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Abstract

Brain-wide communication supporting flexible behavior requires coordination between
sensory and associative regions but how brain networks route sensory information at fast
timescales to guide action remains unclear. Using spiking neural networks and human intracranial
electrophysiology during spatial attention tasks, where participants detected targets at cued
locations, we show that high-frequency activity bursts (HFAb) serve as information-carrying
events, facilitating fast, long-range communications. HFAbs were evoked by sensory cues and

targets, dynamically linked to low-frequency rhythms. Notably, both HFADb responses following
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cues and their decoupling from slow rhythms predicted performance accuracy. HFAbs were
synchronized at the network-level, identifying distinct cue- and target-activated subnetworks.
These subnetworks exhibited a temporal lead-lag organization following target onset, with cue-
activated subnetworks preceding target-activated subnetworks when the cue provided relevant
target information. Computational modeling indicated that HFAbs reflect transitions to coherent
population spiking and are coordinated across networks through distinct mechanisms. Together,
these findings establish HFAbs as neural mechanisms for fast, large-scale communication

supporting attentional performance.

Introduction

Prioritizing information from the external environment to guide ongoing behavior and upcoming
actions requires fast coordination of neural activity in large-scale networks distributed across
distant brain areas 7. This coordination allows information to be routed selectively from sensory

8-12

to higher level executive brain networks . Previous research, particularly in non-human

primates, has shown that selective information routing emerges through dynamically changing
neuronal interactions 3715, Such studies highlight the role of oscillatory dynamics and transient
changes in inter-areal coherence in enabling attentional selection and the flexible reconfiguration
of neural pathways according to task demands. Yet, most these prior investigations have focused
on pairwise interactions between a few brain areas, leaving open the question of how fast neural

dynamics emerge and enable flexible, large-scale information routing across distributed networks.
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Investigating these questions in the human brain is challenging due to spatial or temporal
constraints of the techniques that have been employed. Studies examining network-level
interactions have largely been based on connectivity maps derived from functional magnetic
resonance imaging (fMRI). While fMRI studies provide valuable insights into functional networks,
the temporal resolution cannot capture sub-second routing dynamics in attention tasks 620,
Electroencephalography (EEG) and magnetoencephalography (MEG) offer high temporal
resolution but have limited spatial resolution. 21?2, Lastly, single unit recordings provide both fine
temporal and spatial signals but lack the broad coverage for addressing questions of brain-wide
network communication 3723,

Human intracranial electroencephalography (IEEG), offers a unique opportunity to address these
challenges by providing spatially localized and temporally precise neural signals obtained from
multiple brain regions 2*?°. High-frequency activity detected in iEEG signals correlates with

different cognitive functions, including attention 24!

, and has been reported to index aggregated
spiking activity, dendritic post-synaptic activity, state transitions into spiking regimes, or spike
current leakage to local field potentials (LFPs) 32736, Additionally, high-frequency activities show
long-range phase synchronization with different frequency bands, making them candidates for
studying fast brain-wide communications 27374, While these iEEG studies have advanced our
understanding of neural communication, they have predominantly focused on interactions between
high-frequency activities and low-frequency rhythms (fast-slow interactions), such as cross-

frequency coupling, which may not fully capture the dynamics of fast network interactions

between high-frequency activities themselves (fast-fast interactions) 273741745,


https://doi.org/10.1101/2024.09.11.612548

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

&9

90

91

92

93

94

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.11.612548; this version posted February 3, 2025. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Here, we address this gap by identifying transient high-frequency activity bursts (HFAbs) in
human iEEG data from epilepsy patients performing spatial attention tasks, hypothesizing that
these discrete burst events support fast, large-scale network communications. HFAbs during
sensory cue processing predicted successful detection of upcoming targets. They were locally
coupled to slow rhythms (4-25 Hz), and transiently decoupled during cue and target processing,
with decoupling associated with correct performance. Across the brain, HFAbs interactions were
largely characterized by a zero-lag synchronized structure, constituting functionally specialized
subnetworks with distinct topographical and temporal organization. Specifically, cue-subnetwork
activity preceded target-subnetwork activity following target onset, when sensory cues conveyed
relevant information about the target location. Using computational modeling, we then showed
that HFAbs likely reflect state transitions in neural populations into a coherent spiking activity
state, characterized by bouts of elevated neuronal firing, suggesting HFAbs serve as neural

population-level signatures of information-encoding events.

Results

HF Abs track spatial attention and predict behavioral accuracy

We used human iEEG data recorded from epilepsy patients to quantify high frequency activity
dynamics to investigate fast information routing. We analyzed data from two spatial attention tasks
in which patients were cued either exogenously or endogenously to a spatial location to detect
visual targets (Fig. 1a, Extended Data Fig. 1a). Throughout the paper, the main figures mostly

present results of experiment 1, while the results of experiment 2 are presented as supplementary
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95 information supporting reproducibility and generalization across attention tasks (for brain heatmap

96  plots, we combined both experiments to improve 3D rendering coverage).

97 In experiment 1, patients performed a spatial attention task as described in ?°. Each trial

98  started with the presentation of two vertical or horizontal bar stimuli. Patients were instructed to

99 fixate their gaze at the center of the display. A transient spatial cue appeared at the end of one bar,
100  exogenously cueing an upcoming target location. Following a delay period, a target (i.e.,
101  luminance changes at perceptual threshold) appeared at the cued location or infrequently at equally
102  distant non-cued locations. Patients were required to respond if they detected the target (Fig.
103 1a). In experiment 2, patients were endogenously cued to a hemifield and reported a target if it
104  appeared in the cued hemifield (Extended Data Fig. 1a, see Methods, and for more details see ).
105  First, we used an adaptive method 7 and detected reliable bursts of high frequency activity at each
106  electrode (HFAbs, 65-115 Hz, intermittent high amplitude oscillatory events lasting more than 2.5
107  frequency cycles (> 25 ms), average burst length 36.2 ms; Fig. 1b). The frequency band was
108  selected based on average spectral peaks observed across subjects (91.2 £ 20.9 Hz, n = 12, see
109  Methods for further details). We then calculated the HFAb density (number of HFADb events per
110  unit of time) for each electrode to examine their evoked response during different task epochs.
111 HFAbs showed higher density averaged across all electrodes in response to both cue and target
112 (Fig. 1c, Extended Data Fig. 1b). We measured HFAb responses following cue and target onsets
113 across different trial outcomes (hit, reject, miss, and false alarm). At the population level, HFAbs
114  activated to cue onsets in correct hit and reject trials (Wilcoxon signed-rank test, P < 0.001) and
115  differed significantly from missed and false alarm trials (Kruskal-Wallis test, P = 0.001, Dunn’s
116  test, P = 0.008 and P = 0.01, respectively; Fig. 1d). Target responses were also significantly

117  different in correct hit trials compared to other outcome conditions (Kruskal-Wallis test, P <0.001;
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118  Dunn’s test, P < 0.001; Fig. 1d, Extended Data Fig. 1¢; see also Extended Data Fig. 2a, 1d).
119  Overall, 10.7 + 2% of channels (n = 12) showed significant activation to cues, whereas 33.2 = 3%
120  of channels (n = 12) were responsive to targets (Wilcoxon signed-rank test, P < 0.05). Among
121 channels that responded to cues and/or targets, HFAb responses to targets were negatively
122 correlated with those to the cue (Spearman correlation, P < 0.001, R = -0.36, Fig. 1e), suggesting
123 distinct electrode populations process cues and targets. The topography of burst responses to cues
124 was largely confined to occipital and parietal regions, including areas in extrastriate cortex,
125  intraparietal sulcus (IPS), temporoparietal junction (TPJ), superior parietal lobule (SPL), and
126  inferior parietal lobule (IPL) (Fig. 1f), whereas target responses were more widely distributed
127  including superior, middle, and inferior frontal gyrus, precentral and postcentral gyrus, IPL, SPL,
128  and TPJ (Fig. 1g). This activation profile was evident only for correct trials both for cue- and target
129  responses (Extended Data Fig. 2b). HFAb responses for correct and incorrect trials also showed
130  topographic differences at the single subject level (Fig. 1h, see Extended Data Fig. le, 2¢ for
131  more individual examples; also see Supplementary Table 1 for detailed electrode positions of
132 cue and target responsive channels for individual subjects).

133 We investigated the effect of cue validity (targets at cued vs uncued location) and laterality (visual
134 field ipsilateral versus contralateral to electrodes) on cue and target responses on a trial-by-trial
135  basis, using a Generalized Linear Mixed Effect (GLME) model (see Methods). Overall, there was
136  a main effect of outcome on both cue response (t = 2.8, P = 0.005) and target response (GLME, t
137 =152, P <0.001). Additionally, there was a main effect of cue validity on the target response
138  (Fig. 1i, GLME, t = 4.7, P < 0.001), and a main effect of the cue laterality on the cue response
139  (Fig. 1j, GLME, t=5.1, P <0.001). No significant main effect was observed for laterality on target

140  response (Extended Data Fig. 3a, P =0.13), or validity on cue response (Extended Data Fig. 3B,
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141 P=0.32, See Extended Data Fig. 3¢,d for the effect of laterality and cue validity on cue and target
142 response in experiment 2, as well as Extended Data Fig. 3e,f for the temporal profiles of HFAbs
143 around cue and target onsets in both experiments).

144 Given that HFADb activation to sensory cues was associated with outcome accuracy, we examined
145  if electrode burst density (Cuet electrodes, see Methods) predicted whether participants
146  successfully completed a trial (correct hits and correct rejections). We trained a classifier on the
147  burst density using a sliding window of 350 ms around the cue onset. In Cue+ electrodes and
148  within 500 ms after the cue onset, the burst density predicted better than baseline and chance levels
149  if the trial was executed correctly (binomial test, FDR corrected for dependent samples, P < 0.05,
150  Fig. 1k, Extended Data Fig. 3g). This prediction was consistent across both experiments
151 (Extended Data Fig. 3h) and was not dependent on an individual subject (Extended Data Fig.
152 3i).

153  These findings indicate that HFAbs occur frequently in response to sensory cues and targets and
154  exhibit distinct spatial profiles across the brain. HFAbs predicted performance accuracy following
155  the cue-onset on a trial-by-trial basis. These results support a role for HFAbs in encoding spatially
156  relevant sensory information for subsequent target detection.

157

158  HFADs are coupled to slow rhythms and decouple in response to cues and targets

159  High frequency activity dynamics in brain networks have been shown to be organized by theta
160  rhythms (4-8 Hz) *7. Here, we asked whether HFAbs are coordinated with low-frequency rhythms,
161 and whether these cross-frequency dynamics were associated with task variables. For each
162  electrode, we extracted the LFP around the HFAD centers and measured both the HF Ab-triggered

163  LFP average and the phase locking value (PLV) of HFAbs (peak time) to the low-frequency LFP
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164  dynamics. HFAb-triggered LFP showed consistent evoked potentials with low frequency side-
165 lobes across all subjects (Fig. 2a). Spectral analysis revealed HFAb-triggered spectral peaks (Fig.
166  2b, top) and phase locking peaks (Fig. 2b, bottom) in theta (4-8 Hz), alpha (8-14 Hz), and beta
167 (1525 Hz) frequency bands. Phase locking to local low-frequency field dynamics was evident in
168  most electrodes across all subjects (Fig. 2¢, 9 £ 0.24 Hz, with significant peaks marked by black
169  dots; see Fig. d, Extended Data Fig. 4c for examples of individual electrodes showing phase
170  distributions of HFAbs locked to one or more frequency bands, also see Extended Data Fig. 4a,b
171  for topographic representations of the frequency of phase locking peaks at the group and individual
172 levels).

173  To examine whether sensory cues or target processing affected HFAb phase locking to low-
174  frequency rhythms, we analyzed PLV of HFAD relative to baseline following cue and target onsets.
175  HFAbs showed a transient decrease in their phase locking (decoupling) with the theta/alpha and
176  beta frequency bands after the cue onset and after the target onset (Fig. 2e, Extended Data Fig.
177  4d, randomization test, P < 0.05, FDR corrected for dependent samples). This decoupling was not
178 attributable to event-triggered potentials (Extended Data Fig. 4e, see Methods). Furthermore,
179  changes in HFAb coupling strength were only observed in correct trials, not in incorrect trials (Fig.
180  2f,g, number of bursts were controlled across trial conditions, see Methods, see Extended Data
181  Fig. 4f for individual examples).

182  Next, we examined whether alterations in HFAb coupling to low frequencies were related to HFAb
183  activation profiles in response to cues and targets. We calculated correlations between coupling
184  ratios and burst density for each subject (a coupling ratio measured changes in HFAb coupling to
185 low frequencies (< 25 Hz) after cues or targets relative to the baseline within 1000 ms before the

186  cue and target onset, see Methods). The coupling ratio at target and cue onsets was negatively
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187  correlated with burst density for both cue and target onsets (Fig. 2h,i, Spearman correlation, R = -
188  0.22,P<0.001, and R =-23, P<0.001). GLM models showed a main effect of cue response on the
189  coupling ratio following cue onset (Fig. 2h t = -6.17, P < 0.001), and a main effect of target
190  response on the coupling ratio following target onset (Fig. 2i, t =-5.05, P < 0.001). No significant
191  effect of cue response was found on the coupling ratio following target onset (Extended Data Fig.
192 4h, P =0.15), and target response on the coupling ratio following cue onset (Extended Data Fig.
193  4i,P=0.21).

194  Overall, HFAbs were predominantly coupled to the phase of theta, alpha, and beta rhythms.
195  However, their coupling strength to slower rhythms decreased during perceptual processing and
196  decision making.

197

198  HFADbs were coordinated brain-wide and their network-level synchronization identified
199  functionally specialized subnetworks

200  We found that HFAbs evoked by cue and target demonstrated different topographical distributions,
201  indicating that different brain regions are preferentially engaged during cue and target processing.
202  Additionally, the processing of cues and targets involved the decoupling of HFAbs from low-
203  frequency dynamics. The distinct spatial patterns and reduced low-frequency coupling suggest that
204  separate groups of brain areas (subnetworks) are coordinated via HFAbs for cue versus target
205  processing. Thus, we asked whether the brain-wide network could be organized into distinct
206  subnetworks, each characterized by unique high frequency coordination patterns.

207  We analyzed burst events outside the cue/delay and target/response periods to avoid stimulus-
208  driven coordination effects. We measured the power of high frequency activity (65-175 Hz, HFA,

209  to capture broader spectral contents) in one electrode aligned to the center of HFAb events in
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210  another electrode (HFADb-triggered HFA). HFAb-triggered HFA between electrodes revealed
211  coordination in high frequency bands (Fig. 3a). This coordination was organized through low
212 frequency rhythms, with spectral peaks predominantly in the theta band (4-8 Hz) (Fig. 3b, top).
213 These patterns were consistent across subjects and experiments (Fig. 3b, bottom, Extended Data
214  Fig. 5a,b). HFAb coordination strength (the sharpness of HFAb-triggered HFA) was inversely
215 related to distance between electrodes, with closer sites showing stronger coordination (Fig. 3c,
216  SSe, Spearman correlation between coordination kurtosis and distance between electrodes, R = -
217 0.25,P <0.001).

218  To extract temporal features of the high frequency coordination, we used Principal Component
219  Analysis (PCA) to reduce the dimensionality of HFAb-triggered HFA across electrode pairs. The
220  first component (PC1) showed zero-lag synchronized and near-symmetric distributions of high
221  frequency activity in all subjects, explaining more than 20% of the total variance (Fig. 3d,
222  Extended Data Fig. Sd,e). We projected HFAb coordination onto PC space and used a
223 resampling-based consensus K-means clustering technique to identify robust subnetworks of
224  electrodes based on their scores on the synchronized PC (Extended Data Fig. 5f, see Methods).
225  The clustering algorithm identified the most stable subnetworks (electrodes that were consistently
226  grouped together across multiple resampling runs) for each cluster number (K = 2-8, see Extended
227  Data Fig. 6a, 7a for individual examples). We defined a series of accuracy metrics and determined
228  the optimal number of clusters through a voting poll over those metrices for each subject (the
229  cluster number that outperformed the other clusters in more of these metrics) (Extended Data Fig.
230  6b,c and Extended Data Fig. 7b,c, see Methods). An example clustering result with eight optimal

231  clusters is shown in Fig. 3e (see Extended Data Fig. 8 for additional examples).
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232 Next, we investigated whether these clusters were functionally specialized. All subjects (except
233 one excluded due to insufficient electrodes) showed clusters with distinct cue- and target-evoked
234 activation profiles (Fig. 3f, see Extended Data Fig. 9 for activation profiles for different cluster
235  numbers for the individual shown in Fig. 3e, also see Extended Data Fig. 6d and Extended Data
236  Fig. 7d for additional examples). Clusters activated by cues and targets were labeled as cue- or
237  target-subnetworks, respectively (Wilcoxon signed-rank test, P < 0.05; FDR corrected for
238  dependent sample). Cue-subnetworks were predominantly located in occipital and parietal cortices
239  (e.g., IPS, TPJ, SPL, IPL), while target-subnetworks were more widely distributed across different
240  brain areas including parietal, motor, premotor, and frontal cortices (Fig. 3g, see Supplementary
241  Table 2 for locations of cue and target subnetworks for individual subjects).

242  Lastly, similar to Fig. 1h, we tested whether cue and target-subnetworks could predict trial
243 outcomes. The density of HFAb within 98-374 ms after sensory cues predicted successful
244 detection of upcoming targets (binomial test, P < 0.001, FDR corrected for dependent samples).
245  This prediction was only true for the cue-subnetwork (Fig. 3h) and was not driven by a single
246  subject (see Extended Data Fig. 10 for more details on the classifier results in both experiments).
247  As a control, we re-referenced datasets from common average referencing to local composite
248  referencing (LCR, each electrode was referenced to its nearest neighbors, see Methods), This re-
249  referencing did not alter any of the main results. Together, these findings suggest that large-scale
250  brain networks are coordinated via HFAbs, with their synchronization identifying functionally
251  specialized subnetworks that exhibit distinct temporal dynamics. Furthermore, HFAbs in
252  subnetworks activated by sensory cues were predictive of performance accuracy following cue
253  onsets.

254
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255  HFADs in cue-subnetworks precede target-subnetworks

256  Our observation that HFAb responses in cue-subnetworks predict performance suggests that these
257  subnetworks play a critical role for successful target detection. This finding raises a key question:
258  do cue-subnetworks actively route information to target-subnetworks during target processing? If
259  so, this would imply a directional flow of information between these subnetworks that facilitates
260  attentional performance. To address this question, we examined information flow between cue and
261  target-subnetworks. We only considered subjects whose electrode coverage included both cue- and
262  target-subnetworks (n = 6). We used two different approaches. First, we quantified whether HF Abs
263  exhibited any temporally ordered activity pattern during the target-to-response period between cue
264  and target-subnetworks. Individual subjects showed stronger HFA in target-subnetworks within
265 150 ms after HFADs in cue-subnetworks (Fig. 4a, Extended Data Fig. 11a, Wilcoxon rank-sum
266  test, P < 0.05, the opposite pattern was observed in the other direction). On average, HFAbs in
267  cue-subnetworks led the activity of target-subnetworks and target-subnetworks lagged cue-
268  subnetworks during the target processing period (within 150 ms around the HF Ab-triggered HFA,
269  Wilcoxon rank-sum test, P < 0.001, Fig. 4b). For comparison, no lead-lag patterns were observed
270  between cue- and target-subnetworks during the cue-to-target interval (P = 0.44, n.s., Extended
271  Data Fig. 11b). We quantified the peak of these lead-lag relationships for individual subjects. The
272  HFA in target-subnetworks showed an activity peak following HFAbs in cue-subnetworks, while
273 the peak of HFA in cue-subnetworks preceded HFAbs in target-subnetworks (Fig. 4c, Wilcoxon
274  rank-sum test, P <0.05, 16 £ 7 ms; n = 6). For visualizing the lead/lag pattern in each individual,
275  we averaged the time-lags between cue and target-subnetworks over different cluster numbers. We

276  observed that the HFAbs in the occipital, posterior parietal, and frontal areas led over the
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277  motor/premotor areas during target processing (Fig. 4c, see Extended Data Fig. 11¢ for more
278  examples).

279

280  Next, we used delayed mutual information (DMI) to further quantify how information was
281  directionally coupled between cue and target-subnetworks. DMI can inform about (i) when cue
282  and target-subnetworks shared the most information relative to target onset, and (ii) the specific
283  time-lags at which these two subnetworks showed maximum inter-predictability (see Fig. 4e for
284  an individual example).

285  The DMI between cue and target-subnetworks showed a peak up to 500 ms after target onset (Fig.
286  4f, 275 + 22 ms; n = 6). Time-lag distributions of the maximum DMI between cue and target-
287  subnetworks showed that cue-subnetworks preceded the information in target-subnetworks during
288  the target processing period (Fig. 4f, Wilcoxon signed-rank test, P < 0.001; 67 £ 16 ms, n = 6).
289  This pattern was consistent for individual subjects (Fig. 4e,g, see Extended Data Fig. 11d for
290  more examples) as well as on an average group level (Fig. 4f). The information precession in cue-
291  subnetworks over target-subnetworks was only evident after the target onset. No significant time-
292  lag was observed around the cue onset, indicating this effect is not a reflection of visual hierarchy
293  activation (Extended Data Fig. 11e). This effect was limited to trials with a valid sensory cue,
294  where the target appeared as instructed by the visual cue (Fig. 4g).

295  Overall, these results suggest that brain subnetworks, identified by their network-level HFAb
296  synchronization, exhibit temporal lags during different functional states. Specifically, when the
297  cue provides valid spatial information about the target, HFAbs in cue-subnetworks precede those

298  in target-subnetworks following target onset.

299
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300 Computational modeling of HFAbs through spiking neural networks

301  Wedeveloped a computational model using spiking neural networks % to gain mechanistic insights
302  into HFADs, their dynamic coupling to low-frequency rhythms, and their coordination across brain
303  networks. We simulated two interconnected networks, each consisting of 1000 neurons (80%
304  excitatory, 20% inhibitory; Fig. 5a, Extended Data Fig. 12a, see Methods). Each network was
305  fed by external input currents primarily to the excitatory population.

306 We implemented two recording sites on top of each network measuring electrical field dynamics
307  of postsynaptic and transmembrane potentials from all neurons in that network (Fig. 5a). A non-
308  ohmic filter was used to attenuate higher frequencies in the iEEG signal (Fig. Sb, Extended Data
309  Fig. 12b,c see Methods). Simulated iEEG signals showed low-frequency spectral peaks
310  corresponding to network resonance frequencies and high frequency (65—115 Hz), consistent with
311  experimental data (Fig. 5¢). HFAbs were detected as transient oscillatory events of high amplitude
312 at 65-115Hz (Fig. 5d).

313 To investigate the neural mechanisms underlying these HFAbs, we calculated the spike density for
314  the population of neurons, and the HFAb density from each recording site. Burst density correlated
315  with spike density as compared to bursts with random timings (randomization test, P < 0.05, Fig.
316  5d). This was further quantified by feeding the network different levels of external current
317  coherence (Extended Data Fig. 12¢). Increasing the input coherence to the network showed a
318 linear increase in correlation between the HFAb density and the spike density (Spearman
319  correlation, R = 0.87, P < 0.001, Fig. Se). This observation is consistent with our experimental
320  findings that HFADbs are evoked in response to cues and targets, suggesting that they may reflect
321 large-scale information-carrying events emerging from transiently elevated excitation in local

322  networks of neurons.
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323  Next, we examined HFAbs coordination with slower rhythms. HFAb-triggered LFPs at each
324  recording site showed an evoked responses with low-frequency sidelobes (Fig. 5f), revealing
325  spectral peaks in low frequencies (< 25 Hz) as well as the burst frequency band (Fig. 5g). The
326  cross-spectral correlation was dependent on synaptic time constants, external input strength, neural
327  connectivity strength, and coherent input consistency (Fig. 5g). HFAbs also showed phase
328 locking to different frequencies in the theta, alpha and beta bands (4-25 Hz, Fig. 5h). These results
329  are consistent with the prominent local cross-spectral coupling observed in our experimental data,
330  supporting local neural network mechanisms underlying the coupling of high- and low-frequency
331  dynamics.

332 We also tested for possible network mechanisms underlying the decoupling following cue and
333 target processing. We modeled this scenario through feedforward networks and measured the time-
334  resolved PLV for both networks after feeding one with a brief input pulse (~50% of neurons
335 receiving in-phase inputs; Fig. S5i, Extended Data Fig. 12e,). The external impulse
336  desynchronized both networks, resulting in a transient decoupling of HFADb from low-frequency
337  rhythms as compared to the baseline (Wilcoxon rank-sum test, P < 0.001, Fig. 5i, Extended Data
338  Fig. 12g,h). This desynchronization was accompanied with higher burst rate (Extended Data Fig.
339 12i).

340  Lastly, we examined HFAb coordination across networks. HFAb-triggered HFA showed different
341  rhythmically organized coordination patterns between networks depending on inter-network
342  connectivity and external inputs. Reciprocally connected networks and networks with correlated
343  external inputs showed synchronized high frequency activity (Fig. Sj), while feedforward
344  networks showed a lead-lag pattern within 150 ms following HFAbs (Wilcoxon rank-sum test, P

345 < 0.001, Fig. 5k). In addition to the internally generated rhythmic structure of HFAbs between
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346  networks, external inputs may also contribute to these rhythmic coordination patterns. A rhythmic
347  input to either or both networks entrained its rhythm in the coordination of HFAbs between the
348  two networks (Spearman correlation, R = 0.83, P <0.001, Fig. SL,m).

349  In sum, our modeling results suggest that HF Abs reflect a transition in neural populations into a
350  state of coherent spiking activity. These HFAbs are phase locked to low-frequency rhythms, but
351 transient inputs disrupt this coupling. HFAbs are coordinated across interconnected networks or
352 networks as a function of task structure.

353

354  Discussion

355  Here we present a novel framework for understanding the mechanisms underlying large-scale
356  information routing in brain networks at fast timescales. By characterizing high-frequency
357 activities as discrete burst events (HFAbs), our study identified brain subnetworks with similar
358  coordination patterns, which tracked the encoding and communication of spatially relevant sensory
359  cue information within large-scale brain networks. We found that HFAbs were predominantly
360  synchronized across distributed brain networks in iEEG data, and their network-level
361  synchronization patterns revealed functionally specialized subnetworks for processing cues and
362  targets. Importantly, HFAbs in cue-subnetworks following sensory cues predicted trial-by-trial
363  performance accuracy, and temporally preceded the activity of target-subnetworks during
364  subsequent target processing, highlighting their role in dynamic attentional information routing.
365  Using computational modeling, we then showed that HFAbs can emerge as bouts of elevated
366  excitatory drive to local networks, functioning as fast communication units across the brain. These

367  findings demonstrate that HFAbs are involved in both forming a brain-wide representation of
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368  sensory cues and fast communication of these sensory signals to associative brain networks for
369  detecting upcoming targets and decision-making processes.

370

371  High-frequency activity have been widely observed in human intracranial recordings and is
372  associated with a wide range of cognitive and circuit functions 242>27:3137.3844 Ingtead of
373  continuous measures, we characterize these activities as discrete burst events, supported by
374  computational and animal electrophysiology studies emphasizing their circuit-level origins and

375  their essential roles in long range communications 473

. Through this quantification, we
376  demonstrated that HFAbs can leverage our understanding of fast attentional information routing
377 in large-scale brain networks. Previous studies investigating neural mechanisms of selective
378  attention have predominantly focused on pairwise interactions between brain regions, often
379  measured by coherence of neural signals in lower frequency bands 34, This pairwise perspective
380  on neural communication does not fully capture the complexity of brain-wide network dynamics
381  essential for a detailed and mechanistic view of cognitive functions 2°°°, By utilizing HFAbs, our
382  results offer a large-scale account for understanding information routing and communication at

383  millisecond timescales at the network level, providing new insight into the mechanisms of

384  selective attention.

385 A main finding of our study revealed the synchronized inter-regional temporal structure of network
386  coordination through HFAbs. We found that the most prominent pattern of high frequency
387  dynamics in the brain network was zero-lag amplitude synchronization (Fig. 3d). This long-range
388  synchronization of HFAbs is consistent with previous studies showing phase locking of high

389  frequency dynamics in brain networks 3840, Zero-lag synchronization patterns in cortical networks
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390  are thought to enhance large-scale information processing and facilitate representational states of
391  sensory information in the brain 2°°8, While our results cannot directly identify the origins of

392  these synchronized interactions, two different scenarios might be involved. One potential

59-63

393  synchronizing mechanism may rely on subcortical areas , particularly higher-order thalamic

394 nuclei %7 Our modeling suggests that correlated inputs to distinct neural networks could drive
395  long-range synchronization (Fig. S5l). Such correlated inputs, if originating from subcortical
396  structures such as higher-order thalamic nuclei, can facilitate the long-range synchronizations

5968 Another potential mechanism would

397  between separate or weakly connected cortical areas
398  depend on direct long-range intracortical interactions. We found that cortical synchronization was
399  largely between areas with similar activation profiles during cognitive functions and spatially
400  neighboring regions (Fig. 3, Extended Data Fig. 8). Additionally, our modeling suggested that
401  reciprocally connected networks with similar connectivity strength can result in synchronized
402  dynamics (Fig. 5j). This zero-lag synchronization induced by reciprocal connections has been
403  observed experimentally in long-range neuronal interactions 7 as well as in network modeling
404 9. Recent findings in mice support this idea reporting that deep layer 6b neurons, which are
405  recipient of long-range cortical projection neurons 7°, are involved in brain state shifting into a
406  spiking state, and strong high frequency activity (80—-140 Hz); in brain networks 3¢, While our
407  modeling and empirical results can support either of these mechanisms, future studies are needed

408 to explore the extent to which cortico-cortical versus thalamocortical interactions drive and

409 influence this high frequency synchronization in large-scale cortical networks.

410  We further showed that network-level baseline synchronization of high-frequency dynamics,
411  outside of task events, can reliably identify distinct functional brain subnetworks through a

412 resampling-based consensus clustering framework. While the baseline state did not contain cue or
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413  target processing periods, it could identify subnetworks with unique activation patterns in response
414  to those behavioral events (Fig. 3). It is notable that this approach fundamentally diverges from
415 the most common ones taken to delineate brain network organizations or network-level
416  communications such as conventional fMRI that is primarily focused on low-frequency BOLD
417  signal fluctuations 71773, By leveraging high-frequency dynamics, we show a novel link between
418  Dbaseline neural activity and task-induced network activation patterns, suggesting that intrinsic
419  network fluctuations can affect behavioral responses even at millisecond timescales. Identifying
420  these subnetworks at fast time scales is critical to capture rapid state transitions in brain networks,
421  which may underlie the temporal organization necessary for adaptive information routing during
422  behaviorally relevant events 74, This capacity is reflected in our findings, which reveal that brain
423 subnetworks, identified by their fast, network-level synchronization, exhibit lead-lag interactions
424  during behavioral events. Specifically, cue-subnetworks led target-subnetworks during target
425  presentation when spatial cues provided relevant information about target locations (Fig. 4). These
426  observations uniquely bridge the gap between studies focusing on local and cross-regional
427  mechanisms of fast information routing 7444850526475 an( those examining communication in

428  large-scale brain networks beyond pairwise interactions 27677,

429

430  Another key observation in this study is the coupling dynamics of HFAbs and local low-frequency
431  activities. We found that the phase-locking of HFAbs to low-frequency dynamics can occur with
432 random external input patterns in the modeling, and this is a widespread phenomenon in iEEG
433 signals, consistent with previous studies *”-7%7°, However, our findings further suggest that HFAbs
434  transiently decouple from the phase of local low-frequency activities in response to both cue and

435  target events (Fig. 2). Our modeling supports this observation, showing that transient inputs,
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436  whether directly fed into a network (e.g., a visually evoked response from subcortical structures)
437  or indirectly through a feedforward structure, can interrupt the default state coupling of HFAbs to
438  low frequencies (Fig. 5i). Network interferences, characterized by brief and strong responses, can
439  temporarily induce local -cross-frequency decoupling possibly by increasing response
440  heterogeneity and disrupting the timing of inhibitory and excitatory neuron activation 8%8!, This
441  desynchronization can facilitate cognitive processes like selective attention, perception, and
442  memory retrieval by enhancing new information and suppressing internally regulated activity
443 states 8982786 We observed that HFAb decoupling from low-frequency dynamics, accompanied by
444  increased HFAb density following cue and target events, resembling a desynchronized up-state,
445  which is a brain state with activated but desynchronized neural activity across cortical networks.
446  Importantly, this decoupling was more pronounced in correct trials during both cue and target
447  processing, further suggesting a role of desynchronization in facilitating accurate cognitive
448  performance (Fig. 2g).

449

450 In summary, our study provides a novel approach to understanding large-scale cortical
451  communications, showing that HFAbs act as fast communication units in the brain, supporting
452  long-range information processing, facilitating attentional information routing, and identifying
453  distinct and functionally specialized brain subnetworks.

454
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479  Fig. 1. HFAD activation profile predicts behavioral outcome on a trial-by-trial basis. a, A
480  schematic of experiment 1 task outline. Two bars appear on the screen. A transient cue informs
481  the subject of the most probable location of an upcoming target. A target at perceptual threshold
482  contrast change appears at a cued or infrequently at an equidistant uncued location after a variable
483  interval. Subjects report the change detection. b, An example trial of detected transient high-
484  frequency bursts (HFAbs, shown in red) around the cue onset. The brain shows localization of
485  electrodes across all subjects. ¢, Normalized HFADb density profiles for individual subjects and
486  averaged across participants aligned to the cue (left) and target onset (right). d, HFAb responses
487  to cues (left) and targets (right) grouped by trial outcome. (Each line represents one subject, with
488  thick lines showing group average, horizontal lines showing significant differences between
489  groups, and asterisks denoting non-zero responses). e, Correlation of HFAD responses evoked by
490  cue and target onset for channels with significant activation to either or both cue and target (each
491  point represents one channel, each line represents regression for one subject, the orange line shows
492  regression across all channels). (e, g) Group average heatmap 3D rendering of HFAD responses to
493  (a) cues and (g) targets for correct trials. h, An individual subject example of HFAb responses to
494  cue and target within 500 ms after the cue and target onset, respectively, for correct and incorrect
495  trials (black circles indicate electrode locations). i, HFAb responses to targets for valid and invalid
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cue conditions. j, HFADb responses to cues ipsi- and contra-lateral to electrodes. k, Classifier
accuracy in predicting trial outcome based on HFAb density around the cue onset for cue
responsive electrodes and cue unresponsive electrodes (error bars indicate standard error of the
mean across all realizations and cross validations). Red lines indicate significantly higher
prediction accuracy than baseline and chance levels (P < 0.05, binomial test, FDR corrected for
dependent samples).
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506 Fig. 2. HFAbs dynamically phase lock to low-frequency LFPs and decouple transiently after
507 cue and target onsets. a, HFAb-triggered LFP averages across all electrodes for individual
508  subjects (gray lines) and across all individuals (purple line). b, HFAb-triggered LFP spectrum (top)
509 and phase locking values (PLV, bottom) across all electrodes (each line represents one subject). c.
510  PLVs for individual electrodes (each row). Black dots indicate the maximum peak of PLV for each
511  electrode, and white dashed lines delineate results from individual subjects. d, Example of phase-
512 frequency distribution of HFAbs for an electrode with theta phase locking (top) and beta phase
513 locking (bottom). e, Time-resolved PLV analysis averaged across all subjects (top) aligned to cue
514  (left) and target (right) onsets. The proportion of time points where phase locking dropped
515  significantly below the baseline averaged across all electrodes (bottom, P < 0.05, random
516  permutation test; thick lines indicate segments significantly different from the chance level, P <
517  0.05, binomial test, FDR corrected for dependent samples; see Methods). f, An individual brain
518  heatmap example showing coupling ratio between HFAb and low frequency (4-25 Hz) LFP after
519  cue (top) and target onsets (bottom) for correct and incorrect trials. g, Similar to f, proportion of
520  time points with significant decoupling from low frequency LFPs (4-25 Hz) after cue and target
521  onsets for correct and incorrect trials. (h, i) Regression plots showing correlation of coupling ratios
522  following cue onset with cue responses (green, h), and coupling ratios following target onset with
523  target responses (purple, i). Scatter points denote electrodes, lines indicate individual subjects with
524  orange line showing the regression across all subjects.
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526
527  Fig. 3. Long-range coordination of HFADbs identifies functionally specialized subnetworks. a,

528 High frequency coordination was measured by calculating HFAb-triggered HFA between
529  electrode pairs for HF Abs outside of cue/delay and target/response periods (top shows an electrode
530  pair example, and bottom shows HFAb-triggered HFA averaged over all electrode pairs for
531 individual subjects). b, Normalized PSD over HFAb-triggered HFA for all electrodes (each
532 electrode relative to the rest of the network; white dashed lines are the border between subjects).
533 ¢, HFAb-triggered HFA for electrodes distanced in four quantiles (25, 50, 75, and 100 mm), from
534  green (short) to red (long). d, The first two principal components of HFAb-triggered HFA for
535 individual subjects. e, A pair-wise grouping probability matrix for an individual example with an
536  optimal number of eight clusters (top, white lines indicate cluster borders, clusters are ordered
537  from top to bottom by their stability, see Methods). Cluster topography for the K = 8 number of
538  clusters for an individual subject shown in (bottom). f, Normalized burst densities around cue and
539  target onsets averaged across electrodes within each cluster for the same subject as in e. (shaded
540  error bars indicate the standard error of the mean; significant activations are indicated by thicker
541  lines, P < 0.05, Wilcoxon test). g, Topographical organization of electrodes in clusters that show
542  significant activation in response to cues and targets across all subjects (i.e., “cue-subnetworks”
543  and “target-subnetworks”). h, Classifier accuracy based on HFAb density around cue onset for
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544  cue-subnetworks (purple) and target-subnetworks (green). Error bars indicate the standard error of
545  the mean across all realizations and cross-validations. Red lines indicate significantly higher
546  prediction accuracy than the baseline and chance level (binomial test, P < 0.05, FDR corrected for
547  dependent samples).

548
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549
550  Fig. 4. Cue-subnetworks precede target-subnetworks during target processing. a, Example of

551  HFAb-triggered HFA for HFAbs during target processing, when HFA is measured in target-
552 subnetworks relative to HFAbs in cue-subnetworks (purple) vs HFA is measured in cue-
553  subnetworks relative to HFAbs in target-subnetworks (green). Red and blue shades denote
554  significant difference between directions denoting a cue lead and a target lag respectively
555  (Wilcoxon rank-sum test, P < 0.05) b, Group-level average of HFAb-triggered HFA, similar to a.
556 ¢, HFAb-triggered HFA median peak for electrode pairs corresponding to the same groups as in b
557  (the Wilcoxon test was used to determine whether there was a difference in the distribution of peak
558  positions between the two directions. Each row indicates the results for one individual. Error bars
559  represent the standard error of the mean). d, An individual visualization example of the lead-lag
560  patterns between electrodes in cue and target-subnetworks (across all cluster numbers) during the
561  target processing period. The lead and lag temporal patterns are shown in a color gradient from
562  red to blue. e, Heatmaps of normalized DMI values averaged across all members of the cue and
563  target-subnetworks. The left panel shows DMI when the target-subnetwork is fixed, and the cue-
564  subnetwork is shifted. The right panel shows DMI when the cue-subnetwork is fixed, and the
565  target-subnetwork is shifted. The white line indicates the time-lag distribution of DMI peaks across
566  electrode pairs. The cross signs indicate the median of DMI peak time-lags + standard error. f,
567  Group average of DMI across all individuals, similar to e. g, Comparisons of DMI peak
568  distributions between the two opposite directions (green for shifting the cue-subnetwork and
569  purple for shifting the target-subnetwork) for trials with valid (right) and invalid cues (left). Each
570  individual is shown by a cross sign, which refers to the median + standard error for DMI peaks
571  across all electrode pairs between the two subnetworks.
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Fig. 5. Computational modeling of iEEG signals. a, Two interconnected cubic networks of point
source spiking neurons were simulated (bottom panels show raster plots for neurons in each
network). A recording disk was implemented on top of each network to measure neural activity.
b, Example of simulated iEEG signals. ¢, The power spectral density (PSD) of iEEG signals. d, A
single trial example of spike density and raster (top) detected HFAbs (middle, HFAbs are shown
in red), and HFAb density (bottom). e, HFAb density and spike density show linearly increasing
correlations as input coherence increases. f, HFAb-triggered LFP. g, Cycle-balanced power
spectrum triggered around HF Abs when the input to the network has high (red) or low coherence
(cyan). h, HFAb phase distribution at different frequencies. i, The PLV of HFAbs to low
frequencies after a transient input (thick black line) is fed to the network. (j, k) HFAb-triggered
HFA between (j) reciprocally connected and (k) directional feedforward networks (connections
from N1 to N2, see Extended Data Fig. 12e for further details) with varying connectivity strengths
(purple and green traces show HFAb-triggered HFA when bursts are extracted from N1 and N2,
respectively). 1, HFAb-triggered HFA between disconnected networks with shared rhythmic
inputs. m, PSD over the HFAb-triggered HFA for rhythmic inputs of varying frequencies.
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857 Methods

858 Experimental model and subject details

859  Participants. Intracranial recordings were obtained from 12 epilepsy patients who underwent pre-
860  surgical monitoring with implanted grid electrodes. Study 1 included seven patients (35.99 + 12.42
861  years; mean + SD; 5 females; see Helfrich et al., 2018 for further details). Patients were recruited
862  from the University of California, Irvine Medical Center, USA (n = 6) and California Pacific
863  Medical Center (CPMC), San Francisco, USA (n = 1). Study 2 included 5 patients (30.20 = 1186
864  years; mean = SD; 1 female, 3 patients were excluded from the original study due to their limited
865  electrode coverages; see Szczepanski et al., 2014 for further details) from Johns Hopkins Hospital
866  in Baltimore, MD, USA (N = 1) and Stanford Hospital, CA, USA (N = 4). The electrode placement
867  was entirely guided by clinical considerations, and all patients provided written informed consent
868  to participate in the study. All procedures were approved by the Institutional Review Board at each
869  site, as well as the Committee for Protection of Human Subjects at the University of California,
870  Berkeley (Protocol number: 2010-02-783) and were in accordance with the Declaration of
871  Helsinki.

872

873 METHOD DETAILS

874  Experimental design and procedure

875  Behavioral tasks. Participants performed a spatial attention task in each experiment. In
876  experiment 1, participants performed a variant of the Egly-Driver task (Egly et al., 1994;
877  Fiebelkorn et al., 2013; see Helfrich et al., 2018 for further details) Behavioral data were collected
878  with Presentation Software (Neurobehavioral Systems). Subjects were seated approximately 60

879  cm from the laptop screen. Subjects started each trial by pressing a left mouse button. On each
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880 trial, after appearance of a fixation cross, two bars appeared vertically or horizontally on the screen,
881  followed by a brief spatial cue (100 ms), presented after 400-800 ms at one of the four corners of
882  the bar stimuli. The spatial cue indicated the location where the target was most likely to appear
883  (72% cue validity) and occurred pseudo-randomly in any of the four quadrants. A variable cue-to-
884  target interval (500 — 1700 ms) was introduced after the cue during which participants sustained
885  spatial attention at the cued location. Targets could randomly appear at any point during the cue-
886  target interval,and participants released the mouse button to report a detected target. Infrequent
887  catch trials (10%) during which no actual target appeared were used to track the false alarm rate.
888  Auditory feedback indicated whether the trial was performed correctly. The target luminance was
889  adjusted every 15 trials, if necessary, by increasing/decreasing the RGB value, in order to achieve
890  an overall approximate accuracy of 80%. The experimenter monitored continuous fixation. All
891  participants responded by using the hand contralateral to the implanted grid, except for participant
892 S5 who had bilateral grids and responded by using the left hand. Participants performed up to 5
893  blocks of 60 trials each (190 trials + 67; mean + SD).

894  Experiment 2 (Extended Data Fig. 1) used EPrime software (Psychology Software Tools) to
895  control stimulus presentation (see Szczepanski et al., 2014 for more details). Subjects were seated
896  approximately 60 cm away from the laptop screen. Each trial began with red circles (distractors)
897  dynamically switching on and off on a dark background. A spatial cue guided participants to the
898  right or left hemifield, and the cue remained on the screen throughout the trial. Subjects were
899  instructed to maintain fixation and only covertly shift their attention to the cued hemifield. Through
900 the trial, the experimenter monitored eye movements and ensured central fixation. After a variable
901  cue-target interval (1000 — 2000 ms), a blue square target appeared on the screen (~62/38% on the

902  cued/uncued hemifields). The target remained on the screen until the subject responded or the trial
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903  ended (2000 ms timed out). Subjects were asked to report a target seen in a cued hemifield by
904  pressing a a button while withholding a response if the target was seen in a non-cued hemifield.
905  Targets appeared randomly during the cue-target interval. Three out of five subjects responded
906  with the hand ipsilateral to the grid. Each participant completed six blocks (each 42 trials). The
907  experimenter monitored eye movements and ensured central fixation throughout both experiments.
908

909 ECoG data acquisition. Electrophysiological and peripheral (photodiode) data were collected
910  using a Nihon Kohden recording system at UC Irvine, CPMC and Children’s Hospital (128/256
911  channel, 1000/5000 Hz sampling rate), a Tucker Davis Technologies recording system at Stanford
912 (128 channel, 3052 Hz sampling rate), or a Natus Medical Stellate Harmonie recording system at
913  Johns Hopkins (128 channel, 1000 Hz sampling rate).

914

915  Electrode localization. In experiment 1, the electrodes were localized by transforming both the
916  pre-implant MRI and the post-implant computed tomography CT into Talairach space. For all
917  subjects, MNI coordinates were also calculated for each electrode location, which was used for
918  group-level visualizations (see Helfrich et al., 2018).In experiment 2, post-implant CT was aligned
919  to the pre-implant MRI and all were transformed into MNI space across subjects (see Szczepanski
920  etal., 2014). Strip or grid electrodes were implanted with 1 cm spacing. One participant (S5) had
921 an additional 8 contact depth probe inserted into the occipital cortex. Electrode positions were
922  primarily determined using the VTPM atlas (Wang et al., 2015). For electrodes without an assigned
923  label, the process was repeated using the AFNI atlas (Lancaster et al., 1997). The assigned
924 positions were manually verified and adjusted based on electrode reconstructions visualized in

925  native Talairach space. Electrodes near the Temporoparietal Junction (TPJ) were manually


https://doi.org/10.1101/2024.09.11.612548

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.11.612548; this version posted February 3, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

926  localized, as TPJ definitions were not available in either the VTPM or AFNI atlases (see Helfrich
927  etal., 2018 for more details).

928

929 iEEG Data. Preprocessing: All intracranial EEG channels were manually examined by a
930 neurologist for epileptiform activity and artifacts. Affected channels and epochs were excluded.
931 The raw data was preprocessed using the EEGLAB and Fieldtrip toolbox in MATLAB.
932  Preprocessing included notch filtering at 60 Hz and all harmonics, as well as referencing the data
933  to the common mean of electrodes as previously described #%°. Then, the data was time locked to
934  individual trials. Trials were 8 seconds long, -3 to +5 seconds around cue onsets in the experiment
935 1 and -2 to +6 seconds around cue onsets in the experiment 2. As a control, we re-referenced the
936  datasets from common average referencing to local composite referencing (LCR), a spatial
937  Laplacian estimate relative to nearest neighbors. This re-referencing did not alter the main results.
938

939  Analysis of high frequency activity bursts (HFAbs)

940  HFAD detection and density analysis. We adopted an adaptive burst detection approach, similar
941  to previous work 7, to identify high-frequency oscillatory bursts (65-115 Hz) at each electrode.
942  The frequency band was selected based on spectral peaks observed across all individuals (87 Hz
943  trials = 14; mean = SD) and in the modeling. Similar analyses were conducted for a broader band
944 (65-175 Hz) and the low gamma band (35-65 Hz). While the broader band produced similar results,
945  the low gamma band yielded inconsistent responses and noisy clustering. We selected the
946  frequency band based on spectral peaks across individuals and in the modeling. First, we applied

947  a zero-phase Butterworth bandpass filter to the padded signal and then calculated the analytic
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948  signal x(t) using the Hilbert transform. We extracted the instantaneous amplitude as the real part
949  of the analytic signal z(t) following eq. 1:

950  z(t) = x(t) + iy(t) = a(t)e?® eq. 1

951  where y(t) is the Hilbert transform of x(t):

952  y(t) = %fw)@ dr. eq. 2

-0 t-T

953  The instantaneous energy % IE(t) of the signal is calculated from its Hilbert transform:

954 IE() = [V H*(t,w) dw eq. 3
955  w(t) = % eq. 4

956  where w(t) corresponds to instantaneous angular velocity. If the frequency band is narrow and if
957  the instantaneous frequency (eq. 4) is small enough, it can be approximated by squared a(t), which
958 is the instantaneous amplitude. The marginal mean energy of the signal then can be estimated as

959 eq.5:

960 TE = — [ a(t)? dt eq. 5

961  where T represents the duration of the signal. For skewed energy distributions in empirical data,
962  we determined a threshold by setting it to 3.3 times the standard deviation of a half-normal

963  distribution based on the median energy, plus the mean energy.

964  To qualify as a burst, the energy level had to exceed this threshold for at least 1.5 cycles of the

965  upper bond frequency, and the instantaneous amplitude needed to surpass V2 times the RMS of
966  the peaks. Burst boundaries were marked by the closest points to a burst peak where either the
967 instantaneous energy fell below the signal's mean energy or the deviation in instantaneous
968  frequency exceeded the mean change plus two standard deviations. This was to exclude multi-

969  component or noisy events. Bursts were considered significant if their duration was at least 2.5
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970  times the upper bond frequency cycle and exceeded the average span of adjacent local minima of
971  the energy function. Finally, when bursts were too close (less than five frequency cycles apart),
972 only the burst with the higher energy peak was kept.

973  To estimate how HFAb events are distributed over time, we calculate the HFAb density by
974  convolving a vector of burst events with a gaussian window of 500 ms and a standard deviation of
975  100ms. After estimating the HFAb density for each channel and trial, we investigated whether the
976  cue and target stimuli affected burst density. For each electrode, the average burst density aligned
977  to the cue and target onsets were calculated separately. Following that, we normalized timeseries
978  to the baseline (1000 ms before each event onset) by subtracting the mean and dividing it by the
979  standard deviation (see Fig. 1¢). This is a similar approach to the peri-stimulus time histogram
980  (PSTH) for spike trains *°.

981

982  Visualization of individual and group average responses on 3D brains. To visualize how HFAb
983  responses were topographically organized in the 3D brains, we plotted both individual (Extended
984  Data Fig. le, 2¢) and group responses to cue (Fig. 1f) and target onset (Fig. 1g). Each electrode
985  value was calculated as the mean of Z-scores within 500 ms of cue and target onset. For individual
986  subjects, the plotted value for each electrode was linearly attenuated with distance from the
987  electrode and for a sphere of 1 cm radius (illustrating correct versus incorrect trials separately, Fig.
988  1h, Extended Data Fig. 1e,2¢). The group average plot (Fig. 1f,g, Extended Data Fig. 2b) was
989  calculated using electrode locations from both experiments to better cover the entire brain. The
990  MNI coordinates of electrodes were used for rendering on a template brain (subject S4 from
991  experiment 1 and subject S12 from experiment 2 were excluded due to suboptimal wrapping of

992  Tal to MNI spaces). We set the value of all mesh surfaces to zero for each subject. Then, similar
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993  to the plotting for individual data, we calculated the value for mesh surfaces by using linear

994  attenuation (the sphere radius was set to 2.5 cm in order to achieve a smoother visualization of the

995  whole brain). As a last step, we averaged the surface values across all subjects to find consistent

996  patterns of activations for the cue and target. We plotted the data onto 3D brain for correct and

997  incorrect trials separately.

998

999  Statistical analysis of HFADb responses to cues and targets events. After calculating the burst
1000  density and finding PSTH for each channel, we examined whether the HFAb responses evoked by
1001  cues (within a window of 500 ms after cue onset) and targets (750 ms after target) were
1002  significantly different from baseline. This analysis was done at the network level. The average
1003 responses of electrodes within the defined time window were determined using the normalized
1004  HFAD density for each channel. Wilcoxon signed-rank tests were then used to examine if there
1005  was a non-zero response at the network level to cue and target onsets. Also, we performed a linear
1006  regression analysis of the cue and target responses in electrodes under the null hypothesis that the
1007  cue and target responses are independent (Fig. 1e).
1008  To test whether cue and target responses were different when grouped by trial outcomes, we used
1009  the Kruskial Wallis test under the null hypothesis that cue, and target responses do not differ by
1010  outcome condition. For pairwise comparisons between different groups, we used Dunn's test °!
1011 with Tukey-Kramer multiple comparison correction (Fig. 1d).
1012 We also tested whether and when burst density profiles in correct trials were different compared
1013 with other outcome conditions. We used the mean of HFAb-density in correct trials as a test
1014  statistic. We then randomly selected 1000 samples by permuting trial outcome labels and for each

1015  randomly selected sample computed the 95% confidence intervals (CIs) around the mean. For
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1016  multiple comparison correction, we repeated the random permutation 1000 times and constructed
1017 95% CIs on all 1000 CIs of randomly selected samples under the null hypothesis that the HFAb-
1018  density for correct trials was not different from randomly labeled trials at any timepoint relative to
1019  cue and target onsets separately (Extended Data Fig. 2a).

1020

1021  Identifying cue-responsive electrodes. We identified Cue+/- electrodes by determining increased
1022 HFAD rate or density profile within window of 500 ms after cue onsets. For each electrode, we
1023  compared the average HFAD density following cue onset with that at baseline using Wilcoxon
1024  rank-sum test. Electrodes with significant increases in HFAb rate after cue onset were labeled as
1025  Cue+ electrodes, while the remaining electrodes were labeled as Cue- electrodes, which was
1026  subsequently used in the classification (Fig. 1k).

1027

1028  Generalized Linear Mixed Effect Models. We used generalized linear mixed effects (GLMEs)
1029  models to examine the effects of each task variable on HFAD response to cue and target events.
1030  Three main predictors were used for the independent variables: Laterality (if the cue was either
1031  ipsilateral or contralateral to the electrode) with two levels (Ipsi and Contra), Validity (if the target
1032 appeared at the cued location) with two levels (valid and invalid), and trial outcome with four
1033 levels (Correct hit, False alarm, Correct Rejection, Miss). Since not all subjects had trials for all
1034  four outcome conditions, an alternative analysis also considered outcome as a binary variable
1035  (Correct and Incorrect) with a logit link function. The random effect was determined by
1036  considering groups as subject and channel labels. The response variable was either the mean burst

1037  density in response to the target or the cue. The GLME is then formalized as shown in eq. 6:
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1038 Responsecye targer = Laterality + Validity + Outcome + (1|Subject) + (1|Channel) +

1039 b+ ¢ eq. 6

1040

1041  Training classifiers for predicting trial outcome based on HFAb density around cue onset. A
1042 time-resolved classification approach was used to determine how accurately HFAb responses
1043 evoked by sensory cues could predict trial outcomes. First, we selected electrodes that showed a
1044  significant HFADb responses to the cue presentation (Cue+ electrodes, see above), for which we
1045  then calculated the average HFAD density for Cue+ electrodes for each trial and subject. Next, we
1046  tested whether the average burst density in sliding windows around the cue onset could predict the
1047  outcome at the trial level with a sliding window of 350 ms and a step of 25 ms. We used binary
1048  Support Vector Machine (SVM) with one-to-one comparisons of HFADb density in sliding windows
1049  with five folds of cross-validation. For training each SVM, a vector of the HFAb density in each
1050  sliding window was used along with a vector of outcome labels ("Correct” = 1, "Incorrect” = 0).
1051  The classifier used a Gaussian radial basis function kernel with a scaling factor of one. We assured
1052 that the number of correct and incorrect trials used in the training was identical, to prevent sample
1053  size biases. As the number of incorrect trials were lower than the number of correct trials, we
1054  randomly sampled correct trials with a sampling size equal to the number of incorrect trials in each
1055  fold. For each sliding window, we trained the classifier 1000 times and calculated the average
1056  accuracy and confusion matrix across all iterations and folds. (Fig. 1k).

1057  To determine whether HFAb density after cue onset could more accurately predict trial outcome
1058  than chance and baseline, we used a binomial test on the accuracy of each window against the
1059  maximum value of baseline and chance-level prediction accuracy. After obtaining a p-value for

1060  each binomial test, we corrected the p-values using false discovery rate (FDR) for dependent
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1061  samples with a 0.05 alpha level * to correct for multiple comparisons error rate across all windows.
1062  We performed this procedure separately for each experiment (Fig. 1k, Extended Data Fig. 3h).
1063  In our main analysis, we pooled data across all subjects in each experiment due to the low number
1064  of'trials per subject. However, to ensure that the results were not solely dependent on one subject,
1065  we ran a control analysis in which one subject was left out each time and the classifier was trained
1066  and tested. Controlled analyses in both experiments demonstrated that our observation was not
1067  based solely on one subject (Extended Data Fig. 3i). We used a similar approach for training the
1068  classifier on cue and target-subnetworks to train the classifier on cue and target-subnetworks, as
1069  further detailed in the 'Identifying synchronous subnetworks' section.

1070

1071 HFADb-triggered LFP analysis

1072 We asked whether HFAbs on average were systematically related to any evoked potentials at lower
1073  frequencies. To address this question, we extracted a segment of 2 seconds around each burst (1
1074  second before and after) and calculated the average HF Ab-triggered potential for each electrode.
1075  The HFAb-triggered LFP was then averaged across all electrodes in each subject (Fig. 2a). A
1076  similar analysis was performed on the simulation results, but with a duration window of one second
1077  around HFAbs due to shorter trial lengths in simulations (Fig. 5f).

1078

1079  HFAb-triggered spectrum and Phase Locking Value (PLV) analysis. To understand the
1080  spectral dynamics of HFAbs and local population activities, we performed HFAb-triggered
1081  spectrum analyses using HFAD centers as discrete points. We estimated the PLV of points (burst
1082  centers) to their local field activity dynamics (both in the modeling and electrophysiological data)

1083  in order to investigate the phase synchronization of HFAbs within their local networks. We
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1084  calculated the HFAb-triggered spectrum using an adaptive window around HFAbs. We extracted
1085 a window centered around each selected point (HFADb center), which covered 2.5 cycles of the
1086  frequency of interest before and after the selected point. This window was then multiplied by a
1087  Hanning window. We estimated the power spectrum for each window using the Fast Fourier
1088  Transform (FFT) for frequencies ranging from 1 Hz to 100 Hz. To account for trial-wise power
1089  wvariations, triggered spectrum estimates were normalized by dividing by total power. We averaged
1090  spectrum estimates across all points and trials to calculate the final HF Ab-triggered spectrum.
1091  Following the analysis of the HFAb-triggered spectrum, a PLV calculation was performed to
1092  quantify the level of phase consistency of the HFAbs across trials for the frequencies of interest.
1093  The phase angle for each frequency was calculated based on the FFT results from the HFAb-
1094  triggered spectrum analysis. The PLV of HF Abs at each frequency was then calculated as the mean
1095  resultant in eq. 7:

1096 PLV(f) = |~ 3N, e'trn eq. 7

1097 where N is the total number of HFAbs and ¢, denotes the phase angle for the n™ HFAb at
1098  frequency f. The statistical significance of the observed PLV values was determined using a non-
1099  parametric permutation test with 1000 permutations and the Rayleigh test corrected for multiple
1100  comparisons, at 0.05. Peaks that passed both tests and had a prominence of 25% higher than the
1101  PLV range were considered significant (shown in black dots in Fig. 2¢).

1102

1103 Time-resolved PLV analysis. To quantify the temporal dynamics of the phase synchronization of
1104  HFAbs with the low frequency LFP during cue and target processing, we extracted the phase of
1105  HFADs at each frequency as explained above. Then, we used a sliding window of 500 ms with a

1106  step of 25 ms between -1500 and 1500 ms around the cue and target onsets separately. PLV was
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1107  calculated for each sliding window and across all trials (different types of trials were analyzed
1108  separately, e.g., correct trials and incorrect trials). We set a minimum number of data points of 50
1109  bursts for the analysis (to achieve reliable statistics on circular data, Fisher, 1995). We measured
1110  the PLV for 1000 samples of 25 HFAbs drawn randomly from a population of HFAbs in each time
1111  bin to control for the number of bursts. The PLV for each time bin was calculated as the average
1112 PLV across all randomly drawn samples. The average PLV value for each subject and for all
1113 subjects in each experiment was calculated separately.

1114 To test whether HFAb phase synchronization differed during cue and target processing, we used a
1115  channel-specific randomization test. For each recording channel and time bin, 1000 subsamples of
1116  HFAbs were randomly selected from the baseline period (within 1 second before each event). For
1117  each channel, each time bin, and each frequency, we calculated the upper and lower bond Cls
1118  (2.5% most extreme PLVs). For multiple comparison correction, we repeated this procedure 1000
1119  time and found the most extreme 2.5% value across all CIs for time bins under the null hypothesis
1120  that the PLV for each time bin and frequency is not significantly different from the baseline value.
1121  Each time-frequency bin was considered significant if it differed from the critical values
1122 (Extended Data Fig. 4d). Each electrode and frequency band (theta/alpha (4-14 Hz) and beta (15-
1123 25 Hz)) for a time bin was considered significant if it showed a significantly different PLV from
1124 the baseline in more than 25% of the frequency points in that frequency band. Next, we computed
1125  the mean number of electrodes with significantly different PLVs than the randomized PLV
1126  distribution for each subject. Using the binomial test, we determined whether the proportion of
1127  electrodes with significantly lower PLV after the cue and target onset was different from the
1128  Dbaseline level as well as the chance level (5%, Fig. 2e). To adjust for multiple comparisons, we

1129  used FDR for dependent samples and an alpha level of 0.05.
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1130  We also performed a control analysis to ensure that event-evoked iEEG signals are not
1131  confounding the variation in synchronization. First, we extracted -1.5 to 1.5 seconds around cue-
1132 and target-aligned iEEG signals for each electrode and trial. We averaged the data across all trials
1133  and removed the average event-triggered iEEG signal from individual trials. The same
1134 synchronization and statistical analyses were then performed on the trial with event-evoked iEEG
1135  subtracted. Subtraction of event-evoked iEEG did not change the main results pattern (Extended
1136  Data Fig. 4e).

1137

1138  Analysis of Coupling ratio. A Coupling Ratio (CR) index was defined to compare PLV after cue
1139  and target events as compared to baseline. We used this CR index also to visualize coupling
1140  variation in both 3D brain renderings (Fig. 2f), and the average network level coupling analysis

1141  (Fig. 2h,i). We calculated the coupling ratio by:

1142 CR — PLVeyent— PLVpgseline
PLVpaseline

eq. 8

1143 Where the PLV},4e1ine 1S the average PLV for each electrode within 1 second before the event, and
1144 PLV,,en: 1s the average PLV for each electrode within 0.5 seconds after the event. In this context,
1145  network decoupling is defined as a negative CR value indicating a reduction in PLV relative to the
1146  baseline. We show the CR value at both cue and target events for each subject.

1147  We also used GLME models to investigate the effect of cue and target response on the coupling
1148  ratio following cue and target onsets (Fig. 2h,i). The GLME is formalized as shown in eq. 9:
1149 Coupling Ratiocye/targer = Responseq,, + Responseqrger + (1|Subject) + b+ & eq.9
1150

1151 Quantification and Spectral analysis of HFAb-triggered HFA
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1152  We calculated the interaction between HFAbs and HFA between each pair of electrodes. To
1153  estimate HFA, first we used a zero-phase Butterworth filter with cut-off frequencies of 65 Hz and
1154 175 Hz to bandpass filter the signal. We chose the HFA frequency band broader to capture larger
1155  spectral content (similar results were obtained by choosing 65-115 Hz band). Next, we performed
1156  a Hilbert transform and used the real part of the analytical signal as HFA amplitude (eq. 1). We
1157  extracted a duration of one second around each HFAb from the HFA signal. We then calculated
1158  the HFAb-triggered HFA for each individual burst event as well as the average value for all bursts
1159  between each pair of electrodes. Our main analyses were restricted to HF Ab-triggered HFA that
1160  occurred outside of the main behavioral epochs; either before cues or after target detection (for
1161  those without a response 1 second following target presentation). To control for any burst-
1162  independent correlations of iIEEG signals across electrodes, we first calculated the HFAb-triggered
1163  HFA using randomly assigned burst times. Each burst was jittered with a random time lag of £1000
1164  ms. We then subtracted this jittered HFAb-triggered HFA from the original for further analysis.
1165  We calculated the spectral power of HFAb-triggered HFA across all electrode pairs to assess how
1166  HFA is organized relative to HFAbs recorded on other channels. The power spectral density was
1167  computed over the £500 ms time window using a hanning taper. Additionally, we analyzed peak
1168  prominence for all pairs and plotted the distribution of spectral peaks. For each pair of electrodes,
1169  we extracted the prominent spectral peaks and plotted their distribution.

1170

1171  Dimensionality reduction of high-frequency coordination patterns. To identify prominent
1172 patterns of high-frequency activity coordination within the brain network, we analyzed a high-

1173 dimensional space of HFAb-triggered HFA across all electrode pairs for each subject, with each
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1174  electrode pair representing a single dimension. Using the HFAb-triggered HFA population, we

1175  calculated the covariance matrix C by:

1176 C:nL n(X; - X)X, - X)T eq. 10

_q 4i=1
1177  where X; shows each HFAb-triggered HFA time series, n is the total number of electrode pairs, X
1178  is the marginal mean, and X7is the transpose matrix of X. We found the eigenvectors of C as in
1179  eq. 11:
1180 C=VDVT eq. 11
1181  where V columns are the eigenvectors and principal components (PCs), and D contains
1182  eigenvalues indicating how much variance each component explains. In all participants, PCI
1183  showed a near-symmetric activity state and explained more than 10% of variance in HFAb-
1184  triggered HFA dynamics over the population of electrode pairs (we used multistep Wilcoxon rank-
1185  sum test to examine if there was asymmetry of HFA within mirrored time windows around the
1186  HFADbs). By projecting the original data to the PC vector space, we calculated the HF Ab-triggered
1187  HFA scores as:
1188  Score = XC eq. 12
1189  We then used the scores of electrode pairs on the first component as their loading values on the
1190  synchronous component of the population.
1191
1192  Identifying synchronous subnetworks. Based on the scores of each electrode pair on the
1193 synchronous principal component, we generated a network synchrony matrix that describes
1194  synchronous inter-electrode interactions. For each electrode, we then defined a vector of variables
1195  with a dimension equal to the total number of electrodes. Each element of this vector describes the

1196  score of an electrode pair on the synchronous component. This vector was defined for all
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1197  electrodes, which generated a matrix in which each row represented one observation (electrode)

1198  and each column represented the score of the observed electrode on another electrode.

1199 S; = Score (X; 1.7) eq. 13
1200  Using this matrix, we clustered the electrodes using resampling-based consensus K-Means

1201  algorithm with a correlational defined distance as in eq. 14:

1202 d;j=1-r(S;, ;) eq. 14

1203 where d; j is the correlation distance between two electrodes 7 and j. The correlational distance
1204  between two electrodes is low when the coordination between them is synchronous, and when they
1205  show similar coordination patterns to the rest of the network. First, we used several clustering
1206  indices, including Hubert, Silhouette, Davies-Bouldin, Calinski-Harabasz, Hartigan,
1207  Homogeneity, and Gap, to find an optimal range of cluster numbers (between 2 and 8 for all
1208  subjects) *+7.

1209  For each cluster number, we ran the K-means algorithm 1000 times. The sample size was
1210  subsampled and only 25 percent of electrodes were randomly selected for each clustering (we
1211  ensured that each cluster had at least an average of 5 data points). After running the clustering
1212 1000 times, a probability matrix for electrode pairs was defined as the ratio of numbers that
1213 electrode pairs clustered together, divided by the number of electrode pairs in the same random
1214  sampling for K-Means clustering. This ratio was calculated for all electrode pairs and used to
1215  create a matrix of pair-wise grouping probabilities. We then ran a second K-means clustering
1216  algorithm on this matrix to identify clusters that were similar in their network-level pair-wise
1217  grouping likelihood. Using a similar approach and random sampling of electrodes, we generated

1218  another pair-wise grouping probability matrix indicating how often electrodes were clustered
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1219  together based on their pair-wise grouping likelihood (Extended Data Fig. Se). Using this
1220  hierarchically defined pair-wise clustering likelihood, we ran a final K-means clustering on all
1221  electrodes, labeling them according to the probability of being stably grouped together for each
1222 cluster number. For each K (cluster number), we calculated clustering accuracy, confusion
1223 (probability of non-diagonal clusters), a confusion rank, and a ratio from dividing median accuracy
1224 (diagonals) by median confusion. We normalized each of the measures between 0 and 1 (1 showing
1225  the best, and 0 showing the worst performance between all clusters). We used these four measures
1226  and in a non-parametric vote, we chose the cluster number that outperformed others in this voting
1227  pool. This non-parametric measure shows how well each K performs to detect more stable clusters
1228  with high accuracy and low confusion level and estimate the optimal number of clusters. While
1229  there is no definitive answer on what number of clusters is the best, we selected the optimal number
1230  of clusters using this method to conduct further analysis. In summary, this clustering technique
1231  reduces clustering biases caused by outlier electrode pairs in all clustering realizations as well as
1232 stabilizes clusters.

1233 To determine whether identified clusters were functionally specialized, we compared their
1234 responses evoked by cues and targets to their baseline activity levels. We calculated the averaged
1235  baseline normalized burst density within windows of 500 ms after cue onset and 750 ms after target
1236  onset. The Wilcoxon test was used to determine if this response was non-zero across the electrodes
1237  in each subnetwork. We corrected for multiple comparisons by using FDR for dependent samples
1238  with an alpha level of 0.05. Clusters that were significantly activated by cue events are referred to
1239 as “cue-subnetworks” and clusters that were significantly activated by target events are referred to
1240  as “target-subnetworks". The cue and target-subnetworks were found in each data set for the

1241  optimal number of clusters. For datasets, for which the optimal number of clusters did not contain
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1242 distinct cue and target-subnetworks, if existed, we chose the next K (cluster number) with highest
1243 ranking in the clustering measures that contained both subnetworks.
1244

1245 Time-lag analvsis between cue and target-subnetworks

1246 We calculated the HFAb-triggered-HFA for pairs of electrodes during the period between the
1247  target onset and the manual response to understand how the HFAbs were temporally ordered after
1248  the target onset in both the cue and target-subnetworks. Next, we compared HF Ab-triggered HFA
1249  between electrodes in cue- and target-subnetworks to determine whether there was any asymmetry
1250  in the distribution of HF Abs between the two subnetworks. A total of six subjects (3 in experiment
1251 1 and 3 in experiment 2) showed both stable cue and target-subnetworks. We then calculated once
1252 the HFAb-triggered HFA when HFA in the target-subnetwork was measured around the HFAbs
1253  in cue-subnetworks, and when the HFA in the cue-subnetwork was measured around the HFAbs
1254  in target-subnetworks. A lead state was indicated by HFAbs followed by stronger HFA power; a
1255 lag state was when HFAbs followed stronger HFA power. First, we measured the maximum
1256  asymmetry around the burst onset across all subjects (by calculating the absolute difference
1257  between windows of varying lengths, 25 ms to 250 ms every 25 ms). We then calculated the
1258  averaged HFAbD-triggered-HFA within 150 ms of burst onsets where asymmetry was at its
1259  maximum. Next, we asked if the value differed based on the directionality of the two subnetworks.
1260  For both directions, we used the Wilcoxon test to determine whether the asymmetry around burst
1261  onset is non-zero. Additionally, we tested whether HF Ab-triggered HFA differs between the two
1262  directions after and before bursts.

1263  For each subject, we visualized the lead/lag interactions between stable cue and target-

1264  subnetworks. To achieve a better visualization of lead/lag interactions, we measured the HFA peak
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1265 time for each electrode in cue/target-subnetworks relative to HFAb onset across all cluster
1266  numbers. Each electrode that was a member of the target-subnetwork or the cue-subnetwork was
1267  analyzed to determine its median peak-time-lag relative to the other cluster members. A median
1268  peak-time-lag of all electrodes satisfying this condition was then plotted, with red representing a
1269  lead, and blue representing a lag (Fig. 4d, Extended Data Fig. 11c).

1270

1271  Delayed Mutual Information Analysis. We used mutual information (MI) which is a non-linear
1272 metric used in information theory to estimate the shared information between different time
1273 segments in two electrodes to find where their mutual predictability is maximized. For each
1274  electrode, we extracted data (HFAb density) from -1500 ms to 1500 ms around the target onset
1275  (and for the control analysis, around the cue onset). We normalized the data and calculated MI for

1276  segments of 750 ms sliding every 50 ms. The MI between electrodes X and Y is given by eq. 15:

1277

1278  MI(X.Y)= log (2&¥)_ 1
7 ( 5 ) ZXEXW Zerw p(X,Y) 0og PP €q. 5

1279

1280  where p(x,y) is the joint probability distribution function of each windowed segment of electrodes
1281 X and Y, and p(x) and p(y) are their marginal probability distributions. We estimated the
1282  probability distribution for each variable and for the joint distributions using a histogram-based
1283  approach and binning the data (the number of bins was selected based on the Freedman-Diaconis
1284  rule ?8 to balance the trade-off between estimation resolution and statistical reliability.

1285  To further quantify how information is directionally coupled between cue and target-subnetworks,
1286  we calculated delayed mutual information (DMI). The DMI was calculated by comparing the

1287  temporal dynamics and dependencies between these two subnetworks.
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1288  The DMI between X and Y was calculated similar to MI, except that one of the timeseries was
1289  delayed incrementally to determine whether the past of one electrode is a better predictor of the
1290  future of the other electrode. The delay time-lag ranged from -500ms to 500ms with a step of 25ms,

1291 asineq. 16.

xy)
1202 DMI(X.Y) = Zxex,, Zyevs, (o) log (p ) eq. 16

1293  where X,, is segmented windows of electrode X, and Yy, is segmented windows of electrode Y
1294  shifted by a time lag of 7.

1295  The DMI analysis of each electrode pair can inform us about (i) when the electrodes showed
1296  maximum inter-predictability relative to an event onset (e.g., target), and (ii) at what time-lag the
1297  inter-predictability was maximized. To address this question, we extracted the DMI peaks in a 2D
1298  space, which gave us both the time-lag and the timepoint relative to the event onset where two
1299  electrodes showed maximum DMI values. We then asked if the time-lag of this peak is different
1300  between electrodes in the cue-subnetworks and electrodes in the target-subnetworks. For example,
1301  when we shifted the timeseries of electrodes in target-subnetworks, for each electrode in the cue-
1302  subnetwork, we measured its mean DMI relative to electrodes in target-subnetworks. We
1303  determined at what time lag and at what time relative to target onset DMI was maximized. We
1304  used the Wilcoxon test to see if the maximum DMI time-lag (T, ) occurred between electrodes
1305 in cue and target-subnetworks was non-zero. The lead and lag patterns in inter-predictability
1306  between cue and target-subnetworks were then determined by the sign of the average over T, for
1307  all electrodes in the shifting subnetworks.

1308

1309 Modeling iEEG by spiking neural networks
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1310  We investigated high frequency activity in general and high frequency burst events in particular
1311  using a limited network of two recording sites placed on two interconnected networks of spiking
1312 neurons. For modeling the spiking networks, we used a framework described in 7. Neuronal point-
1313 source models can accurately simulate electrical fields in cortical neural networks *°. Two cubic
1314  neuronal structures were simulated in three dimensions. Synaptic dynamics and connectivity
1315  patterns were implemented as explained in ’. Each cubic network consisted of 1000 neurons (10 x
1316 10 x 10, xyz). We modeled neurons as spherically symmetric points in a 3D grid (with r units on
1317  each axis). A recording disk was implemented on top of each network at a distance three times
1318  greater than the network depth (Fig. 5a). Pairwise connectivity was calculated based on anatomical
1319  studies (discussed below) and a distant-dependent Gaussian rule '°%1%!, The distant dependent

1320  connectivity factor is:

_(2)2
1321 P(d) = P, e o2 eq. 17

1322 where r is the grid unit, d is the distance between two neurons, o is the standard deviation of
1323 distances between neurons (Barral and Reyes, 2016), and P, is a structural scaling factor reflecting

1324  the maximum connection probability across the network (see Supplementary Table 3).

1325  Four interneuron types were used: Parvalbumin (PV), Calbindin (CB), Calretinin (CR), and
1326  Cholecystokinin (CCK) expressing interneurons. Excitatory neurons were divided into regular
1327  spiking neurons (70%), intrinsic low-threshold spiking bursting neurons (10%), and fast adapting

1328  regular spiking neurons (20%).

1329  Neuron models. We used Izhikevich neuron model #¢ for simulating regular spiking, burst spiking,
1330  fast spiking and low-threshold spiking neurons. Each neuron is modeled by a series of differential

1331  equations as in eq 18.
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dv

1332 =0.04v> +5v+ 140 —u + 1 eq.18

dt
1333 % ar—w
dt = al\ov u

1334 where variables v and u denote neural membrane potential and membrane recovery, respectively.
1335  Parameters a and b define the recovery rate and sub-threshold fluctuations sensitivity,

1336  respectively. For after-spike resenting the model uses two auxiliary equations as in eq. 19,

v=¢C

u=u+d eq.19

1337 ifv>30mV, then{

1338  the parameter c resets the value of membrane potential v after a spike, and the parameter d adjusts
1339  the after-spike recovery variable u. Parameters for different neuron types were chosen as suggested
1340  in 92 to approximately generate firing patterns of each neuron type (See Supplementary Table 4
1341  for each neuron type parameter).

1342

1343 Neural connectivity. Besides distance-based connectivity factors, neuron types had different
1344  connection probabilities. We adapted the scaling factor for connectivity between excitatory

101 Additionally, rodent anatomical studies were

1345  neurons and inhibitory interneurons from
1346  considered in determining the connectivity among different types of neurons. Generally, PV
1347  interneurons inhibit themselves and VIP interneurons (likely similar to CR), whereas SOM
1348  interneurons (likely similar to CB) do not inhibit each other, and VIP interneurons disinhibit SOM
1349  interneurons preferentially 19194, The connectivity between networks was defined by a probability
1350  and a rate of connection. This connectivity was attributed primarily to excitatory neurons (90%).
1351

1352 Simulation of post-synaptic potentials. For each neuron the postsynaptic potentials were

1353  modeled by a biexponential function as in eq. 20,
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t t

1354 gt)y=e o — e T eq.20
1355  where 7, and 7,4 denote the rise and decay time constant of postsynaptic current, respectively. The

1356  biexponential function was implemented through a second-order ordinary differential equation as

1357 ineq.21.

1358
d?g(t +1,) dg(t t

1150 9O __(at) dg® _g@® o2
dt? T4, dt T4,

1360

1361  Where t is time relative to spike, and g(t) is the synaptic conductivity. The rise time was set
1362  similarly to ~1ms for all neurons while the decay time for pyramidal neurons were and

1363  interneurons varied from ~6ms to 24ms 105-108

as shown in Supplementary Table 4.

1364

1365  Network external inputs. Each network was fed external currents to generate firing rates similar
1366  to cortical neurons. Each neuron received a cosine input. The objective was to first control
1367  externally induced rhythmicity in network activation by frequency, as well as phase coherence

1368  between the input function and neurons. On average, each network received external input

1369  sufficient to generate a 5 Hz firing rate !%°. The external input to pyramidal neurons was three times

1370  greater than the external input to inhibitory neurons. In addition, a Brownian noise (fiz) was added

1371  to the input as per previous experimental observations !1°,

1372 For nonrhythmic input, we considered slow and ultraslow oscillatory (<1 Hz) input to each neuron
1373 with an initial phase lag. Then a coherence index was used to determine the distribution of phase
1374  lags among neurons. Thus, the phase range was defined:

1375 @ =2m (I - coherence) eq. 22
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1376  For the rhythmic input, we incrementally increased the cosine input frequency up to 12 Hz for
1377  each simulation run._For networks with shared input, we ran 100 simulations in which networks
1378  were not connected but received correlated inputs (5-25 percent of neurons received the same
1379  input). For networks with feedforward connection, we simulated feedforward networks in which
1380  the connections between the two networks are unidirectional. The connectivity strength was
1381  changed from 0.001 to 0.1 by one order of magnitude. For each value, we ran 100 simulations. For
1382  Networks with reciprocal connections, we fed the networks with uncorrelated inputs, but both
1383  networks were reciprocally connected. The connectivity strength was changed by one order of
1384  magnitude from 0.001 to 0.1 and the simulation was run 100 times for each value.

1385  To investigate the effect of an external stimuli on directional networks, we simulate a feedforward
1386  network as explained before with an internetwork connectivity ratio of 9 to 1 (network 1 and 2
1387  respectively, Extended Data Fig. 12e). We then fed network 1 with an external input pulse of 500
1388  ms duration and 250 ms duty cycles (Extended Data Fig. 12f). The input was fed to 50 percent
1389  of neurons in the network 1. We then calculated the time resolved PLV in both networks as
1390  explained before (Fig. 5i, Extended Data Fig. 12g).

1391

1392 Integration of postsynaptic currents and neural activities at the recording sites. For each
1393  simulation, we estimated the field potential at two recording sites (black disks Fig. 5a). By
1394  assuming neurons as point-source field, we measured field dynamics at each recording site by
1395  summing the attenuated membrane potentials and the postsynaptic currents from all neurons. We
1396  estimated the voltages at the recording disk by considering membrane and post-synaptic potentials

1397  as electrical dipoles (with negligible distance between poles relative to the recording disk). The
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1398 electric filed is then represented by E (7, t), where r and t denote the distance from the source and
1399  the time, respectively. The extracellular potential is then calculated by:

1400 E=-VV eq.23

1401  Using Ohm’s law, the electric field at distance r from each dipole with a current density of I,, (t)

1402  is equal to:

1403 E(rt) = n(6) eq.24
’ Antr3o 1

1404  with I, (t) represented as:

1405 Ly(t) = Ly (t) + Ly (t) eq.25

1406  where o denotes the medium conductivity (which we assumed is independent of distance from
1407 sources). I, (t) and Iy, (t) are the transmembrane current and the synaptic current of each neuron

1408  respectively. By integrating the electric field, we calculated the potential at the disk by:

1409 V(rt) = frE(’t)d’— fr (6) dr’
(nt)= o rLeuar = » Amr'?o r
1410
()
= .26
1411 V(r,t) pp— eq
1412 The voltage recorded at each site is calculated as in eq 27:
N
1 ()
V(t) = .27
1413 (t) 47”22 " eq
=

1414  where 1; is the distance between the recording disk and the i” point-source, and N is equal to the
1415  total number of neurons in each network.

1416  We used a non-ohmic filter to attenuate higher frequencies by getting insights from !'!. We
1417  implemented an exponential attenuation in the frequency domain. First for each signal we

1418  computed the FFT. We then applied an exponential attenuation factor to the magnitude of the
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1419  frequency components (Extended Data Fig. 12b). This factor exponentially decreases the
1420  amplitude for higher frequencies as in eq. 28:

1421 A(f) = e eq.28

1422

1423 Where A(f) is the attenuation factor for frequency f, and o is a parameter that controls the rate of
1424  exponential decay which we set to 0.01. After multiplying the attenuation factor, we performed
1425  the inverse FFT (iFFT) to transform the signal back to the time domain.

1426  For each condition, we ran simulations 100 times, each simulating iEEG signals and neural activity
1427  for three seconds. We detected HF Abs at each recording site and calculated the amplitude of the
1428  analytical signal as explained in (eq. 1). Next, we examined whether there was a correlation
1429  between the density of bursts and the aggregated spike density in each network. The spike density
1430  was calculated and smoothed using a Gaussian window of 25 ms. We measured the correlation
1431  coefficient between aggregated spike density and burst density for each simulation. On average,
1432 burst events were significantly correlated with spike densities in each network.

1433 In a control condition, we randomly assigned burst times and examined the correlation between
1434 burst density and spike density. This randomization was performed 1000 times and we found the
1435  95% confidence interval under the null hypothesis that burst density is not related to spike density.
1436 All other analyses of the modeling results were conducted in a similar manner to those of the
1437  experimental data.

1438

1439
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Extended Data Fig. 1. HFADb activation patterns in experiment 2. (a) Task structure of
experiment 2. Subjects hold their gaze fixation to the center of a screen (a white plus sign) with
red circles turning on and off. A spatial cue endogenously cues subject’s attention to a hemifield.
A target appears at one hemifield and subjects should report whether the target was seen in the
cued hemifield. The brain shows the localization of electrodes across all subjects. (b) Similar to
Fig. 1b for experiment 2. (¢) Similar to Fig. 1d, for experiment 2. (d) Activation profiles of HFAbs
grouped by trial outcome, for experiment 2. (e) Similar to Fig. 1h, for individual subjects in
experiment 2. Participants not having enough incorrect trials for this analysis are not visualized.
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1452  Extended Data Fig. 2. HFAb responses to cue and target events in experiment 1. (a)
1453  Activation profiles of HFAbs grouped by trial outcome. (b) similar to Fig. 1e, f for incorrect trials.
1454  (c) similar to Fig. 1h, for individual subjects.
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1456
1457  Extended Data Fig. 3. HFAD responses to different experimental conditions in experiment 1

1458  and 2. (a) Similar to Fig. 11, showing responses to valid and invalid cues. (b) Similar to Fig. 1j,
1459  showing target responses in trials with cues contra- and ipsi-lateral to the electrode. (¢,d) Similar
1460  plots as in Fig. 1i,j for experiment 2 (each line is an individual, error bars are standard errors of
1461  the mean, thick lines show average over all subjects). (e) Temporal profile of average HFAb
1462  density across all subjects and electrodes relative to cue and target onset, for trials with cues contra-
1463  and ipsi-lateral to the electrode (left), and for trials with valid or invalid sensory cues (right). (f)
1464  Similar to E for experiment 2. (g) Confusion matrix showing the classifier accuracy (Fig. 1k)
1465  within 500 ms of cue onset (white asterisks denote significantly higher prediction accuracy than
1466  baseline and chance level, binomial test, P < 0.05). (h) Similar results as in Fig. 1k for experiment
1467 2. (i) Similar classifier analysis results to Fig. 1k when one subject is omitted (each line indicates
1468  the result of omitting one subject). Red lines indicate prediction accuracy higher than baseline
1469  (dashed lines) and chance levels (binomial test, P < 0.05, FDR corrected for dependent samples).
1470  Shaded error bars indicate the standard error of the mean across all realizations and cross
1471  validations.
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1473  Extended Data Fig. 4. HFADb coordination with low frequency activity in experiment 1 and

1474 2. (a) Group level average spatial pattern of observed frequency peak of HFADb phase locking to
1475  LFP. (b) Individual examples showing the spatial pattern of the observed frequency peaks of the
1476  HFADb phase locking to LFP. (¢) An individual electrode example of the phase-frequency
1477  distribution of HFAbs locked to both theta/alpha and beta frequency bands. (d) Corresponding to
1478  Fig. 2e, showing the proportion of time-frequency points where phase locking was significantly
1479  lower than baseline (P < 0.05, random permutation test). (e) Similar to Fig. 2e, but after removing
1480  event-related potential from the LFP (see Methods). (f) Examples of the coupling ratio between
1481 HFAD and low frequency (4-25 Hz) LFP following cue and target onsets in correct and incorrect
1482  trials. (g) Similar to Fig. 2e for experiment 2. (h,i) Regression plots showing correlation of
1483  coupling ratios following cue onset with target responses (green, h), and coupling ratios following
1484  target onset with cue responses (purple, i). Scatter points denote electrodes, lines indicate
1485  individual subjects with orange line showing the regression across all subjects.
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1486
1487  Extended Data Fig. 5. A network clustering approach based on the coordination of HFAbs

1488  between electrodes. (a) The average HFAb-triggered HFA for individuals in experiment 2. (b)
1489  The normalized PSD for HFAb-triggered HFA in experiment 2. (¢) HFAb-triggered HFA for
1490  electrodes distanced in 4 different quantiles (25,50, 75, 100 mm), ranging from green (short) to
1491  red (long) in experiment 2, similar to Fig. 3¢. (d) The first and second principal components of
1492  HFAb-triggered HFA for individual subjects in experiment 2. (e) A schematic demonstration of
1493  network clustering algorithm. We used HFAbs outside of cue/delay and target/response periods.
1494  The network synchrony matrix shows the loading values for each electrode pair on the
1495  synchronized component. A K-means clustering was performed on randomly selected electrode
1496  samples for different cluster numbers (K =2 to 8). We calculated a pair-wise grouping probability
1497  matrix in which each element indicates how likely it is that two electrodes will be grouped together.
1498  The next step was clustering with network subsampling, similar to the previous step but based on
1499  the pairwise grouping likelihood matrix. The final clustering of the pair-wise grouping likelihood
1500  results indicated stable clusters for each K (see Methods).
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1502
1503  Extended Data Fig. 6. Clustering results for individual subjects in experiment 1. (a) For each

1504  subject, the square matrix shows color-coded loading values on the synchronized PC (left) and the
1505  pairwise grouping probability (right). (b) The confusion matrix for the optimal number of clusters.
1506  The diagonals show the average percentage of cluster members grouped together across all
1507  clustering over subsamples. The non-diagonals indicate the percentage of members in one cluster
1508  who were confused with members in another cluster across all clustering over subsamples. (c)
1509  Optimal number of clusters is selected using four metrics and a nonparametric voting rank metric
1510  (black). The accuracy is determined by the median diagonals, the confusion by the median
1511  nondiagonal, selectivity by the relative rank of the diagonal over the highest nondiagonal rank,
1512 and stability by the relative rank of the diagonal over the nondiagonal rank. (d). Similar to Fig. 3g
1513  for different subjects. Shaded error bars indicate the standard error of the means, thicker lines
1514  indicate significant functional subnetworks.
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Extended Data Fig. 7. Clustering results for individual subjects in experiment 2. (a-d) Similar
to Extended Data Fig. 6. a-d for experiment 2.
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Similar to Extended Data Fig. 6a for different Ks. (b) Confusion matrices for different Ks. (¢)
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Extended Data Fig. 9. Results for d
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1529
1530  Extended Data Fig. 10. Classifier trained on cue-subnetworks predicts outcome. (a) As in

1531  Fig. 3h, each line represents classifier results when one subject is omitted. (b, ¢) Classifier
1532  accuracy in predicting correct trials (green), errors (brown), and the average accuracy (gray) for
1533 (b) experiment 1 and (¢) experiment 2. The shaded error bars show the standard error of the mean.
1534  Thick lines indicate timepoints where the accuracy of the prediction is significantly higher than
1535  the baseline (dashed lines) and chance level (P < 0.05, binomial test, FDR corrected for dependent
1536  samples).
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Extended Data Fig. 11. Temporal precession between cue and target-subnetworks. (a) HFAb-
triggered HFA examples for individual subjects similar to Fig. 4a. (b) Group-level average of
HFAb-triggered HFA, similar to Fig. 4b, but for HFAbs during the cue/delay period. (c)
Visualization of lead-lag patterns across members of the cue and target-subnetworks during target
processing for all clusters (similar to Fig. 4d). (d) DMI results for individual subjects similar to
Fig. 4e. (e) similar to Fig. 4g, around the cue onset.
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1547
1548  Extended Data Fig. 12. Computational modeling of iEEG signal. (a) A factor that scales the

1549  connection probability between neurons in each network as a function of their distance. (b) A
1550  factor used to attenuate high frequency activity in iEEG signals. (¢) A complete trial simulation
1551  example. Rasters show the activity of neurons in one network (bottom, blue and red show
1552  excitatory and inhibitory neurons, respectively). Raw and attenuated traces correspond to field
1553  dynamics of the same network. (d) Ultra slow inputs to one network when inputs to neurons have
1554  coherent (top) and random (bottom) phases. (e) Detailed network structure for simulating a
1555  directional network with stronger input from network 1 to network 2 (each scatter point indicates
1556  whether two neurons have excitatory (blue) or inhibitory (red) connections). (f) An input design
1557  evaluating how a transient stimulus affects HFAb coherence with LFP in a network as shown in E
1558  (network 1 (top) receives a transient coordinated input). (g) Similar to Fig. 5I, showing PLV
1559  changes in both networks by transient input. (h) In both networks 1 and 2, the PLV drops within
1560  500ms of stimulus onset (P < 0.001, Wilcoxon test). (i) Normalized burst rate relative to stimulus
1561  onset.
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Supplementary Tables

Subject
ID

IFG, TPJ, V3b, hV4

ISPO, MFG, MTG, TPJ

Cingulate Gyrus, ISP2, IFG, IPL, LO2, MFG,
Postcentral Gyrus, SFG,

Cingulate Gyrus, ISP1, ISP3, IPL, MFG,
Paracentral Lobule, Postcentral Gyrus,
Precentral Gyrus, SFG, STG

IPL

IFG, IPL, ITG, MTG, Orbital Gyrus, Precentral
Gyrus, SFG, STG, TPJ

IPL, MFG, hMT, Postcentral Gyrus, LO2

Angular Gyrus, FEF, FFG, IFG, IPL, MFG,
Postcentral Gyrus, Precentral Gyrus, SFG, STG,
TPJ,

FFG, ISP2, ISP3, LO2, MOG, MTG, Postcentral
Gyrus, h\MT

FEF, FFG, IPL, MTG, Postcentral Gyrus,
Precentral Gyrus, SFG, TPJ

FEF, IPL, Postcentral Gyrus, SFG, TPJ

FEF, IPL, MFG, Paracentral Lobule, Postcentral
Gyrus, Precentral Gyrus, Precuneus, SFG, STG,
TPJ

ISP2, ISP3, IPL, Postcentral Gyrus, SFG, SPL, TPJ

FEF, ISP2, ISP3, ISP5, IPL,
Paracentral Lobule, Postcentral Gyrus,
Precentral Gyrus, Precuneus, SFG, SPL, TPJ

LOl

FEF, ISP1, ISP2, MFG

ISP2, ISP3, MFG, STG

ISP1, ISP2, ISP3, MFG, MTG,
Precentral Gyrus, SFG, STG

ISP2, ISP3, MFG, Postcentral Gyrus, FEF

FEF, ISP2, ISP3, IFG, IPL, MFG, MTG,
Postcentral Gyrus, Precentral Gyrus, SFG, STG

ISP2, MFG, hV4

ISP1, ISP2, ISP3, IFG, MFG, MTG, Postcentral
Gyrus, STG

ISP2, ISP3, Postcentral Gyrus

FEF, ISP1, ISP2, ISP3, IPL, MFG, MTG,
Postcentral Gyrus, Precentral Gyrus, SFG

Supplementary Table 1. List of brain areas containing electrodes that showed significant HFAb response to cue (cue
+) and target (target +, see Methods). The abbreviations are: Inferior Frontal Gyrus (IFG), Temporoparietal Junction
(TPJ), Visual area 3b (V3b), human Visual area 4 (hV4), Intraparietal Sulcus (IPS1, IPS2, IPS3, IPS5), Middle Frontal
Gyrus (MFG), Middle Temporal Gyrus (MTG), Inferior Parietal Lobule (IPL), Lateral Occipital area 2 (LO2),
Superior Frontal Gyrus (SFG), Superior Temporal Gyrus (STG), Inferior Temporal Gyrus (ITG), Frontal Eye Field
(FEF), Fusiform Gyrus (FFG), Inferior Occipital Gyrus (I0OG), Parahippocampal Gyrus (PHG), Middle Occipital
Gyrus (MOG), human Middle Temporal/V5 (hMT), Superior Parietal Lobule (SPL), and Lateral Occipital area 1

(LOI1).
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Cingulate Gyrus, ISP2, ISP3, IFG,
IPL, MTG, Paracentral Lobule,
Postcentral Gyrus, Precentral Gyrus,
STG

Cingulate Gyrus, ISP1, ISP2, ISP3, IFG, IPL, MFG,
MTG, Paracentral Lobule, Postcentral Gyrus, Precentral
Gyrus, SFG, STG

IFG, IPL, ITG, MEFG,
Precentral Gyrus, STG, TPJ
Angular Gyrus, Anterior Cingulate, Cingulate Gyrus,
FEF, FFG, IFG, 10G, IPL, ITG, MFG, MTG, PHG,
Postcentral Gyrus, Precentral Gyrus, SFG, STG, TPJ
FEF, IPL, Postcentral Gyrus, Precentral Gyrus, SFG

MTG, Postcentral Gyrus,

FFG, LO2, MOG, Postcentral Gyrus,
hMT

FEF, ISP2, ISP3, IPL, MFG, Paracentral Lobule,
Precentral Gyrus, Precuneus, SFG, STG, TPJ

FEF, ISP2, ISP3, ISP5, IPL, Paracentral Lobule,
Postcentral Gyrus, Precentral Gyrus, Precuneus, SPL,
SFG, TPJ

FEF, ISP1, ISP2, MFG

ISP1, ISP2, ISP3, MFG, MTG, Precentral Gyrus, SFG,
STG

ISP2, ISP3, ISPS, IPL, SPL, TPJ

ISP1, ISP2, ISP3, MFG, STG

FEF, ISP2, IPL, MFG, Postcentral
Gyrus, Precentral Gyrus, SFG, STG

FEF, ISP2, IFG, IPL, MFG, MTG, Postcentral Gyrus,
Precentral Gyrus, SFG, STG, TPJ, V3b

ISP1, ISP2, ISP3, MFG, Postcentral

FEF, ISP1, ISP2, ISP3, IFG, IPL, MFG, MTG,

Gyrus, Precentral Gyrus Postcentral Gyrus, Precentral Gyrus, SFG, STG

1577 Supplementary Table 2. List of brain areas containing cue- and target-activated subnetworks (see Methods). The
1578 abbreviations are: Intraparietal Sulcus (IPS1, IPS2, IPS3, IPS5), Inferior Frontal Gyrus (IFG), Inferior Parietal Lobule
1579 (IPL), Middle Temporal Gyrus (MTG), Superior Temporal Gyrus (STG), Middle Frontal Gyrus (MFG), Superior
1580  Frontal Gyrus (SFG), Inferior Temporal Gyrus (ITG), Temporoparietal Junction (TPJ), Frontal Eye Field (FEF),
1581  Fusiform Gyrus (FFG), Inferior Occipital Gyrus (I0G), Parahippocampal Gyrus (PHG), Middle Occipital Gyrus
1582  (MOG), Visual area 3b (V3b), Superior Parietal Lobule (SPL), and human Middle Temporal/V5 (hMT).

1583

1584

1585

1586

1587 Supplementary Table 3. Connectivity strength between neuron types in each network (see Methods).

1588
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PV CCK |CB | CR

population 0.76 | 0.07 |0.02 |09 0.06
a 0.02 | 0.1 0.05 |0.02 |0.02
b 0.2 023 | 023 |023 |0.23
c -65 | -65 -65 -65 | -65
d 8 2 2 2 2
T, 1 1 1 1 1
Ty 6.4 8 124 |16 16

1589 Supplementary Table 4. Parameters used for modeling different neuron types. The parameter a indicates a recovery
1590 rate variable, b the sensitivity to sub-threshold fluctuations, ¢ the membrane potential, d adjusts the after-spike
1591 recovery variable, T, synaptic potential rise time, and 7, synaptic potential decay time (see Methods).

1592
1593
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