effect across time and/or conditions would result in
an inconsistent context-dependent modulation in the grand average
HFA traces (Supplementary Fig. 4; Methods).

Overall, we found that 35% (N = 152) of all electrodes in PFC and
27% (N = 73) of all electrodes in motor cortex significantly encoded

context (Fig. 1e; Methods). We used context-encoding electrodes for
subsequent univariate analyses unless stated otherwise. We found a
context-dependent HFA modulation in both PFC (Fig. 2a; first cluster:
F(2,30) = 699.15, p = 0.009; second cluster: F(2,30) = 496.57, p =0.018;
cluster test) and motor cortex (Fig. 2b; F(2,20) = 326.6, p =0.036). The
strongest context-dependent modulation was observed for the PFC ~
300ms prior to the HLL (Fig. 2a).

We next assessed HFA strength (peak amplitude) and peak timing
to quantify neural dynamics on a trial-by-trial basis. We observed that
HFA in PFC gradually scaled with behavioral uncertainty (Fig. 2a;
F(2,30) = 9.77, p <0.001, η2

ρ = 0.39; one-way RM-ANOVA). We did not
observe a statistically significant modulation as a function of uncer-
tainty in motor cortex (Fig. 2b; F(2,18) = 2.37, p =0.122, η2

ρ = 0.21). A
significant context x ROI interaction confirmed the local specificity of
this effect (F(2,18) = 4.67, p = 0.046, η2

ρ =0.34; two-way RM-ANOVA).
Furthermore, PFC population activity peaked later in trials with high as
compared to no uncertainty (Fig. 2a; F(2,30) = 9.07, p <0.001,
η2
ρ =0.38; one-way RM-ANOVA). We found no evidence for a context-

dependent temporal dissociation in motor cortex (F(2,20) = 1.97,
p =0.165, η2

ρ =0.16). However, the direction of the effect did not differ
significantly between the two regions (context x ROI interaction;
F(2,18) = 1.25, p = 0.299, η2

ρ = 0.12; two-way RM-ANOVA). Collectively,
these findings indicate that context-dependent computations are
pronounced in PFC. In contrast, contextual information only margin-
ally modulates activity in motor cortex.

Single-trial associations between HFA amplitude, timing, and
behavior were investigated using linear regression. This analysis
revealed that HFA in PFC and motor cortex predicted RT on a trial-by-
trial basis (Fig. 2e, f; PFC; F(2,2903) = 40.09, R2 = 0.026, p < 0.001;
motor cortex; F(2,2017) = 34.93, R2 = 0.032, p <0.001; linear regres-
sion; see Supplementary Table 1 for partial linear regression). In sum-
mary, larger HFA peak amplitudes and slower peak latencies predicted
slower RTs. These results highlight delayed and increased HFA
responses in states of low predictive context that can be directly
mapped to behavior on single trials.

Ramping dynamics, but not oscillatory signatures dissociate
states of uncertainty
We directly tested whether different processing modes implement
predictive context (Fig. 1b) by disentangling oscillatory and ramping
dynamics. We computed the HFA slope on single trials (Fig. 2c, d). In
line with our main predictions, we found that ramping dynamics were
modulated by predictive context in PFC (Fig. 3a; F(2,30) = 4.49,
p =0.019, η2

ρ =0.23; one-wayRM-ANOVA). Importantly, we did notfind
a statistically significant ramping effect in PFC during trials with no
uncertainty (t(15) = −0.2, p = 0.419, Cohen’s d =0.07; one-tailed t test
vs. zero). However, we found significant ramping in PFC during trials
with moderate (t(15) = 3.34, p = 0.002, Cohen’s d = 1.18) and high
uncertainty (t(14) = 2.15, p =0.024, Cohen’s d =0.79). There was no
statistically significant effect for context-dependent ramping dynam-
ics in motor cortex, (Fig. 3b; F(2,20) = 0.36, p =0.698, η2

ρ =0.035; one-
way RM-ANOVA). These results support our prediction that ramping
dynamics in PFC are modulated by predictive context.

Prior studies have argued that ramping dynamics reflect the
sequential activation of neural populations with recurrent
excitation25,26. We examined whether ramping dynamics directly
index neural excitability using three surrogate markers of
population-level neural excitability (low-frequency desynchroniza-
tion, spectral exponent, and sample entropy27–30). While high-
frequency synchronization was evident in both PFC (Fig. 3c;
F(2,30) = 849.3, p = 0.029; cluster test) and motor cortex (Fig. 3d;
F(2,20) = 743.3, p = 0.007), low-frequency desynchronization was
only apparent in PFC (Fig. 3c; F(2,30) = 922.1, p = 0.024). To quantify
a context x ROI interaction effect, we contrasted the
difference between the two extreme context conditions (75% and 0%
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Fig. 2 | HFA encodes prior evidence and predicts behavior on a trial-by-
trial basis. aChanges in amplitude (lower right) and peak timing (upper left) of the
HFAwith behavioral uncertainty in PFC (amplitude: F(2,30) = 9.77, p <0.001, n = 16;
timing: F(2,30) = 9.07, p <0.001, n = 16; one-way RM-ANOVA). Lower left: Grand
average HFA time courses per context condition (mean ± SEM). The single-colored
horizontal lines show the temporal extent of significant context-dependent pro-
cessing (cluster test). Two-colored horizontal lines indicate the temporal extent of
significant clusters obtained from pairwise comparisons (cluster test; two-tailed).
Upper right: Topographical depiction of the neuro-behavioral linear regression. All
electrodes are color-coded according to the coefficient of determination (R2).
b Changes in amplitude (lower right) and peak timing (upper left) of the HFA with
behavioral uncertainty in motor cortex (amplitude: F(2,18) = 2.37, p =0.122, n = 10;
timing: F(2,20) = 1.97, p =0.165, n = 11; one-way RM-ANOVA). Lower left: Grand

average HFA time courses per context condition (n = 10;mean± SEM). Upper right:
Topographical depiction of the neuro-behavioral linear regression. Same conven-
tions as in (a). c,d Single HFA trials. eRepresentative single participant example for
the neuro-behavioral regression in PFC. Left: Vertically stacked single trials sorted
by RT (black line) and color coded according to the z-score. For visualization,
panels were smoothed using a 4 trial-wide boxcar function after sorting. Upper
right: Relationship between RT and HFA strength (r =0.35, p <0.001, n = 188;
Spearman’s rank correlation; two-tailed). Lower Right: Relationship between RT
and HFA peak timing (r =0.24, p <0.001, n = 188). f Same as (e), but for motor
cortex. Upper right: Relationship betweenRT andHFA strength (r =0.38, p <0.001,
n = 188). Lower Right: Relationship between RT and HFA peak timing (r =0.36,
p <0.001, n = 188). Same conventions as in (e). Source data are provided as Source
Data file.
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likelihood of stop) obtained per ROI using cluster-corrected paired
t-tests (two-tailed; Methods). This analysis confirmed that low-
frequency desynchronization during states of high uncertainty
was specific to PFC (2−19Hz; t(10) = −548.72, p = 0.006). The spectral
slope has been shown to closely track the excitability in neural cir-
cuits flatter slopes indicate more excitability29,31,32. We found
that the spectral slope flattened with behavioral uncertainty in
PFC (Fig. 3e; F(2,30) = 5.97, p = 0.006, η2

ρ = 0.28; one-way RM-
ANOVA). We did not observe a statistically significant difference
in motor cortex (Fig. 3f; F(2,20) = 0.77, p = 0.476, η2

ρ = 0.07; context x
ROI interaction effect; F(2,20) = 14.2, p < 0.001, η2

ρ = 0.59; two-way
RM-ANOVA). We computed time-resolved excitability fluctuations
in using sample entropy30. Time-resolved sample entropy was
context-dependent in PFC and showed the strongest increase in trials
with high uncertainty (Fig. 3e; F(2,30) = 68.32, p = 0.016; cluster-test).
In contrast, we found no statistically significant difference for
context-dependent time-resolved entropy in motor cortex (Fig. 3f;
F(2,20) = 4.01, p = 0.291). No statistically significant context x
ROI interaction was observed (no cluster at p < 0.05; two-tailed,
paired t test). Collectively, this set of findings demonstrates that

predictive context initiates a shift in ramping dynamics and neural
excitability. These shifts are most pronounced in PFC (Fig. 3a, c, e) in
comparison to motor cortex (Fig. 3b, d, g) and gradually scale with
behavioral uncertainty.

Next, we investigated how oscillatory dynamics were modulated
by predictive context. We extracted all HFA peaks (Fig. 4a) and per-
formed peak-triggered averaging (PTA; Fig. 4b). We found that HFA is
nested in a theta oscillation (~5Hz; unconstrained sine fit; Fig. 4b). In
order to quantify this on a group level and assess context-dependent
modulations, we spectrally decomposed the PTA and separated
oscillatory from aperiodic background activity by means of irregular-
resampling auto-spectral analysis (IRASA)33. A cluster-based permuta-
tion test revealed reduced oscillatory power in PFC during trials with
highuncertainty (Fig. 4c;first cluster; F(2,30) = 58.16,p <0.001; second
cluster; F(2,30) = 56.54, p <0.001; cluster test). Importantly, this
context-dependent modulation was not driven by changes in the peak
frequency of the theta oscillations (Fig. 4c). Pronounced theta peaks
were present irrespective of the contextual cue. We also determined
the instantaneous peak frequency directly on the HFA signal by com-
puting the interval between adjacent HFA peaks (Fig. 4d)34. The

Fig. 3 | Ramping dynamics dissociate states of behavioral uncertainty and
reflect neural excitability. a Left: Grand average linear fit (mean ± SEM) obtained
by fitting a linear regression to HFA single trials in PFC. Right: Group-level results
depicting the context-dependent modulation of ramping dynamics in PFC
(F(2,30) = 4.49, p =0.019, n = 16; one-way RM-ANOVA).b Same as (a), but formotor
cortex (F(2,20) = 0.36, p =0.698, n = 11). Same conventions as in (a). c Time-
frequency dynamics in PFC were modulated by predictive context. The black out-
line indicates the extent of the significant cluster across time and frequency (left
panel). Higher frequencies synchronized whereas lower frequencies desynchro-
nized as a function of behavioral uncertainty (cluster test; n = 16; right panel).
Traces were smoothed for visualization purposes using a 5Hz running average.

d Same as (c), but for motor cortex (n = 11). Same conventions as in (c). e Left: The
aperiodic spectral slope inPFC flattenedwith increasing uncertainty (F(2,30) = 5.97,
p =0.006, n = 16; one-way RM-ANOVA). Right: Time-resolved PFC sample entropy
(F(2,30) = 68.32, p =0.016, n = 16; cluster test). The single-colored horizontal lines
show the temporal extent of significant main effects. Two-colored horizontal lines
indicate the temporal extent of significant clusters obtained from pairwise com-
parisons (cluster test; two-tailed). The small inset depicts the temporal evolution of
context-dependent sample entropy. f Same as (e), but for motor cortex (left:
spectral slope; F(2,20) = 0.77, p =0.476, n = 11; one-way RM-ANOVA; right: sample
entropy; F(2,20) = 4.01, p =0.291, n = 11; cluster test). Same conventions as in (e).
Source data are provided as Source Data file.
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instantaneous HFA peak frequency decreased with uncertainty
(Fig. 4e, f; F(2,30) = 4.14, p = 0.025, η2

ρ =0.22; one-way RM-ANOVA).
While theta oscillatory peaks were equally present inmotor cortex, we
did not observe a statistically significant context-dependent modula-
tion in either the oscillatory power of the PTA (Supplementary Fig. 5;
F(2,20) = 7.61, p =0.368; cluster test) or the instantaneous frequency
(Supplementary Fig. 5; F(2,20) = 2.24, p =0.132, η2

ρ =0.18; one-way RM-
ANOVA) of the HFA signal. Taken together, we did not find strong
evidence for a context-dependent modulation of oscillatory power. In
contrast to the presumed switch from an oscillatory to a continuous
processing regime (Fig. 1b), we found that neural oscillations are ubi-
quitous across all predictive contexts.

This set of findings raised the question which role neural oscilla-
tions play in processes where evidence needs to be converted into an
action. Based on the well-established role of neural oscillations in
mediating inter-areal communication6,35, we tested whether oscilla-
tions synchronize the prefrontal-motor network. We computed the
imaginary phase-locking value (iPLV) between prefrontal-motor elec-
trode pairs to assess network connectivity. We observed strong
prefrontal-motor synchrony in the theta band (Fig. 4g; 6.4 ± 1.3 Hz;
mean± SD), but we did not observe a statistically significant difference
between context conditions (F(2,26) = 3.82, p =0.39; cluster test). To
assess directional interactions, we computed the phase-slope index

(PSI)36. We first identified the individual iPLV peak frequency for every
prefrontal-motor electrode pair prior to computation of the PSI. We
found that directional theta connectivity from PFC to motor cortex
was context-dependent (Fig. 4h, i; F(2,24) = 4.2, p = 0.027, η2

ρ =0.26;
one-way RM-ANOVA) and strongest in trials with high behavioral
uncertainty (t(12) = 2.96, p = 0.012, Cohen’sd = 1.16; two-tailed t-test vs.
zero). Collectively, this set of findings demonstrates that ramping
dynamics in PFC dissociate states of behavioral uncertainty while
neural oscillationsmight dynamically coordinate the prefrontal-motor
network interaction in a context-dependent manner.

Having established that oscillatory and ramping dynamics reflect
dissociable signatures of large-scale population activity, we next tested
whether ramping dynamics reflect coordinated population activity
using a multivariate state-space approach (Supplementary Note and
Supplementary Figs. 6–12). Collectively, this set of analyses indicated
that behaviorally-relevant information about the current rule and
ensuing action are encoded in distinct, low-dimensional subspaces.
Hence, we finally characterized how state-space dynamics interact with
neural oscillations to support rule-guided behavior. We specifically
focused on theta oscillations as a potential candidate mechanism for
the temporal synchronization and generalization of action plans. This
step was chosen in a data- and theory-driven way. We did not observe a
statistically significant modulation of theta oscillations as a function of

Fig. 4 | Theta oscillations modulate HFA and mediate context-dependent
information flow fromPFC tomotor cortex. a Example of the peak detection on
single trialHFA traces (black asterisk). Note thewaxing andwaning pattern in single
trials. b Peak-triggered average (PTA; mean ± SEM; ±0.5 s from HFA peak) in a
representative single participant across PFC electrodes. HFA was nested into
a ~ 5Hz theta oscillation (red line depicts a sine fit to the PTA). c Grand average 1/f-
corrected power spectrum computed on the PTA time-series using IRASA. Shaded
gray areas depict the extent of significant context-dependent power modulation
(n = 16; cluster test). Pronounced theta peaks were present in all predictive context
conditions. d Example trace depicting the quantification of the inter-peak interval
(IPI) as a time length between two contiguous peaks. e Single electrode example

showing the IPI distribution across conditions. Vertical dashed lines represent the
peaks of the distributions. f Reduced IPI with increasing behavioral uncertainty
(F(2,30) = 4.14, p =0.025, n = 16; one-way RM-ANOVA). g Grand-average (mean ±
SEM) prefrontal-motor undirected connectivity. Undirected connectivity was not
modulated by states of uncertainty, but showed pronounced peak connectivity in
the theta band. h Directional prefrontal-motor connectivity in the theta band.
Directional information flow from PFC tomotor cortex was enhanced during states
of high uncertainty (F(2,24) = 4.2, p =0.027, n = 13; one-way RM-ANOVA).
i Topographical depiction of the directional change in information flow from PFC
tomotor cortex between distinct states of uncertainty. Source data are provided as
Source Data file.
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context in either PFCormotor cortex. Instead, the results indicated that
neural activity was rhythmically structured in both regions (cf. Fig. 4c;
Supplementary Fig. 5). Hence, we reasoned that theta oscillationsmight
synchronize the prefrontal-motor network for inter-areal communica-
tion (cf. Fig. 4g). These data-driven findings were further supported by
the communication-through-coherence framework6 and a seminal
study on theta-oscillatory, prefrontal-motor interactions during cogni-
tive control22. Consequently, we aimed to testwhether theta oscillations
temporally synchronize low-dimensional subspaces between PFC and
motor cortex for the transfer of action plans from PFC tomotor cortex.

To accomplish this, we first extracted the dimension with the
strongest oscillatory theta power in every participant (Fig. 5a, b). Next,
we employed LDA classifiers to assess the coding features of the theta
component. In both PFC and motor cortex, we found that the
dimensionwith the strongest theta power significantly encoded action
(Fig. 5c; PFC; t(13) = 740.72, p < 0.001, Cohen’s d =0.82; motor cortex;
t(9) = 816.03, p =0.002, Cohen’s d = 1.32; cluster test), but we did not
observe a statistically significant modulation for context (PFC and
motor cortex; no cluster at p <0.05). We also observed no statistically
significant difference for the consideration that the theta dimension
and the previously determined action dimensions were embedded in
distinct subspaces (p =0.18; Binomial test). Finally, we observed that
neural dynamics embedded in the dimensions with strongest theta
power are functionally coupled within the prefrontal-motor network
(Fig. 5d; p = 0.003, Cohen’s d = 0.69; Wilcoxon signed-rank test),
indicating apossible functional roleof theta oscillations tomediate the
cross-regional generalization of action plans from prefrontal to motor
cortex. Coupling strength was not statistically significantly different
between predictive contexts (F(2,26) = 1.36, p =0.273, η2

ρ = 0.09; one-
way RM-ANOVA).

Taken together, these findings are in accordance with the idea
that structured population activity in PFC encodes and integrates
predictive information into ensuing action plans that are executed in
motor cortex. Our results imply that the transformation from PFC-
dependent context integration to goal-directed action execution in
motor cortex is mediated by directed theta-band connectivity (cf.
Fig. 4g−i).

Discussion
Rule-guided decision-making is a hallmark of flexible human behavior.
To date, it remains unknown how rules or contextual priors are

encoded to guide decision processes in humans. Previous work inNHP
indicated that adjacent premotor structures, such as frontal eye
fields10,12 or dorsal premotor cortex14,37, might mediate context-
dependent decision-making. While earlier theories, such as the active
sensing framework4,5, emphasized that neural coding is mainly reflec-
ted in local activity profiles (i.e., neural firing or oscillatory desyn-
chronization), novel population-based theories now suggest that
context-dependent processing is distributed across large-scale
neural populations10,12.

Thus far, the population doctrine had its greatest impact on
understanding movement-related computations in the non-human
primatemotor system38–41. We posited itmight also provide a powerful
framework to understand higher cognitive processes in humans42.
Using a predictive motor task, we demonstrate that (I) behavioral
uncertainty is reflected in neural indices of uncertainty as quantifiedby
uni- (Figs. 2, 3) andmultivariate analyses (Supplementary Fig. 6). In line
with the active sensing framework, we show that (II) behavioral
uncertainty introduces a shift from a presumably energy-efficient
oscillatory to a likely more energy-costly processing mode with mixed
oscillatory and ramping dynamics (Figs. 3, 4). Using population-based
analysis strategies, our results demonstrate that (III) oscillatory and
ramping dynamics reflect dissociable population signatures that likely
contribute to distinct aspects of encoding and transfer of context-
dependent action plans (Supplementary Fig. 6). Specifically, our
results support the view that (IV) prefrontal population activity
encodes predictive information and ensuing action plans in distinct
and serially unfolding subspaces, while motor cortex is primarily
involved in action execution (Supplementary Fig. 6). Furthermore, our
results indicate that (V) theta synchrony might temporally coordinate
action-encoding population subspaces, thereby mediating the cross-
regional generalization of action plans (Fig. 5). Collectively, our results
provide evidence for the idea that two hallmarks of large-scale popu-
lation activity, namely continuous ramping dynamics and oscillatory
synchrony, are dissociable and possibly fulfill distinct operations to
guide context-dependent human behavior.

Oscillatory and ramping dynamics reflect distinct population
signatures of context-dependent behavior
The influential active sensing framework postulates that the brain
switches from an energy-efficient oscillatory processing mode during
states of high predictability to an energy-consuming continuous

Fig. 5 | Theta oscillations temporally coordinate action-encoding subspaces in
the prefrontal-motor network. a Peak-triggered average (PTA; mean ± SEM)
across participants obtained from the PC with the strongest theta power in PFC
(upper panel; n = 17) andmotor cortex (lower panel; n = 14). The black lines depict a
sine fit to the PTAs. b The instantaneous frequency of the identified theta PC as
computed by the inter-peak-interval (upper panel shows the distribution for PFC,
the lower panel for motor cortex). Both PFC and motor cortex showed strong
oscillatory peaks in the theta-frequency band. c Grand average decoding accuracy

(mean ± SEM) for context and action within the identified theta PC in PFC (upper
panel) and motor cortex (lower panel). The colored horizontal line shows the
temporal extent of significant action-decoding (cluster test; two-tailed). d Upper
panel: Histogram depicting z-normalized power correlation coefficients between
the theta PCs in PFC and motor cortex. Lower panel: Significant coupling between
the theta PCs in PFC and motor cortex (p =0.003; Wilcoxon signed-rank test; two-
tailed). Single dots represent the z-normalized (permutation) power correlation
coefficients (n = 14). Source data are provided as Source Data file.
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ramping processing mode in states of low predictability. Evidence for
this theory has mainly been obtained in NHP auditory cortex7,8, but it
had been argued that similar principles apply to higher-order cortical
areas5. In line with this framework, we found that the transition from
high to low prior evidence increased ramping dynamics in the human
PFC, but not in motor cortex. Contrary to the theory, we did not find
evidence for amodulation of local oscillatorydynamics as a functionof
predictability. In addition, a related line of inquiry argued that frontal
theta activity constitutes a mechanism of cognitive control, especially
in states of high uncertainty22,43. Using direct brain recordings in
humans, we found that directional theta synchrony is inversely related
to predictability. We found stronger directional theta synchrony from
prefrontal to motor cortex in states of high uncertainty, indicating a
flexible recruitment and network engagement when limited predictive
information is available. Using population-based decoding, we found
that theta oscillations were not associated with the encoding of pre-
dictions per se, but that theta activity was confined to the action
subspaces of the population activity. This finding is in line with the
communication-trough-coherence hypothesis6. This observation
could be interpreted as a sequence, where the PFC first encodes
the current rule, then devises the appropriate action, which is then
executed in the motor cortex. In this scenario, theta synchrony could
possibly play an important role for the inter-areal transfer of infor-
mation about the subsequent action. However, due to the correlative
nature of our study we cannot draw any causal inference or direc-
tionality nor exclude the possibility that the observed effects could be
driven by a third structure that we did not record from. This con-
sideration also possibly explains why we did not observe a continuous
representation of the currently active rule in PFC. Future studies that
also consider e.g., parietal of medial temporal areas might be able to
observe such a sustained response. Furthermore, information about
action only culminated after the movement onset. Thus, we cannot
preclude that these processes mainly capture post-movement, rather
than preparatory dynamics. In our analyses, we observed a build-up of
action-specific information (cf. Supplementary Fig. 6g) that emerged
prior to theHLL (SupplementaryFig. 9). This observation is compatible
with the view that the observed dynamics track the internal transition
from planning to the final movement execution, in line with a recent
human iEEG-study44. However, we cannot completely dismiss the
possibility that action-related information preceding the lower limit
mightmerely reflect differentmental states, such as discrete phases of
movement (planning vs. execution). Therefore, future studies should
simultaneously record (sub)cortical activity and electromyography to
fully untangle the spatiotemporal gradient between movement plan-
ning and movement execution from higher-order association to sen-
sorimotor areas. While we focused on theta oscillations as a possible
mechanism for the transfer of motor plans via inter-areal synchroni-
zation of action subspaces, other mechanisms related to the temporal
control of action have been demonstrated, such as single neuron
ramping activity in the lateral intraparietal area45, medial PFC46, or in
frontal-striatal circuits47. In these studies, ramping dynamics mirrored
the temporal integration of time (e.g., by representing the hazard rate
of reward probabilities45). Yet, in our study, ramping dynamics in PFC
dissociated between distinct states of uncertainty, while the temporal
dynamics in the task were kept constant across trials. This suggests
that ramping dynamics in the human PFC possibly encode latent
variables in addition to timing25. Future studies that are designed to
disentangle timing from abstract rule-guided activity are therefore
necessary to address the impact of task timing. Moreover, it is con-
ceivable that ramping dynamics could reflect other latent variables,
such as engagement, alertness or selective attention. This possibility
could ideally be tested using behavioral tasks that are designed to
isolate the constructs, possibly combined with other physiologic
readouts, such as pupil size, skin conductance, electrocardiogram or
eye-tracking to quantify their contribution to ramping dynamics.

Critically, we did not observe a statistically significant context-
dependent modulation of ramping activity in motor cortex. Instead,
ramping dynamics in motor cortex were largely preserved across all
trials, likely reflecting a non-specific and context-independent growing
urgency signal13,48 driven by the necessity of rapid motor decisions in
this task. This may be reconciled by the idea that ramping dynamics
may subserve specialized functions in different regions. Neural activity
in motor cortex exhibited large, context-independent activity changes
preceding movement initiation, a pattern that is consistent with prior
studies reporting abrupt shifts in activity shortly before movement
onset49. This context-independent activity, previously also referred to
as a condition-invariant signal (CIS)50, typically reflects the largest
response component in motor cortex50. The present findings are
compatible with a CIS in human motor cortex. The first principal
component of the HFA-signal in motor cortex is (1) context-
independent and (2) explains the largest variance. It is also possible
to consider a scenario where the condition-invariant increase inmotor
cortex activity prior to reaching the lower limit (cf. Supplementary
Fig. 7) foreshadows parallel planning for both movement inhibition
and execution51, the two possible behavioral responses in the task. An
unresolved question is whether other areas might drive this sudden
change in motor cortex activity. Previous studies have identified a
large-scale network that might provide input to motor cortex,
including subcortical52,53 and cortical structures54,55. The present find-
ings demonstrate that human PFC also modulates neural activity in
motor cortex. Collectively, these results demonstrate that several
hallmarks of predictive processing that have primarily been captured
using univariate metrics reflect coordinated population-wide activity
patterns.

Translating our findings to previous observation in the non-
humanprimatemotor system is hamperedby the fact that signals from
different recording modalities are typically being compared (e.g.,
single unit vs. EEG activity). Here, we analyzed HFA in humans as a
proxy of multiunit activity firing17–19. HFA offers the advantage that it
already constitutes an aggregate metric that summarizes the under-
lying population activity. Recent work demonstrated that HFA con-
tains more behaviorally relevant information than single-/multi-unit
activity or EEG activity, constituting a suitable level of abstraction to
study population-wide activity56. Furthermore, theta oscillations
rhythmically structure HFA through phase-amplitude cross-frequency
coupling. Thus, our results complement previous findings in animal
models demonstrating that neural firing is linked to network
oscillations57,58.

The population doctrine and cognitive processing
The population doctrine is an emerging concept highlighting that
population activity, and not the single unit per se, reflects the essential
unit of computation in the brain16,59. Population activity has mainly
been studied in NHP (pre-)motor cortex where distinct movement
trajectories are represented by unique neural trajectories of the
population38,41.While previous evidence inNHP indicated that adjacent
premotor structures, such as frontal eye fields10,12 or dorsal premotor
cortex13,37 may perform context-dependent computations, we found
that neural trajectories in prefrontal, but notmotor cortex, dissociated
the current predictive context. Critically, we observed that large-
magnitude neural states within PFC indexed behavioral uncertainty.
We found that PFC settled into a low-energy state (smaller magnitude,
only covering a limited subspace of the entire state space) during
states of high predictability. Critically, these patterns could only be
observed using multivariate analysis strategies (Supplementary Fig. 6;
cf. Fig. 2 for the univariate approach) that take coordinated variability
across different recording sites into account. Previous work in NHP
demonstrated that motor cortex exhibits a low-dimensional
structure59,60. Here, we replicate this finding in humans, but in con-
trast to prior work in NHPs that has revealed context-dependent
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computations in adjacent premotor structures10,12,13,37, we found
no evidence for this consideration in the human motor cortex. How-
ever, it is worth noting that we cannot rule out some alternative
hypotheses due to inherent limitations of human intracranial record-
ings and the currently employed experimental design. First, due to the
inherent limited coverage in intracranial recordings, we cannot pre-
clude that specialized sub-regions within the human motor cortex
(e.g., anterior or posterior parts of the supplementary motor area,
frontal eye fields, premotor cortex) might also encode contextual
information. Moreover, we did not record from various other brain
regions that might maintain context-dependent representation
throughout, e.g., the parietal cortex or hippocampus. Second, based
on the current experimental design, we cannot fully dissociate
between preparatory- and movement-related computations. Further-
more, while we did not employ a characteristic go-cue (i.e., sudden
appearance of a sensory go-cue) in our experimental paradigm, the
moment at which the bar reaches the lower limit (cf. Fig. 1a) still
resembles a go-cue and could potentially trigger condition-invariant
activity changes. Consequently, based on the current experimental
paradigm, we cannot fully disentangle neural activity that reflects
context-dependent processing from neural activity potentially trig-
gered by the lower limit. However, the fact that context-dependent
dynamics already evolved (cf. Fig. 2a & Supplementary Fig. 7a) and
neural dynamics mainly ramped-up prior to lower limit suggests that
the observed neural activity patterns in PFC were not solely triggered
by the lower limit, but reflected intrinsic, context-dependent dynamics
prior to the lower limit. However, changes in neural activity both
before as well as after the lower limit might also be explained by the
lower limit itself. Hence, the activity ramp-up in PFC prior to the lower
limit might reflect a mixture of coexisting context- and go-cue-
dependent activity. Future studies might resolve this limitation by
simultaneously recording bothbrain andmuscle activity. However, it is
also possible that distinguishing context- and movement-dependent
activity in the PFC cannot be fully disentangled given the involvement
of the PFC in multiple operations. Future studies that employ experi-
mental designs that are geared towards disentangling context- and go-
cues are necessary to separate purely cognitive representation from
motor preparation and execution. Finally, prefrontal population
activity is high-dimensional in nature, where different operations are
encoded in distinct subspaces. Yet, our analytical approach does not
allow to draw any inference on the dimensionality of the decoding
latent space, only on the overall dimensionality of the neural data.
However, our findings support the notion that the high-dimensional
prefrontal functional architecture constitutes a substrate for flexible
goal-directed behavior and that simultaneous processing in separate
coding dimensions maximizes information-coding capacity of the
underlying population11,12,61.

In the present study, our results are compatible with the view
that high-dimensional prefrontal population dynamics encode pre-
dictive context and action plans in distinct and serially unfolding
subspaces. We demonstrate that a lack of prior evidence comes at a
behavioral (increased response time/error rates) as well as a neural
(largemagnitudeneural states) cost.Moreover, our results support the
interpretation that population trajectories and oscillatory synchrony
are dissociable signatures, which support distinct functional roles in
the prefrontal and motor cortex. Specifically, our results imply that
prefrontal population trajectories encode the current rule, while
oscillatory synchrony mediates the transfer of action plans from pre-
frontal to motor cortex. The view of a division-of-labor between both
regions is supported by the observation of low-dimensional neural
dynamics in human motor cortex, which did not encode predictive
context, but relied on theta-mediated input from higher-order pre-
frontal areas. In sum, we studied context-dependent motor behavior
with univariate as well as multivariate analyses, which collectively
shed new light on the role of ramping and oscillatory activity during

predictive processing. These findings imply that population dynamics
and oscillatory synchrony interact in concert to jointly guide flexible
human behavior.

Methods
Patients and implantation procedure
We obtained intracranial recordings from a total of 19 pharmaco-
resistant epilepsy patients (33.73 years ± 12.52, mean± SD; 7 females)
who underwent presurgical monitoring and were implanted with
intracranial depth electrodes (DIXI Medical, France). No statistical
methods were used to pre-determine sample size, but the sample size
reported in this study is similar or exceeds the sample size reported in
comparable previous studies22,44. Data fromone patient were excluded
from neural analyses because a low-pass filter was applied at 50Hz
during data export from the clinical system, thus, precluding analyses
focusing on HFA. All patients were recruited from the Department of
Neurosurgery, Oslo University Hospital. Electrode implantation site
was solely determined by clinical considerations and all patients pro-
vided written informed consent to participate in the study. Patients
were not compensated for their participation in this study. All proce-
dures were approved by the Regional Committees for Medical and
Health ResearchEthics, RegionNorthNorway (#2015/175) and theData
Protection Officer at the Oslo University Hospital as well as the Uni-
versity Medical Center Tuebingen (049/2020BO2) and conducted in
accordance with the Declaration of Helsinki.

iEEG data acquisition
Intracranial EEG data were acquired at the OsloUniversity Hospital at a
sampling frequency of 512Hz using the NicoletOne (Nicolet, Natus
Neurology Inc., USA) or at a sampling frequency of 16 KHz using the
ATLAS (Neuralynx) recording system.

CT and MRI data acquisition
Weobtained anonymized postoperativeCT scans andpre-surgicalMRI
scans, which were routinely acquired during clinical care.

Electrode localization
Two independent neurologists visually determined all electrode
positions based on individual scans in native space. For further
visualization, we reconstructed the electrode positions as outlined
recently62. In brief, the pre-implant MRI and the post-implant CT were
transformed into Talairach space. Then we segmented the MRI using
Freesurfer 5.3.063 and co-registered the T1 to the CT. 3D electrode
coordinates were determined using the Fieldtrip toolbox64 on the CT
scan. Then we warped the aligned electrodes onto a template brain in
MNI space for group-level analyses.

Task
Participants performed a predictive motor task where they had to
continuously track a moving target and respond as soon as the target
hits or withhold their response if the target stops prior a predefined
spatial position using their dominant hand (Fig. 1a). Prior to the
main experiment, participants were familiarized with the task by
means of a short practice session. Each trial started with a baseline
period of 500ms followed by a cue (presented for 800ms centered)
that informed participants about the likelihood that the moving
target would stop prior to the lower limit (hit lower limit; HLL;
Fig. 1a). Thus, the predictive cue could be directly translated into
the probability that either of two possible action scenarios will
occur: button release (BR) vs. withhold response (Bernoulli distribu-
tion). Participants were instructed to either release the button as
soon as the target hits (Go trials) or withhold their response if the
target stops prior to the HLL (Stop trials). The timing of a premature
stopwasnormally distributedprior to theHLL (Supplementary Fig. 13).
We parametrically modulated the likelihood of stopping. A green
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circle indicated a 0% likelihood, an orange circle indicated a 25% like-
lihood and a red circle indicated a 75% likelihood that the moving
target would stop prior to the HLL. Hence, participants were able to
fully predict the outcome on trials with a 0% likelihood and already
prepare the motor response. However, in trials with a 25% or 75%
likelihood of stopping, they continuously had to accumulate evidence
in order to decide whether to release the button or withhold the
response. Upon receiving the predictive cue, participants were able to
start the trial in a self-paced manner by pressing the space bar on the
keyboard (average time to start the trial: 1.76 s ± 0.55 s; mean ± SD). By
pressing the space bar, the target would start moving upwards and
reach the HLL after 560–580ms. The upper boundary was reached
after 740–760ms, thus, leaving 160msbetween theHLL and theupper
boundary. If participants released the button within this 160ms
interval, the trial was considered as correct. Trials in which the button
was released either before or after this interval were considered as
incorrect. Feedback on trial performancewas provided upon each trial
for 1000ms.

Behavioral data analysis
We quantified reaction time (RT) as the time passed between the
moving target reaching the HLL and the participants’ response. We
considered both correct and incorrect trials in our analyses on RT.
Accuracy was quantified as the average number of correct responses
relative to the number of trials. We used the interquartile range (IQR)
as a measure for behavioral trial-by-trial variability65. We also con-
sidered the signal detection theoretic measures d’ (d-prime) and c
(criterion)66. While d’ quantifies the distance between the signal (e.g.,
go trials) and noise distribution (e.g., stop trials), c reflects a partici-
pant’s propensity to choose yes or no (decision criterion). Due to the
nature of the task (absence of noise distribution in the 0% condition),
we were only able to quantify d’ and c for conditions with a 25% or 75%
likelihood of stopping.

Linear ballistic accumulator model. For each subject, we fitted a
linear ballistic accumulator model67 for the reaction time using a
convolutional method to estimate the non-decision time68. We
fixed the variance of the drift and the non-decision time at 0.5. We
estimated the drift and offset, allowing them to differ between con-
ditions. Model fit was performed in R v. 4.1.3 (R Core Team, 2016),
using the DstarM package69. It is important to acknowledge that the
environment of intracranial EEG recordings precludes long experi-
ments with many control conditions. Based on our design, we cannot
fully disentangle behavioral uncertainty fromoverall taskdifficulty.We
directly addressed this limitation by calculating the SDT as well as
linear ballistic accumulator models to quantify the participants’
response strategy. However, the observed shift in criterion as a func-
tion of uncertainty could also be explained by an overall shift of the
signal and noise distribution along the internal response axis that
would not involve any change in participants’ response strategy. Fur-
thermore, because there were no supplementary eye tracking
recordings in the present study, we are unable to comment on the
potential variances in attentional states that may be associated with
task difficulty.

Intracranial EEG analysis
Preprocessing and artifact rejection. Intracranial EEG data were
demeaned, linearly de-trended, locally re-referenced (bipolar
derivations to the next adjacent lateral contact) and if necessary
down-sampled to 512 Hz. To remove line noise, data were notch-
filtered at 50 Hz and all harmonics. Subsequently, a neurologist
visually inspected the raw data for epileptic activity. Channels
or epochs with interictal epileptic discharges (IEDs) and other
artifacts were removed.

Trial definition. We extracted 10 s long, partially overlapping trials to
prevent edge artifacts in subsequent filtering. We excluded all stop
trials and focused subsequent analyses on go trials. Trials were event-
locked to theHLL unless otherwise stated.We considered both correct
and incorrect trials for all following neural analyses in order to max-
imize the number of trials. Specifically, we includedboth trials inwhich
participants released the button within the lower and upper limit
(correct trials; 94.7%) and trials in which participants released the
button after the upper limit passed (incorrect trials; 4.8%). Collectively,
we excluded trials in which participants released the button prior to
the lower limit.

Definition of regions of interest. The pre-selection of electrodes was
guided by our question on how the human prefrontal-motor network
is engaged during context-dependent computations. Electrodes were
classified into discrete PFC and motor ROIs based on surface anatomy
using the Anatomical Automatic Labeling atlas (ROI_MNI_V4.nii70;
accessed via FieldTrip64). Electrodes in the following areas were con-
sidered to be in the PFC ROI (equal for both hemispheres): superior
frontal gyrus (orbital, medial and dorsolateral part), medial frontal
gyrus, inferior frontal gyrus (opercular, triangular and orbital part).
Electrodes in the following areas were considered to be motor elec-
trodes (equal for both hemispheres): precentral gyrus, supplementary
motor area, paracentral lobule. In total, 17 patients were implanted
with clean, artifact-free electrodes in PFC, 14 patients in motor cortex
and 14 patients were implanted with clean, artifact-free electrodes in
both ROIs.

HFA extraction. The extraction of the high-frequency activity time
series was conducted in a three-step process. In the first step, we
bandpass-filtered the raw data epochs (10 s) between 70 and150Hz
into eight, non-overlapping 10Hz wide bins. We then applied the Hil-
bert transform to obtain the instantaneous amplitude of the filtered
time series. In a last step,wenormalized the high-gamma traces using a
bootstrapped baseline distribution71,72. This involved randomly
resampling baseline values (from −0.2 to −0.01 s relative to cue onset)
1000 times with replacement and normalizing single high-gamma
traces by subtracting the mean and dividing by the standard deviation
of the bootstrap distribution. The high-gamma traces were finally
averaged across the eight bins. This procedure mitigates the effect of
the 1/f power drop-off and enables comparable estimates across dif-
ferent conditions by minimizing the influence of different baseline
distributions onto task-related activity.

Context-dependent neural information. We identified context-
encoding electrodes using a well-established information theoretical
approach that has been used in both human and non-human primate
studies22–24,73. We employed a one-way analysis of variance (ANOVA) to
quantify the percentage of HFA variance that could be explained by
our behavioral regressor predictive context. The amount of percent
explained variance was quantified using ω2 as

ω2 =
SSbetween�groups�ðdf x MSEÞ

SStotal +MSE
ð1Þ

where SStotal reflects the total sum of squares across n trials,

SStotal =
Xn
i = 1

ðxi � �xÞ2 ð2Þ

SSbetween�groups the sum of squares between G groups (e.g., factor
levels),

SSbetween�groups =
XG
group

ngroup �xgroup � �x
� �2

ð3Þ
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MSE the mean square error,

MSE=
Xn
i = 1

ðxi � �xgroupÞ2 ð4Þ

and df the degrees of freedom specified as df =G� 1. In order to
obtain a time series of context-dependent neural information, we
estimatedω2 using a sliding window of 50ms that was shifted in steps
of 2ms. Electrodes that exhibited a significantmain effect of predictive
context for at least 10% of consecutive samples across the trial
segment were defined as context-encoding electrodes22,71,74,75. Note
that this approach was blind with respect to both direction and timing
of the effect. Finally, to minimize inter-individual variance and
maximize the sensitivity to identify a temporally consistent pattern
that accounts for most of the variance explained by predictive context
within the context-encoding electrodes across participants, we
employed principal component analysis (PCA)24,75. PCA was applied
to the F value time series concatenated across participants (channel x
time matrix)24,76. In order to define PCs that explain a significant
proportion of variance in the data, we used non-parametric permuta-
tion testing to determine the proportion of variance that can be
explained by chance (Supplementary Fig. 14). We randomly shuffled
the F value time series 1000 times to test the null hypothesis that there
is no temporal structure present in the data. Electrodes that exhibited
a strong weight (75th percentile) on any of the high variance-
explaining PCs as determined by their coefficients were defined as
context-encoding. This analytical approach classified electrodes to be
context-encoding for 16 patients in PFC (time-locked to HLL; 17
patients showed context-encoding electrodeswhen time-locked to the
behavioral response) and for 11 patients in motor cortex.

We used context-encoding electrodes for univariate analyses
(Figs. 1–4f). Instead,weused all available electrodes (context-encoding
and non-encoding electrodes) for multivariate analyses (Figs. 4g, 5;
Supplementary Figs. 6–12).

HFA peak analyses. HFA peak amplitude and timing were estimated
on a trial-by-trial basis and used as a proxy of strength and timing of
the neural responses, respectively. Amplitude and latencies below the
2.5th or above the 97.5th percentile per channel were considered as
outliers and removed from further statistical analysis.

HFA single trial regression to behavior. Peak amplitude and latency
were computed as described above (see HFA peak analyses) and
regressed against behavior (RT) via linear regression. We quantified
the neuro-behavioral relationship using both full (peak amplitude +
latency ~ behavior) and partial linearmodels (peak amplitude/latency ~
behavior).

Estimation of ramping dynamics. To estimate ramping dynamics on a
trial-by-trial basis, we quantified the slope of single trial HFA traces
using robust linear regression. The slopewas estimated from trial start
to the HLL.

Time-frequency decomposition. We decomposed the raw data into
the time-frequency domain using the multitaper method based on
discrete prolate spheroidal Slepian sequences in 33 logarithmically
spacedbins between0.5 and 128Hz. Temporal and spectral smoothing
was adjusted to approximately match a 200ms time window and ¼
octave frequency smoothing. To avoid edge artifacts and allow for
resolving low frequency activity, decomposition was performed from
±2 s. surrounding theHLL. As for theHFA analysis (seeHFAextraction),
we normalized the time-frequency data per frequency bin using a
bootstrapped baseline distribution (from −0.4 to −0.1 s relative to cue
onset). Power values were z-transformed according to the means and
standard deviations of the bootstrapped distribution.

Spectral slope estimation. Spectral estimates were obtained by
means of a fast Fourier transform (FFT) for linearly spaced frequencies
between 1 and 45Hz after applying a Hanning window and zero pad-
ding the data to obtain a fine-grained frequency resolution of 0.25 Hz
to improve subsequent background activity estimation. In order to get
an estimate of the aperiodic background activity of the power spec-
trum, we utilized irregular-resampling auto-spectral analysis (IRASA)33.
IRASA takes advantage of the fact that resampling the original time
series by a non-integer resampling factor will leave the 1/f background
activity unchanged while systematically shifting the peak frequency at
the scale of resampling. Thereby, IRASA disentangles the spectrum
intooscillatory (periodic) and 1/f (aperiodic) components.Weused the
original resampling parameters 1.1 to 1.9 in steps of 0.0533 that have
also been used in a variety of previous studies31,71,77. In a next step,
we quantified the spectral slope bymeans of applying a linear fit to the
aperiodic power spectrum in log-log space between 30 and 45Hz as
suggested previously29.

Time-resolved sample entropy. Sample entropy reflects an
information-theoreticmeasure and captures the complexity of natural
time series data78. Sample entropy is defined as the negative natural
logarithm of the conditional probability that two sequences similar for
m data points will still match when another data sample ðm+ 1Þ is
added to the sequence:

SampEN m, r,Nð Þ= � log
pm+ 1ðrÞ
pmðrÞ

� �
ð5Þ

where m defines the sequence length, r the similarity criterion and
defines the tolerancewithwhich twopoints are considered similar, and
N the length of the time series to be considered for analysis (m = 2 and
r =0.278,79). In order to obtain a time series of sample entropy, we
estimated sample entropy using a sliding window of 100ms that was
shifted in steps of 20ms. Resulting sample entropy time series were
smoothed using a 5ms boxcar window to attenuate trial-by-trial
variability.

HFApeak-triggeredaverage.We conducted apeak-triggered average
analysis in order to test (1) whether the HFA is nested into ongoing
oscillatory activity, and (2) whether the strength of oscillatory activity
is context-dependent. This approach is conceptually similar to spike-
triggered averaging used in single unit electrophysiology80. Therefore,
we detected peaks in the single-trial HFA traces and re-aligned the raw
unfiltered data to the detected peak events (segmented ±0.5 s sur-
rounding the peaks). To assess the spectral content of the underlying
raw traces, we obtained spectral estimates by means of a FFT for lin-
early spaced frequencies between 1 and 30Hz after applying aHanning
window and zero padding the data to obtain a frequency resolution of
0.25Hz. We used IRASA (same parameters and settings as for spectral
slope estimation) to discount the aperiodic component. Oscillatory
residuals were extracted by subtracting the aperiodic spectral com-
ponent from the original power spectrum.

HFA inter-peak-interval. The speed of the HFA traces was quantified
by means of computing the interval between two adjacent peaks. We
estimated the inter-peak-interval (IPI) on single trials and transformed
the distance into frequencies (sampling frequency divided by the time
interval between two adjacent peaks). The instantaneous frequency of
the HFA amplitude modulation was inferred by the mean of the
distribution.

Connectivity estimates. We calculated phase-based connectivity
metrics between PFC and motor cortex electrodes to infer inter-areal
interactions. We first established the presence of undirected phase-
based connectivity between PFC and motor cortex by means of the
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imaginary phase-locking value (iPLV). The iPLV was computed for
center frequencies between 3 and 32Hz (± center frequency/4), loga-
rithmically spaced in steps of 21/8 after band-pass filtering and applying
the Hilbert transform81,82. Only considering the imaginary part of the
phase-locking value removes zero-phase lag contributions83. The iPLV
was computed as:

iPLVf = imag n�1
Xn
t = 1

eiðϕxt�ϕyt Þ
 !�����

����� ð6Þ

where n is the number of time points and ϕ reflects the phase angles
from electrode x and y at time t and frequency f . We first identified
the electrode in motor cortex that explained most behavioral var-
iance using linear regression (regressor = HFA timing; response
variable = RT). This substantially reduced the degrees of freedom in
terms of prefrontal-motor electrode combinations. We then quanti-
fied the iPLV between all PFC electrodes and the motor cortex
electrode explaining most of the behavioral variance. We have
chosen to use behavioral variance explaining electrodes in motor
cortex, and not in PFC as motor cortex reflects the final cortical
output station to direct behavior84. To normalize undirected
connectivity, we obtained a permutation distribution by randomly
shuffling trial vectors and re-computing the iPLV for every random
partition. We further randomly resampled the permutation values
1000 times to approximate a normal distribution. The resulting
mean and standard deviations of the bootstrapped permutation
distribution were then used to z-normalize the iPLVs. Having
established the presence of inter-areal connectivity, we used the
phase-slope-index (PSI)36 to infer directional connectivity between
PFC and motor cortex. We focused our PSI analysis on the low-
frequency range given that we observed true oscillatory activity
within the low-frequency theta band (Fig. 4c). We employed an
individualizedmeasure of the PSI using participant-specific peak iPLV
frequencies between 2 and 13Hz (computed separately per
prefrontal-motor electrode pair and using the grand average across
all trials) in order to maximize sensitivity and prevent spurious
inference on directional prefrontal-motor connectivity72. Channel-
pairs without a distinct iPLV peak between 2 and 13Hz were
discarded from the analysis. We computed the PSI between
prefrontal-motor electrode pairs on segmented data (zero-padded
by 2 s on every side) using the corresponding peak iPLV frequency
(±3Hz frequency boundary; linearly spaced). PSI values were
z-normalized by means of a permutation distribution that was
created by randomly shuffling the frequencies in one vector and
recomputing the PSI (1000 iterations)72. Note that we used both
context-encoding and non-encoding electrodes for undirected and
directed connectivity estimates to sample the entire network
population.

Population dynamics
Multidimensional distance. The activation state of the full neural
population at time t can be represented as a point in a n-dimensional
coordinate system where n reflects the number of electrodes (state
space). The neural dynamics between the activation state at time t and
time t + tn can then be represented as a trajectory through this n-
dimensional state space10,16,85. We quantified the population dynamics
by means of the HFA as a proxy for local population activity17–19. To
investigate whether neural trajectories in the state space are context-
dependent, we computed the Euclidean distance between pairwise
neural trajectories (e.g., 0% and 75% likelihood of stopping) and then
summed the pairwise distances. We used a sliding window of 50ms
that was shifted by 20ms in time to obtain a time series of multi-
dimensional distances (Supplementary Fig. 6a, b). We smoothed the
time series using a 25ms boxcar window to attenuate trial-by-trial
variability.

Euclidean state transitions. We also quantified transitions within
neural trajectories separately per context condition (Supplementary
Fig. 6a, b). Thus, we computed the Euclidean distance on single trial
trajectories between two adjacent 50ms time windows that were
overlapping for 20ms.

Dimensionality reduction (PCA). We used principal component ana-
lysis (PCA) to identify linearly uncorrelated population activity pat-
terns and construct a low-dimensional manifold that is embedded in
the neural state space spanned by the recorded depth electrodes.We
performed PCA on a two-dimensional data matrix (channel x time,
trial) locked to either the HLL or to the movement onset. All trials
were used to construct the PC-space. The resulting matrix (compo-
nent x time, trial) was then reshaped into a three-dimensional matrix
(trial x component x time) which allowed us to perform single trial
analysis in PC space.

Identification of coding dimensions. While the top PCs reflect a set of
orthogonal dimensions that are optimized to capture maximum var-
iance, they might not always reflect the computationally-relevant
subspaces. We used linear discriminant analysis (LDA) to identify the
dimensions that carry maximal information about neural dynamics
linked to context-integration and action planning. We therefore
trained two linear classifiers on the PC data. The first classifier was
trained to discriminate the type of predictive context, and the second
one was trained to discriminate behavioral performance (RT; split into
terciles; referred to as action). This procedure allowed us to dissociate
neural dynamics linked to the integration of predictive context from
subsequent dynamics linked to the planning ofmotor actions.We split
the data into training and testing sets using tenfold cross-validation.
Because results obtained from cross-validation are stochastic by nat-
ure (due to the random assignment of trials into folds), we repeated
the analysis five times and then averaged across the repetitions. We
applied the LDAs to all PCs in order to identify the dimension that
carries most information about our latent variable of interest (note
that we only considered PCs that cumulatively explained 99% of the
variance anddiscarded the remaining PCs from the decoding analysis).
Decoding traces were then smoothed via application of a 25ms boxcar
window. We applied a threshold at chance level to the resulting
decoding time series (~33% for both context and action) and set values
below chance level to zero. Next, we identified clusters in the decoding
time series (adjacent non-zero values) and summed the classification
accuracies within each cluster. We defined the PC with the maximum
decoding accuracy (largest cluster) as the dimension coding for the
latent variable (context or action; referred to as action or context
coding dimension). We further created a permutation distribution of
classification accuracies by randomly shuffling the trial labels and re-
computing the largest cluster from the resulting decoding time series
50 times. We then contrasted the classification accuracies (cluster
values) of the identified coding dimension with the generated per-
mutation distribution.We only considered the coding dimension to be
valid if the true cluster exceeded the 95th percentile of the permutation
distribution. Importantly, we further constrained the dimensions
coding for context and action to be orthogonal (distinct PCs). This,
however, was empirically the case without adding constraints in 11/14
participants in PFC (p =0.057; Binomial test) and 10/10 participants in
motor cortex (p = 0.002).

Cross-regional patternanalysis. To quantifywhether a discriminative
action-specific pattern present in PFC is equally present in motor
cortex, we trained a linear classifier on every time point in the action
subspace (principal component maximally discriminating action) in
PFC and subsequently applied it on every time point in the action
subspace in motor cortex. Cross-validation was not necessary since
training and testing datasets were independent. Finally, classification
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values were tested against chance level and corrected for multiple
comparison using cluster-based permutation statistics.

Cross-correlation analysis. We computed the cross-correlation of
neural activity between the action subspaces in PFC and motor cortex
in order to examine their temporal relation on a trial-by-trial basis. The
time lagswere then averaged across trial for eachparticipant. Negative
time lags indicate that neural activity within the motor cortex action
subspace temporally lags neural activity within the PFC action sub-
space and vice versa for positive time lags.

Decoding control analyses. We performed additional control ana-
lyses to ensure that our two identified subspaces (context and action)
capture dissociable processes (Supplementary Fig. 10). We tested
whether decoding performance was still above chance level when the
action dimension was used to predict context and vice versa. Non-
significant classification performance would imply that these two
subspaces capture distinct processes.

Determination of oscillatory components in PC space. We obtained
spectral estimates for all PCs using IRASA (see Spectral slope estima-
tion) for linearly spaced frequencies between 2 and 13Hz. We then
identified the PC with the strongest power in this frequency range.

PC-based functional connectivity. We determined the functional
connectivity between PCs using power correlations. We computed the
correlation coefficient between PC single-trials in PFC and motor
cortex from −0.5 s to 0.3 s with respect to movement onset. This
ensured that all trials contained an equal number of data samples,
thereby avoiding potential confounds in the correlation value simply
due to variable reaction times across trials. To compare the power
correlation across conditions, we normalized the correlation coeffi-
cients based on a permutation distribution. We generated the per-
mutation distribution by a random block swapping procedure. This
procedure was repeated 1000 times on a trial-by-trial basis to obtain a
permutation distribution. Correlation coefficients were then
z-transformed using the mean and standard deviation of the permu-
tation distribution.

Statistical analysis
Analysis of variance (ANOVA). Data were aggregated into ROIs
(averaged across electrodes) for statistical testing. We performed a
one-way repeated-measures ANOVA using predictive context as a
within-subject factor to analyze behavior (Fig. 1c), HFA peak latency/
amplitude (Fig. 2a, b), HFA ramping activity (Fig. 3a, b), aperiodic slope
(Fig. 3e, f), inter-peak interval (Fig. 4f) and phase-slope index (Fig. 4h).
Since not every participant was implanted with electrodes in both PFC
and motor cortex, we computed the ANOVA separately for both cor-
tices to estimate the main effect of context onto our latent variable.
Significant ANOVA effects were followed by post-hoc testing (two-
tailed and corrected for multiple comparisons using the Benjamini-
Hochberg procedure86). We computed the interaction effect between
context x region of interest (PFC, motor cortex) using only a subset of
participants that were implanted with electrodes in both regions
(N = 11). We considered participant data where z-scores exceeded 3rd

standard deviation as outliers. In cases where data normality or equal
variances assumptions were violated, non-parametric tests were per-
formed in those cases. Specifically, Friedman tests were applied to
repeatedmeasures (Supplementary Fig. 2c), Kruskal-Wallis test to one-
way, between-region contrasts (Supplementary Fig. 12), Wilcoxon
signed-rank tests to paired samples (Fig. 5d; Supplementary Fig. 2a, b)
and Wilcoxon rank-sum tests to unpaired samples.

Linear mixed effect models. We confirmed the ANOVA results using
linear mixed effect models. Participants were treated as random

effects while context and ROI were treated as fixed effects in our
model. This approach has been used in previous studies involving
human intracranial EEG recordings72,87. Model testing was obtained by
likelihood ratio tests to compare the models with and without an
interaction term (context x ROI). Linear mixed effect models largely
confirmed the ANOVA results and are reported in Supplementary
Table 2.

Non-parametric cluster-based-permutation analysis. We used
non-parametric cluster-based permutation testing88 (as implemented
in Fieldtrip64) to analyze data in the time (Fig. 1d; 2a/b; 3e/f; 5c; Sup-
plementary Fig. 6a−d, g, h), frequency (Fig. 4c, g) or time-frequency
(Fig. 3c, d) domain (Monte Carlo method; 10,000 iterations; maxsum
criterion; two-tailed). Clusters were formed by thresholding a depen-
dent t-test at a critical alpha of 0.05. We generated a permutation
distribution by randomly shuffling trial labels and recomputing
the cluster statistic. The p-value was then obtained by contrasting the
true cluster statistic against the permutation distribution. Clusters
were considered to be significant at p <0.05. We also computed
interaction effects (context x ROI) using cluster-based permutation
testing. We therefore contrasted the difference between two context
conditions (75% and 0% likelihood of stop) obtained per ROI using
dependent t tests (only performed on a subset of participants that
were implanted with electrodes in both regions). Clusters were con-
sidered significant at p <0.05. Note that the cluster-level test statistic
reported throughout the text refers to the sum of the F- or t-values in
the cluster.

Bootstrapping. To control for trial differences across conditions, we
used a bootstrap procedure. We randomly resampled as many trials
from the two context conditions (0% and 25% likelihood) as therewere
trials in the 75% condition. This procedure was repeated 500 times, if
not stated otherwise. The bootstrappedmeanwas then considered the
final value for the conditions with a higher-trial count89.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The conditions of the ethical approval of this study do not permit
public archiving of raw data. The patients have not consented to
making their data publicly available, and the ethical approval condi-
tions from the Regional Committees for Medical and Health Research
Ethics (REC) do not permit the public archiving of study data. Readers
seeking access to the raw data should contact the co-author Tor
Endestad (TE), Department of Psychology, University of Oslo at tor.-
endestad@psykologi.uio.no. Requests must meet the following con-
ditions to obtain the data: A short study planof the proposed research,
a data-sharing agreement, and a formal ethical approval. The study
planwould be evaluated by the project PI at theUniversity ofOslo (TE),
the head of the Department of Neurosurgery at Oslo University Hos-
pital, and the head of research at the Department of Psychology. Next,
the PI (TE) would seek REC permission to share raw data with the
researcher/institution. After approval, the head of research at the
Department of Psychology, the Data Protection Officer at Oslo Uni-
versity Hospital, and the other interested party would sign data
transfer agreements beforedata transferwould takeplace. Sourcedata
are provided with this paper.

Code availability
Freely available software and algorithms used for analysis are listed
where applicable. Analysis code is available at https://github.com/
JanWeber-neuro/Weber_iEEG_NatCommun90 (https://doi.org/10.5281/
zenodo.10350101).
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