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Abstract 21 

Brain-wide communication supporting flexible behavior requires coordination between 22 

sensory and associative regions but how brain networks route sensory information at fast 23 

timescales to guide action remains unclear. Using spiking neural networks and human intracranial 24 

electrophysiology during spatial attention tasks, where participants detected targets at cued 25 

locations, we show that high-frequency activity bursts (HFAb) serve as information-carrying 26 

events, facilitating fast, long-range communications. HFAbs were evoked by sensory cues and 27 

targets, dynamically linked to low-frequency rhythms. Notably, both HFAb responses following 28 
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cues and their decoupling from slow rhythms predicted performance accuracy. HFAbs were 29 

synchronized at the network-level, identifying distinct cue- and target-activated subnetworks. 30 

These subnetworks exhibited a temporal lead-lag organization following target onset, with cue-31 

activated subnetworks preceding target-activated subnetworks when the cue provided relevant 32 

target information. Computational modeling indicated that HFAbs reflect transitions to coherent 33 

population spiking and are coordinated across networks through distinct mechanisms. Together, 34 

these findings establish HFAbs as neural mechanisms for fast, large-scale communication 35 

supporting attentional performance. 36 

 37 

Introduction 38 

 39 

Prioritizing  information from the external environment to guide ongoing behavior and upcoming 40 

actions requires fast coordination of neural activity in large-scale networks distributed across 41 

distant brain areas 1–7. This coordination allows information to be routed selectively from sensory 42 

to higher level executive brain networks 8–12. Previous research, particularly in non-human 43 

primates, has shown that selective information routing emerges through dynamically changing 44 

neuronal interactions 3,13–15. Such studies highlight the role of oscillatory dynamics and transient 45 

changes in inter-areal coherence in enabling attentional selection and the flexible reconfiguration 46 

of neural pathways according to task demands. Yet, most these prior investigations have focused 47 

on pairwise interactions between a few brain areas, leaving open the question of how fast neural 48 

dynamics emerge and enable flexible, large-scale information routing across distributed networks.  49 

 50 
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Investigating these questions in the human brain is challenging due to spatial or temporal 51 

constraints of the techniques that have been employed. Studies examining network-level 52 

interactions have largely been based on connectivity maps derived from functional magnetic 53 

resonance imaging (fMRI). While fMRI studies provide valuable insights into functional networks, 54 

the temporal resolution cannot capture sub-second routing dynamics in attention tasks 16–20. 55 

Electroencephalography (EEG) and magnetoencephalography (MEG) offer high temporal 56 

resolution but have limited spatial resolution. 21,22. Lastly, single unit recordings provide both fine 57 

temporal and spatial signals but lack the broad coverage for addressing questions of brain-wide 58 

network communication 3,7,23.  59 

Human intracranial electroencephalography (iEEG), offers a unique opportunity to  address these 60 

challenges by providing spatially localized and temporally precise neural signals obtained from 61 

multiple brain regions 24,25. High-frequency activity detected in iEEG signals correlates with 62 

different cognitive functions, including attention 24–31, and has been reported to index aggregated 63 

spiking activity, dendritic post-synaptic activity, state transitions into spiking regimes, or spike 64 

current leakage to local field potentials (LFPs) 32–36. Additionally, high-frequency activities show 65 

long-range phase synchronization with different frequency bands, making them candidates for 66 

studying fast brain-wide communications 27,37–40. While these iEEG studies have advanced our 67 

understanding of neural communication, they have predominantly focused on interactions between 68 

high-frequency activities and low-frequency rhythms (fast-slow interactions), such as cross-69 

frequency coupling, which may not fully capture the dynamics of fast network interactions 70 

between high-frequency activities themselves (fast-fast interactions) 27,37,41–45.  71 

 72 
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Here, we address this gap by identifying transient high-frequency activity bursts (HFAbs) in 73 

human iEEG data from epilepsy patients performing spatial attention tasks, hypothesizing that 74 

these discrete burst events support fast, large-scale network communications. HFAbs during 75 

sensory cue processing predicted successful detection of upcoming targets. They were locally 76 

coupled to slow rhythms (4-25 Hz), and transiently decoupled during cue and target processing, 77 

with decoupling associated with correct performance. Across the brain, HFAbs interactions were 78 

largely characterized by a zero-lag synchronized structure, constituting functionally specialized 79 

subnetworks with distinct topographical and temporal organization. Specifically, cue-subnetwork 80 

activity preceded target-subnetwork activity following target onset, when sensory cues conveyed 81 

relevant information about the target location. Using computational modeling, we then showed 82 

that HFAbs likely reflect state transitions in neural populations into a coherent spiking activity 83 

state, characterized by bouts of elevated neuronal firing, suggesting HFAbs serve as neural 84 

population-level signatures of information-encoding events. 85 

 86 

Results 87 

 88 

HFAbs track spatial attention and predict behavioral accuracy 89 

We used human iEEG data recorded from epilepsy patients to quantify high frequency activity 90 

dynamics to investigate fast information routing. We analyzed data from two spatial attention tasks 91 

in which patients were cued either exogenously or endogenously to a spatial location to detect 92 

visual targets (Fig. 1a, Extended Data Fig. 1a). Throughout the paper, the main figures mostly 93 

present results of experiment 1, while the results of experiment 2 are presented as supplementary 94 
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information supporting reproducibility and generalization across attention tasks (for brain heatmap 95 

plots, we combined both experiments to improve 3D rendering coverage). 96 

In  experiment 1, patients performed a spatial attention task as described in 29. Each trial 97 

started with the presentation of two vertical or horizontal bar stimuli. Patients were instructed to 98 

fixate their gaze at the center of the display. A transient spatial cue appeared at the end of one bar, 99 

exogenously cueing an upcoming target location. Following a delay period, a target (i.e., 100 

luminance changes at perceptual threshold) appeared at the cued location or infrequently at equally 101 

distant non-cued locations. Patients were required to respond if they detected the target (Fig. 102 

1a). In experiment 2, patients were endogenously cued to a hemifield and reported a target if it 103 

appeared in the cued hemifield (Extended Data Fig. 1a, see Methods, and for more details see 4).  104 

First, we used an adaptive method 7 and detected reliable bursts of high frequency activity at each 105 

electrode (HFAbs, 65-115 Hz, intermittent high amplitude oscillatory events lasting more than 2.5 106 

frequency cycles (> 25 ms), average burst length 36.2 ms; Fig. 1b). The frequency band was 107 

selected based on average spectral peaks observed across subjects (91.2 ± 20.9 Hz , n = 12, see 108 

Methods for further details). We then calculated the HFAb density (number of HFAb events per 109 

unit of time) for each electrode to examine their evoked response during different task epochs. 110 

HFAbs showed higher density averaged across all electrodes in response to both cue and target 111 

(Fig. 1c, Extended Data Fig. 1b). We measured HFAb responses following cue and target onsets 112 

across different trial outcomes (hit, reject, miss, and false alarm). At the population level, HFAbs 113 

activated to cue onsets in correct hit and reject trials (Wilcoxon signed-rank test, P < 0.001) and 114 

differed significantly from missed and false alarm trials (Kruskal-Wallis test, P = 0.001, Dunn’s 115 

test, P = 0.008 and P = 0.01, respectively; Fig. 1d).  Target responses were also significantly 116 

different in correct hit trials compared to other outcome conditions (Kruskal-Wallis test, P < 0.001; 117 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 3, 2025. ; https://doi.org/10.1101/2024.09.11.612548doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.11.612548


 

 

Dunn’s test, P < 0.001; Fig. 1d, Extended Data Fig. 1c; see also Extended Data Fig. 2a, 1d). 118 

Overall, 10.7 ± 2% of channels (n = 12) showed significant activation to cues, whereas 33.2 ± 3% 119 

of channels (n = 12) were responsive to targets (Wilcoxon signed-rank test, P < 0.05). Among 120 

channels that responded to cues and/or targets, HFAb responses to targets were negatively 121 

correlated with those to the cue (Spearman correlation, P < 0.001, R = -0.36, Fig. 1e), suggesting 122 

distinct electrode populations process cues and targets. The topography of burst responses to cues 123 

was largely confined to occipital and parietal regions, including areas in extrastriate cortex, 124 

intraparietal sulcus (IPS), temporoparietal junction (TPJ), superior parietal lobule (SPL), and 125 

inferior parietal lobule (IPL) (Fig. 1f), whereas target responses were more widely distributed 126 

including superior, middle, and inferior frontal gyrus, precentral and postcentral gyrus, IPL, SPL, 127 

and TPJ (Fig. 1g). This activation profile was evident only for correct trials both for cue- and target 128 

responses (Extended Data Fig. 2b). HFAb responses for correct and incorrect trials also showed 129 

topographic differences at the single subject level (Fig. 1h, see Extended Data Fig. 1e, 2c for 130 

more individual examples; also see Supplementary Table 1 for detailed electrode positions of 131 

cue and target responsive channels for individual subjects).  132 

We investigated the effect of cue validity (targets at cued vs uncued location) and laterality (visual 133 

field ipsilateral versus contralateral to electrodes) on cue and target responses on a trial-by-trial 134 

basis, using a Generalized Linear Mixed Effect (GLME) model (see Methods). Overall, there was 135 

a main effect of outcome on both cue response (t = 2.8, P = 0.005) and target response (GLME, t 136 

= 15.2, P < 0.001). Additionally, there was a main effect of cue validity on the target response 137 

(Fig. 1i, GLME, t = 4.7, P < 0.001), and a main effect of the cue laterality on the cue response 138 

(Fig. 1j, GLME, t = 5.1, P < 0.001). No significant main effect was observed for laterality on target 139 

response (Extended Data Fig. 3a, P = 0.13), or validity on cue response (Extended Data Fig. 3B, 140 
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P = 0.32, See Extended Data Fig. 3c,d for the effect of laterality and cue validity on cue and target 141 

response in experiment 2, as well as Extended Data Fig. 3e,f for the temporal profiles of HFAbs 142 

around cue and target onsets in both experiments). 143 

Given that HFAb activation to sensory cues was associated with outcome accuracy, we examined 144 

if electrode burst density (Cue+ electrodes, see Methods) predicted whether participants 145 

successfully completed a trial (correct hits and correct rejections). We trained a classifier on the 146 

burst density using a sliding window of 350 ms around the cue onset. In Cue+ electrodes and 147 

within 500 ms after the cue onset, the burst density predicted better than baseline and chance levels 148 

if the trial was executed correctly (binomial test, FDR corrected for dependent samples, P < 0.05, 149 

Fig. 1k, Extended Data Fig. 3g). This prediction was consistent across both experiments 150 

(Extended Data Fig. 3h) and was not dependent on an individual subject (Extended Data Fig. 151 

3i).  152 

These findings indicate that HFAbs occur frequently in response to sensory cues and targets and 153 

exhibit distinct spatial profiles across the brain.  HFAbs predicted performance accuracy following 154 

the cue-onset on a trial-by-trial basis. These results support a role for HFAbs in encoding spatially 155 

relevant sensory information for subsequent target detection. 156 

 157 

HFAbs are coupled to slow rhythms and decouple in response to cues and targets 158 

High frequency activity dynamics in brain networks have been shown to be organized  by theta 159 

rhythms (4-8 Hz) 37. Here, we asked whether HFAbs are coordinated with low-frequency rhythms, 160 

and whether these cross-frequency dynamics were associated with task variables. For each 161 

electrode, we extracted the LFP around the HFAb centers and measured both the HFAb-triggered 162 

LFP average and the phase locking value (PLV) of HFAbs (peak time) to the low-frequency LFP 163 
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dynamics. HFAb-triggered LFP showed consistent evoked potentials with low frequency side-164 

lobes across all subjects (Fig. 2a). Spectral analysis revealed HFAb-triggered spectral peaks (Fig. 165 

2b, top) and phase locking peaks (Fig. 2b, bottom) in theta (4–8 Hz), alpha (8–14 Hz), and beta 166 

(15–25 Hz) frequency bands. Phase locking to local low-frequency field dynamics was evident in 167 

most electrodes across all subjects (Fig. 2c, 9 ± 0.24 Hz, with significant peaks marked by black 168 

dots; see Fig. d, Extended Data Fig. 4c for examples of individual electrodes showing phase 169 

distributions of HFAbs locked to one or more frequency bands, also see Extended Data Fig. 4a,b 170 

for topographic representations of the frequency of phase locking peaks at the group and individual 171 

levels). 172 

To examine whether sensory cues or target processing affected HFAb phase locking to low-173 

frequency rhythms, we analyzed PLV of HFAb relative to baseline following cue and target onsets. 174 

HFAbs showed a transient decrease in their phase locking (decoupling) with the theta/alpha and 175 

beta frequency bands after the cue onset and after the target onset (Fig. 2e, Extended Data Fig. 176 

4d, randomization test, P < 0.05, FDR corrected for dependent samples). This decoupling was not 177 

attributable to event-triggered potentials (Extended Data Fig. 4e, see Methods). Furthermore, 178 

changes in HFAb coupling strength were only observed in correct trials, not in incorrect trials (Fig. 179 

2f,g, number of bursts were controlled across trial conditions, see Methods, see Extended Data 180 

Fig. 4f for individual examples). 181 

Next, we examined whether alterations in HFAb coupling to low frequencies were related to HFAb 182 

activation profiles in response to cues and targets. We calculated correlations between coupling 183 

ratios and burst density for each subject (a coupling ratio measured changes in HFAb coupling to 184 

low frequencies (< 25 Hz) after cues or targets relative to the baseline within 1000 ms before the 185 

cue and target onset, see Methods). The coupling ratio at target and cue onsets was negatively 186 
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correlated with burst density for both cue and target onsets (Fig. 2h,i, Spearman correlation, R = -187 

0.22, P < 0.001, and R = -23, P<0.001). GLM models showed a main effect of cue response on the 188 

coupling ratio following cue onset (Fig. 2h t = -6.17, P < 0.001), and a main effect of target 189 

response on the coupling ratio following target onset (Fig. 2i, t = -5.05, P < 0.001). No significant 190 

effect of cue response was found on the coupling ratio following target onset (Extended Data Fig. 191 

4h, P = 0.15), and target response on the coupling ratio following cue onset (Extended Data Fig. 192 

4i, P = 0.21). 193 

Overall, HFAbs were predominantly coupled to the phase of theta, alpha, and beta rhythms. 194 

However, their coupling strength to slower rhythms decreased during perceptual processing and 195 

decision making. 196 

 197 

HFAbs were coordinated brain-wide and their network-level synchronization identified 198 

functionally specialized subnetworks 199 

We found that HFAbs evoked by cue and target demonstrated different topographical distributions, 200 

indicating that different brain regions are preferentially engaged during cue and target processing. 201 

Additionally, the processing of cues and targets involved the decoupling of HFAbs from low-202 

frequency dynamics. The distinct spatial patterns and reduced low-frequency coupling suggest that 203 

separate groups of brain areas (subnetworks) are coordinated via HFAbs for cue versus target 204 

processing. Thus, we asked whether the brain-wide network could be organized into distinct 205 

subnetworks, each characterized by unique high frequency coordination patterns.  206 

We analyzed burst events outside the cue/delay and target/response periods to avoid stimulus-207 

driven coordination effects. We measured the power of high frequency activity (65-175 Hz, HFA, 208 

to capture broader spectral contents) in one electrode aligned to the center of HFAb events in 209 
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another electrode (HFAb-triggered HFA). HFAb-triggered HFA between electrodes revealed 210 

coordination in high frequency bands (Fig. 3a). This coordination was organized through low 211 

frequency rhythms, with spectral peaks predominantly in the theta band (4-8 Hz) (Fig. 3b, top). 212 

These patterns were consistent across subjects and experiments (Fig. 3b, bottom, Extended Data 213 

Fig. 5a,b). HFAb coordination strength (the sharpness of HFAb-triggered HFA) was inversely 214 

related to distance between electrodes, with closer sites showing stronger coordination (Fig. 3c, 215 

S5e, Spearman correlation between coordination kurtosis and distance between electrodes, R = -216 

0.25, P < 0.001). 217 

To extract temporal features of the high frequency coordination, we used Principal Component 218 

Analysis (PCA) to reduce the dimensionality of HFAb-triggered HFA across electrode pairs. The 219 

first component (PC1) showed zero-lag synchronized and near-symmetric distributions of high 220 

frequency activity in all subjects, explaining more than 20% of the total variance (Fig. 3d, 221 

Extended Data Fig. 5d,e). We projected HFAb coordination onto PC space and used a 222 

resampling-based consensus K-means clustering technique to identify robust subnetworks of 223 

electrodes based on their scores on the synchronized PC (Extended Data Fig. 5f, see Methods). 224 

The clustering algorithm identified the most stable subnetworks (electrodes that were consistently 225 

grouped together across multiple resampling runs) for each cluster number (K = 2-8, see Extended 226 

Data Fig. 6a, 7a for individual examples). We defined a series of accuracy metrics and determined 227 

the optimal number of clusters through a voting poll over those metrices for each subject (the 228 

cluster number that outperformed the other clusters in more of these metrics) (Extended Data Fig. 229 

6b,c and Extended Data Fig. 7b,c, see Methods). An example clustering result with eight optimal 230 

clusters is shown in Fig. 3e (see Extended Data Fig. 8 for additional examples).  231 
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Next, we investigated whether these clusters were functionally specialized. All subjects (except 232 

one excluded due to insufficient electrodes) showed clusters with distinct cue- and target-evoked 233 

activation profiles (Fig. 3f, see Extended Data Fig. 9 for activation profiles for different cluster 234 

numbers for the individual shown in Fig. 3e, also see Extended Data Fig. 6d and Extended Data 235 

Fig. 7d for additional examples). Clusters activated by cues and targets were labeled as cue- or 236 

target-subnetworks, respectively (Wilcoxon signed-rank test, P < 0.05; FDR corrected for 237 

dependent sample). Cue-subnetworks were predominantly located in occipital and parietal cortices 238 

(e.g., IPS, TPJ, SPL, IPL), while target-subnetworks were more widely distributed across different 239 

brain areas including parietal, motor, premotor, and frontal cortices (Fig. 3g, see Supplementary 240 

Table 2 for locations of cue and target subnetworks for individual subjects).  241 

Lastly, similar to Fig. 1h, we tested whether cue and target-subnetworks could predict trial 242 

outcomes. The density of HFAb within 98-374 ms after sensory cues predicted successful 243 

detection of upcoming targets (binomial test, P < 0.001, FDR corrected for dependent samples). 244 

This prediction was only true for the cue-subnetwork (Fig. 3h) and was not driven by a single 245 

subject (see Extended Data Fig. 10 for more details on the classifier results in both experiments).  246 

As a control, we re-referenced datasets from common average referencing to local composite 247 

referencing (LCR, each electrode was referenced to its nearest neighbors, see Methods), This re-248 

referencing did not alter any of the main results. Together, these findings suggest that large-scale 249 

brain networks are coordinated via HFAbs, with their synchronization identifying functionally 250 

specialized subnetworks that exhibit distinct temporal dynamics. Furthermore, HFAbs in 251 

subnetworks activated by sensory cues were predictive of performance accuracy following cue 252 

onsets. 253 

 254 
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HFAbs in cue-subnetworks precede target-subnetworks  255 

Our observation that HFAb responses in cue-subnetworks predict performance suggests that these 256 

subnetworks play a critical role for successful target detection. This finding raises a key question: 257 

do cue-subnetworks actively route information to target-subnetworks during target processing? If 258 

so, this would imply a directional flow of information between these subnetworks that facilitates 259 

attentional performance. To address this question, we examined information flow between cue and 260 

target-subnetworks. We only considered subjects whose electrode coverage included both cue- and 261 

target-subnetworks (n = 6). We used two different approaches. First, we quantified whether HFAbs 262 

exhibited any temporally ordered activity pattern during the target-to-response period between cue 263 

and target-subnetworks. Individual subjects showed stronger HFA in target-subnetworks within 264 

150 ms after HFAbs in cue-subnetworks (Fig. 4a, Extended Data Fig. 11a, Wilcoxon rank-sum 265 

test, P < 0.05, the opposite pattern was observed in the other direction). On average, HFAbs in 266 

cue-subnetworks led the activity of target-subnetworks and target-subnetworks lagged cue-267 

subnetworks during the target processing period (within 150 ms around the HFAb-triggered HFA, 268 

Wilcoxon rank-sum test, P < 0.001, Fig. 4b). For comparison, no lead-lag patterns were observed 269 

between cue- and target-subnetworks during the cue-to-target interval (P = 0.44, n.s., Extended 270 

Data Fig. 11b). We quantified the peak of these lead-lag relationships for individual subjects. The 271 

HFA in target-subnetworks showed an activity peak following HFAbs in cue-subnetworks, while 272 

the peak of HFA in cue-subnetworks preceded HFAbs in target-subnetworks (Fig. 4c, Wilcoxon 273 

rank-sum test, P < 0.05, 16 ± 7 ms; n = 6). For visualizing the lead/lag pattern in each individual, 274 

we averaged the time-lags between cue and target-subnetworks over different cluster numbers. We 275 

observed that the HFAbs in the occipital, posterior parietal, and frontal areas led over the 276 
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motor/premotor areas during target processing (Fig. 4c, see Extended Data Fig. 11c for more 277 

examples). 278 

 279 

Next, we used delayed mutual information (DMI) to further quantify how information was 280 

directionally coupled between cue and target-subnetworks. DMI can inform about (i) when cue 281 

and target-subnetworks shared the most information relative to target onset, and (ii) the specific 282 

time-lags at which these two subnetworks showed maximum inter-predictability (see Fig. 4e for 283 

an individual example). 284 

The DMI between cue and target-subnetworks showed a peak up to 500 ms after target onset (Fig. 285 

4f, 275 ± 22 ms; n = 6). Time-lag distributions of the maximum DMI between cue and target-286 

subnetworks showed that cue-subnetworks preceded the information in target-subnetworks during 287 

the target processing period (Fig. 4f, Wilcoxon signed-rank test, P < 0.001; 67 ± 16 ms, n = 6). 288 

This pattern was consistent for individual subjects (Fig. 4e,g, see Extended Data Fig. 11d for 289 

more examples) as well as on an average group level (Fig. 4f). The information precession in cue-290 

subnetworks over target-subnetworks was only evident after the target onset. No significant time-291 

lag was observed around the cue onset, indicating this effect is not a reflection of visual hierarchy 292 

activation (Extended Data Fig. 11e). This effect was limited to trials with a valid sensory cue, 293 

where the target appeared as instructed by the visual cue (Fig. 4g).  294 

Overall, these results suggest that brain subnetworks, identified by their network-level HFAb 295 

synchronization, exhibit temporal lags during different functional states. Specifically, when the 296 

cue provides valid spatial information about the target, HFAbs in cue-subnetworks precede those 297 

in target-subnetworks following target onset. 298 

 299 
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Computational modeling of HFAbs through spiking neural networks 300 

We developed a computational model using spiking neural networks 46 to gain mechanistic insights 301 

into HFAbs, their dynamic coupling to low-frequency rhythms, and their coordination across brain 302 

networks. We simulated two interconnected networks, each consisting of 1000 neurons (80% 303 

excitatory, 20% inhibitory; Fig. 5a, Extended Data Fig. 12a, see Methods). Each network was 304 

fed by external input currents primarily to the excitatory population.  305 

We implemented two recording sites on top of each network measuring electrical field dynamics 306 

of postsynaptic and transmembrane potentials from all neurons in that network (Fig. 5a). A non-307 

ohmic filter was used to attenuate higher frequencies in the iEEG signal (Fig. 5b, Extended Data 308 

Fig. 12b,c see Methods). Simulated iEEG signals showed low-frequency spectral peaks 309 

corresponding to network resonance frequencies and high frequency (65–115 Hz), consistent with 310 

experimental data (Fig. 5c). HFAbs were detected as transient oscillatory events of high amplitude 311 

at 65-115Hz (Fig. 5d). 312 

To investigate the neural mechanisms underlying these HFAbs, we calculated the spike density for 313 

the population of neurons, and the HFAb density from each recording site. Burst density correlated 314 

with spike density as compared to bursts with random timings (randomization test, P < 0.05, Fig. 315 

5d). This was further quantified by feeding the network different levels of external current 316 

coherence (Extended Data Fig. 12c). Increasing the input coherence to the network showed a 317 

linear increase in correlation between the HFAb density and the spike density (Spearman 318 

correlation, R = 0.87, P < 0.001, Fig. 5e). This observation is consistent with our experimental 319 

findings that HFAbs are evoked in response to cues and targets, suggesting that they may reflect 320 

large-scale information-carrying events emerging from transiently elevated excitation in local 321 

networks of neurons. 322 
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Next, we examined HFAbs coordination with slower rhythms. HFAb-triggered LFPs at each 323 

recording site showed an evoked responses with low-frequency sidelobes (Fig. 5f), revealing 324 

spectral peaks in low frequencies (< 25 Hz) as well as the burst frequency band (Fig. 5g). The 325 

cross-spectral correlation was dependent on synaptic time constants, external input strength, neural 326 

connectivity strength, and coherent input consistency (Fig. 5g). HFAbs also showed phase 327 

locking to different frequencies in the theta, alpha and beta bands (4-25 Hz, Fig. 5h). These results 328 

are consistent with the prominent local cross-spectral coupling observed in our experimental data, 329 

supporting local neural network mechanisms underlying the coupling of high- and low-frequency 330 

dynamics. 331 

We also tested for possible network mechanisms underlying the decoupling following cue and 332 

target processing. We modeled this scenario through feedforward networks and measured the time-333 

resolved PLV for both networks after feeding one with a brief input pulse (~50% of neurons 334 

receiving in-phase inputs; Fig. 5i, Extended Data Fig. 12e,f). The external impulse 335 

desynchronized both networks, resulting in a transient decoupling of HFAb from low-frequency 336 

rhythms as compared to the baseline (Wilcoxon rank-sum test, P < 0.001, Fig. 5i, Extended Data 337 

Fig. 12g,h). This desynchronization was accompanied with higher burst rate (Extended Data Fig. 338 

12i).  339 

Lastly, we examined HFAb coordination across networks. HFAb-triggered HFA showed different 340 

rhythmically organized coordination patterns between networks depending on inter-network 341 

connectivity and external inputs. Reciprocally connected networks and networks with correlated 342 

external inputs showed synchronized high frequency activity (Fig. 5j), while feedforward 343 

networks showed a lead-lag pattern within 150 ms following HFAbs (Wilcoxon rank-sum test, P 344 

< 0.001, Fig. 5k). In addition to the internally generated rhythmic structure of HFAbs between 345 
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networks, external inputs may also contribute to these rhythmic coordination patterns. A rhythmic 346 

input to either or both networks entrained its rhythm in the coordination of HFAbs between the 347 

two networks (Spearman correlation, R = 0.83, P < 0.001, Fig. 5l,m). 348 

In sum, our modeling results suggest that HFAbs reflect a transition in neural populations into a 349 

state of coherent spiking activity. These HFAbs are phase locked to low-frequency rhythms, but 350 

transient inputs disrupt this coupling. HFAbs are coordinated across interconnected networks or 351 

networks as a function of task structure. 352 

 353 

Discussion 354 

Here we present a novel framework for understanding the mechanisms underlying large-scale 355 

information routing in brain networks at fast timescales. By characterizing high-frequency 356 

activities as discrete burst events (HFAbs), our study identified brain subnetworks with similar 357 

coordination patterns, which tracked the encoding and communication of spatially relevant sensory 358 

cue information within large-scale brain networks. We found that HFAbs were predominantly 359 

synchronized across distributed brain networks in iEEG data, and their network-level 360 

synchronization patterns revealed functionally specialized subnetworks for processing cues and 361 

targets. Importantly, HFAbs in cue-subnetworks following sensory cues predicted trial-by-trial 362 

performance accuracy, and temporally preceded the activity of target-subnetworks during 363 

subsequent target processing, highlighting their role in dynamic attentional information routing. 364 

Using computational modeling, we then showed that HFAbs can emerge as bouts of elevated 365 

excitatory drive to local networks, functioning as fast communication units across the brain. These 366 

findings demonstrate that HFAbs are involved in both forming a brain-wide representation of 367 
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sensory cues and fast communication of these sensory signals to associative brain networks for 368 

detecting upcoming targets and decision-making processes.  369 

 370 

High-frequency activity have been widely observed in human intracranial recordings and is 371 

associated with a wide range of cognitive and circuit functions 24,25,27,31,37,38,44. Instead of 372 

continuous measures, we characterize these activities as discrete burst events, supported by 373 

computational and animal electrophysiology studies emphasizing their circuit-level origins and 374 

their essential roles in long range communications 7,47–53. Through this quantification, we 375 

demonstrated that HFAbs can leverage our understanding of fast attentional information routing 376 

in large-scale brain networks. Previous studies investigating neural mechanisms of selective 377 

attention have predominantly focused on pairwise interactions between brain regions, often 378 

measured by coherence of neural signals in  lower frequency bands 3,54. This pairwise perspective 379 

on neural communication does not fully capture the complexity of brain-wide network dynamics 380 

essential for a detailed and mechanistic view of cognitive functions 20,55. By utilizing HFAbs, our 381 

results offer a large-scale account for understanding information routing and communication at 382 

millisecond timescales at the network level, providing new insight into the mechanisms of 383 

selective attention. 384 

A main finding of our study revealed the synchronized inter-regional temporal structure of network 385 

coordination through HFAbs. We found that the most prominent pattern of high frequency 386 

dynamics in the brain network was zero-lag amplitude synchronization (Fig. 3d). This long-range 387 

synchronization of HFAbs is consistent with previous studies showing phase locking of high 388 

frequency dynamics in brain networks 38–40. Zero-lag synchronization patterns in cortical networks 389 
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are thought to enhance large-scale information processing and facilitate representational states of 390 

sensory information in the brain 2,56–58. While our results cannot directly identify the origins of 391 

these synchronized interactions, two different scenarios might be involved. One potential 392 

synchronizing mechanism may rely on subcortical areas 59–63, particularly higher-order thalamic 393 

nuclei 59,64–67. Our modeling suggests that correlated inputs to distinct neural networks could drive 394 

long-range synchronization (Fig. 5l). Such correlated inputs, if originating from subcortical 395 

structures such as higher-order thalamic nuclei, can facilitate the long-range synchronizations 396 

between separate or weakly connected cortical areas 59,68.  Another potential mechanism would 397 

depend on direct long-range intracortical interactions. We found that cortical synchronization was 398 

largely between areas with similar activation profiles during cognitive functions and spatially 399 

neighboring regions (Fig. 3, Extended Data Fig. 8). Additionally, our modeling suggested that 400 

reciprocally connected networks with similar connectivity strength can result in synchronized 401 

dynamics (Fig. 5j). This zero-lag synchronization induced by reciprocal connections has been 402 

observed experimentally in long-range neuronal interactions 56,57 as well as in network modeling 403 

69. Recent findings in mice support this idea reporting that deep layer 6b neurons, which are 404 

recipient of long-range cortical projection neurons 70, are involved in brain state shifting into a 405 

spiking state, and strong high frequency activity (80–140 Hz); in brain networks 36. While our 406 

modeling and empirical results can support either of these mechanisms, future studies are needed 407 

to explore the extent to which cortico-cortical versus thalamocortical interactions drive and 408 

influence this high frequency synchronization in large-scale cortical networks. 409 

We further showed that network-level baseline synchronization of high-frequency dynamics, 410 

outside of task events, can reliably identify distinct functional brain subnetworks through a 411 

resampling-based consensus clustering framework. While the baseline state did not contain cue or 412 
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target processing periods, it could identify subnetworks with unique activation patterns in response 413 

to those behavioral events (Fig. 3). It is notable that this approach fundamentally diverges from 414 

the most common ones taken to delineate brain network organizations or network-level 415 

communications such as conventional fMRI that is primarily focused on low-frequency BOLD 416 

signal fluctuations 71–73. By leveraging high-frequency dynamics, we show a novel link between 417 

baseline neural activity and task-induced network activation patterns, suggesting that intrinsic 418 

network fluctuations can affect behavioral responses even at millisecond timescales. Identifying 419 

these subnetworks at fast time scales is critical to capture rapid state transitions in brain networks, 420 

which may underlie the temporal organization necessary for adaptive information routing during 421 

behaviorally relevant events 74. This capacity is reflected in our findings, which reveal that brain 422 

subnetworks, identified by their fast, network-level synchronization, exhibit lead-lag interactions 423 

during behavioral events. Specifically, cue-subnetworks led target-subnetworks during target 424 

presentation when spatial cues provided relevant information about target locations (Fig. 4). These 425 

observations uniquely bridge the gap between studies focusing on local and cross-regional 426 

mechanisms of fast information routing  7,44,48,50,52,64,75 and those examining communication in 427 

large-scale brain networks beyond pairwise interactions 20,76,77. 428 

 429 

Another key observation in this study is the coupling dynamics of HFAbs and local low-frequency 430 

activities. We found that the phase-locking of HFAbs to low-frequency dynamics can occur with 431 

random external input patterns in the modeling, and this is a widespread phenomenon in iEEG 432 

signals, consistent with previous studies 37,78,79. However, our findings further suggest that HFAbs 433 

transiently decouple from the phase of local low-frequency activities in response to both cue and 434 

target events (Fig. 2). Our modeling supports this observation, showing that transient inputs, 435 
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whether directly fed into a network (e.g., a visually evoked response from subcortical structures) 436 

or indirectly through a feedforward structure, can interrupt the default state coupling of HFAbs to 437 

low frequencies (Fig. 5i). Network interferences, characterized by brief and strong responses, can 438 

temporarily induce local cross-frequency decoupling possibly by increasing response 439 

heterogeneity and disrupting the timing of inhibitory and excitatory neuron activation 80,81. This 440 

desynchronization can facilitate cognitive processes like selective attention, perception, and 441 

memory retrieval by enhancing new information and suppressing internally regulated activity 442 

states 80,82–86. We observed that HFAb decoupling from low-frequency dynamics, accompanied by 443 

increased HFAb density following cue and target events, resembling a desynchronized up-state, 444 

which is a brain state with activated but desynchronized neural activity across cortical networks. 445 

Importantly, this decoupling was more pronounced in correct trials during both cue and target 446 

processing, further suggesting a role of desynchronization in facilitating accurate cognitive 447 

performance (Fig. 2g).  448 

 449 

In summary, our study provides a novel approach to understanding large-scale cortical 450 

communications, showing that HFAbs act as fast communication units in the brain, supporting 451 

long-range information processing, facilitating attentional information routing, and identifying 452 

distinct and functionally specialized brain subnetworks. 453 

 454 
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 477 

 478 
Fig. 1. HFAb activation profile predicts behavioral outcome on a trial-by-trial basis. a, A 479 
schematic of experiment 1 task outline. Two bars appear on the screen. A transient cue informs 480 
the subject of the most probable location of an upcoming target. A target at perceptual threshold 481 
contrast change appears at a cued or infrequently at an equidistant uncued location after a variable 482 
interval. Subjects report the change detection. b, An example trial of detected transient high-483 
frequency bursts (HFAbs, shown in red) around the cue onset. The brain shows localization of 484 
electrodes across all subjects. c, Normalized HFAb density profiles for individual subjects and 485 
averaged across participants aligned to the cue (left) and target onset (right). d, HFAb responses 486 
to cues (left) and targets (right) grouped by trial outcome. (Each line represents one subject, with 487 
thick lines showing group average, horizontal lines showing significant differences between 488 
groups, and asterisks denoting non-zero responses). e, Correlation of HFAb responses evoked by 489 
cue and target onset for channels with significant activation to either or both cue and target (each 490 
point represents one channel, each line represents regression for one subject, the orange line shows 491 
regression across all channels). (e, g) Group average heatmap 3D rendering of HFAb responses to 492 
(a) cues and (g) targets for correct trials. h, An individual subject example of HFAb responses to 493 
cue and target within 500 ms after the cue and target onset, respectively, for correct and incorrect 494 
trials (black circles indicate electrode locations). i, HFAb responses to targets for valid and invalid 495 
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cue conditions. j, HFAb responses to cues ipsi- and contra-lateral to electrodes. k, Classifier 496 
accuracy in predicting trial outcome based on HFAb density around the cue onset for cue 497 
responsive electrodes and cue unresponsive electrodes (error bars indicate standard error of the 498 
mean across all realizations and cross validations). Red lines indicate significantly higher 499 
prediction accuracy than baseline and chance levels (P < 0.05, binomial test, FDR corrected for 500 
dependent samples). 501 
  502 
  503 
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 504 

 505 
Fig. 2. HFAbs dynamically phase lock to low-frequency LFPs and decouple transiently after 506 
cue and target onsets. a, HFAb-triggered LFP averages across all electrodes for individual 507 
subjects (gray lines) and across all individuals (purple line). b, HFAb-triggered LFP spectrum (top) 508 
and phase locking values (PLV, bottom) across all electrodes (each line represents one subject). c. 509 
PLVs for individual electrodes (each row). Black dots indicate the maximum peak of PLV for each 510 
electrode, and white dashed lines delineate results from individual subjects. d, Example of phase-511 
frequency distribution of HFAbs for an electrode with theta phase locking (top) and beta phase 512 
locking (bottom). e, Time-resolved PLV analysis averaged across all subjects (top) aligned to cue 513 
(left) and target (right) onsets. The proportion of time points where phase locking dropped 514 
significantly below the baseline averaged across all electrodes (bottom, P < 0.05, random 515 
permutation test; thick lines indicate segments significantly different from the chance level, P < 516 
0.05, binomial test, FDR corrected for dependent samples; see Methods). f, An individual brain 517 
heatmap example showing coupling ratio between HFAb and low frequency (4-25 Hz) LFP after 518 
cue (top) and target onsets (bottom) for correct and incorrect trials. g, Similar to f, proportion of 519 
time points with significant decoupling from low frequency LFPs (4-25 Hz) after cue and target 520 
onsets for correct and incorrect trials. (h, i) Regression plots showing correlation of coupling ratios 521 
following cue onset with cue responses (green, h), and coupling ratios following target onset with 522 
target responses (purple, i). Scatter points denote electrodes, lines indicate individual subjects with 523 
orange line showing the regression across all subjects. 524 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 3, 2025. ; https://doi.org/10.1101/2024.09.11.612548doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.11.612548


 

 

 525 

 526 
Fig. 3. Long-range coordination of HFAbs identifies functionally specialized subnetworks. a, 527 
High frequency coordination was measured by calculating HFAb-triggered HFA between 528 
electrode pairs for HFAbs outside of cue/delay and target/response periods (top shows an electrode 529 
pair example, and bottom shows HFAb-triggered HFA averaged over all electrode pairs for 530 
individual subjects). b, Normalized PSD over HFAb-triggered HFA for all electrodes (each 531 
electrode relative to the rest of the network; white dashed lines are the border between subjects). 532 
c, HFAb-triggered HFA for electrodes distanced in four quantiles (25, 50, 75, and 100 mm), from 533 
green (short) to red (long). d, The first two principal components of HFAb-triggered HFA for 534 
individual subjects. e, A pair-wise grouping probability matrix for an individual example with an 535 
optimal number of eight clusters (top, white lines indicate cluster borders, clusters are ordered 536 
from top to bottom by their stability, see Methods). Cluster topography for the K = 8 number of 537 
clusters for an individual subject shown in (bottom). f, Normalized burst densities around cue and 538 
target onsets averaged across electrodes within each cluster for the same subject as in e. (shaded 539 
error bars indicate the standard error of the mean; significant activations are indicated by thicker 540 
lines, P < 0.05, Wilcoxon test). g, Topographical organization of electrodes in clusters that show 541 
significant activation in response to cues and targets across all subjects (i.e., “cue-subnetworks” 542 
and “target-subnetworks”). h, Classifier accuracy based on HFAb density around cue onset for 543 
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cue-subnetworks (purple) and target-subnetworks (green). Error bars indicate the standard error of 544 
the mean across all realizations and cross-validations. Red lines indicate significantly higher 545 
prediction accuracy than the baseline and chance level (binomial test, P < 0.05, FDR corrected for 546 
dependent samples). 547 
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 549 
Fig. 4. Cue-subnetworks precede target-subnetworks during target processing. a, Example of 550 
HFAb-triggered HFA for HFAbs during target processing, when HFA is measured in target-551 
subnetworks relative to HFAbs in cue-subnetworks (purple) vs HFA is measured in cue-552 
subnetworks relative to HFAbs in target-subnetworks (green). Red and blue shades denote 553 
significant difference between directions denoting a cue lead and a target lag respectively 554 
(Wilcoxon rank-sum test, P < 0.05) b, Group-level average of HFAb-triggered HFA, similar to a. 555 
c, HFAb-triggered HFA median peak for electrode pairs corresponding to the same groups as in b 556 
(the Wilcoxon test was used to determine whether there was a difference in the distribution of peak 557 
positions between the two directions. Each row indicates the results for one individual. Error bars 558 
represent the standard error of the mean). d, An individual visualization example of the lead-lag 559 
patterns between electrodes in cue and target-subnetworks (across all cluster numbers) during the 560 
target processing period. The lead and lag temporal patterns are shown in a color gradient from 561 
red to blue. e, Heatmaps of normalized DMI values averaged across all members of the cue and 562 
target-subnetworks. The left panel shows DMI when the target-subnetwork is fixed, and the cue-563 
subnetwork is shifted. The right panel shows DMI when the cue-subnetwork is fixed, and the 564 
target-subnetwork is shifted. The white line indicates the time-lag distribution of DMI peaks across 565 
electrode pairs. The cross signs indicate the median of DMI peak time-lags ± standard error. f, 566 
Group average of DMI across all individuals, similar to e. g, Comparisons of DMI peak 567 
distributions between the two opposite directions (green for shifting the cue-subnetwork and 568 
purple for shifting the target-subnetwork) for trials with valid (right) and invalid cues (left). Each 569 
individual is shown by a cross sign, which refers to the median ± standard error for DMI peaks 570 
across all electrode pairs between the two subnetworks. 571 
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 573 
Fig. 5. Computational modeling of iEEG signals. a, Two interconnected cubic networks of point 574 
source spiking neurons were simulated (bottom panels show raster plots for neurons in each 575 
network). A recording disk was implemented on top of each network to measure neural activity. 576 
b, Example of simulated iEEG signals. c, The power spectral density (PSD) of iEEG signals. d, A 577 
single trial example of spike density and raster (top) detected HFAbs (middle, HFAbs are shown 578 
in red), and HFAb density (bottom). e, HFAb density and spike density show linearly increasing 579 
correlations as input coherence increases. f, HFAb-triggered LFP. g, Cycle-balanced power 580 
spectrum triggered around HFAbs when the input to the network has high (red) or low coherence 581 
(cyan). h, HFAb phase distribution at different frequencies. i, The PLV of HFAbs to low 582 
frequencies after a transient input (thick black line) is fed to the network. (j, k) HFAb-triggered 583 
HFA between (j) reciprocally connected and (k) directional feedforward networks (connections 584 
from N1 to N2, see Extended Data Fig. 12e for further details) with varying connectivity strengths 585 
(purple and green traces show HFAb-triggered HFA when bursts are extracted from N1 and N2, 586 
respectively). l, HFAb-triggered HFA between disconnected networks with shared rhythmic 587 
inputs. m, PSD over the HFAb-triggered HFA for rhythmic inputs of varying frequencies. 588 
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Methods 857 

Experimental model and subject details 858 

Participants. Intracranial recordings were obtained from 12 epilepsy patients who underwent pre-859 

surgical monitoring with implanted grid electrodes. Study 1 included seven patients (35.99 ± 12.42 860 

years; mean ± SD; 5 females; see Helfrich et al., 2018 for further details). Patients were recruited 861 

from the University of California, Irvine Medical Center, USA (n = 6) and California Pacific 862 

Medical Center (CPMC), San Francisco, USA (n = 1). Study 2 included 5 patients (30.20 ± 1186 863 

years; mean ± SD; 1 female, 3 patients were excluded from the original study due to their limited 864 

electrode coverages; see Szczepanski et al., 2014 for further details) from Johns Hopkins Hospital 865 

in Baltimore, MD, USA (N = 1) and Stanford Hospital, CA, USA (N = 4). The electrode placement 866 

was entirely guided by clinical considerations, and all patients provided written informed consent 867 

to participate in the study. All procedures were approved by the Institutional Review Board at each 868 

site, as well as the Committee for Protection of Human Subjects at the University of California, 869 

Berkeley (Protocol number: 2010-02-783) and were in accordance with the Declaration of 870 

Helsinki.  871 

 872 

METHOD DETAILS 873 

Experimental design and procedure  874 

Behavioral tasks. Participants performed a spatial attention task in each experiment. In 875 

experiment 1, participants performed a variant of the Egly-Driver task (Egly et al., 1994; 876 

Fiebelkorn et al., 2013; see Helfrich et al., 2018 for further details) Behavioral data were collected 877 

with Presentation Software (Neurobehavioral Systems). Subjects were seated approximately 60 878 

cm from the laptop screen. Subjects started each trial by pressing a left mouse button. On each 879 
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trial, after appearance of a fixation cross, two bars appeared vertically or horizontally on the screen, 880 

followed by a brief spatial cue (100 ms), presented after 400-800 ms at one of the four corners of 881 

the bar stimuli. The spatial cue indicated the location where the target was most likely to appear 882 

(72% cue validity) and occurred pseudo-randomly in any of the four quadrants. A variable cue-to-883 

target interval (500 – 1700 ms) was introduced after the cue during which participants sustained 884 

spatial attention at the cued location. Targets could randomly appear at any point during the cue-885 

target interval,and  participants released the mouse button to report a detected target. Infrequent 886 

catch trials (10%) during which no actual target appeared were used to track the false alarm rate.  887 

Auditory feedback indicated whether the trial was performed correctly. The target luminance was 888 

adjusted every 15 trials, if necessary, by increasing/decreasing the RGB value, in order to achieve 889 

an overall approximate accuracy of 80%. The experimenter monitored continuous fixation. All 890 

participants responded by using the hand contralateral to the implanted grid, except for participant 891 

S5 who had bilateral grids and responded by using the left hand. Participants performed up to 5 892 

blocks of 60 trials each (190 trials ± 67; mean ± SD).  893 

Experiment 2 (Extended Data Fig. 1) used EPrime software (Psychology Software Tools) to 894 

control stimulus presentation (see Szczepanski et al., 2014 for more details). Subjects were seated 895 

approximately 60 cm away from the laptop screen. Each trial began with red circles (distractors) 896 

dynamically switching on and off on a dark background. A spatial cue guided participants to the 897 

right or left hemifield, and the cue remained on the screen throughout the trial. Subjects were 898 

instructed to maintain fixation and only covertly shift their attention to the cued hemifield. Through 899 

the trial, the experimenter monitored eye movements and ensured central fixation. After a variable 900 

cue-target interval (1000 – 2000 ms), a blue square target appeared on the screen (∼62/38% on the 901 

cued/uncued hemifields). The target remained on the screen until the subject responded or the trial 902 
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ended (2000 ms timed out). Subjects were asked to report a target seen in a cued hemifield by 903 

pressing a a button while withholding a response if the target was seen in a non-cued hemifield. 904 

Targets appeared randomly during the cue-target interval. Three out of five subjects responded 905 

with the hand ipsilateral to the grid. Each participant completed six blocks (each 42 trials). The 906 

experimenter monitored eye movements and ensured central fixation throughout both experiments. 907 

 908 

ECoG data acquisition. Electrophysiological and peripheral (photodiode) data were collected 909 

using a Nihon Kohden recording system at UC Irvine, CPMC and Children’s Hospital (128/256 910 

channel, 1000/5000 Hz sampling rate), a Tucker Davis Technologies recording system at Stanford 911 

(128 channel, 3052 Hz sampling rate), or a Natus Medical Stellate Harmonie recording system at 912 

Johns Hopkins (128 channel, 1000 Hz sampling rate). 913 

 914 

Electrode localization. In experiment 1, the electrodes were localized by transforming both the 915 

pre-implant MRI and the post-implant computed tomography CT into Talairach space. For all 916 

subjects, MNI coordinates  were also calculated for each electrode location, which was used for 917 

group-level visualizations (see Helfrich et al., 2018).In experiment 2, post-implant CT was aligned 918 

to the pre-implant MRI and all were transformed into MNI space across subjects (see Szczepanski 919 

et al., 2014). Strip or grid electrodes were implanted with 1 cm spacing. One participant (S5) had 920 

an additional 8 contact depth probe inserted into the occipital cortex. Electrode positions were 921 

primarily determined using the VTPM atlas (Wang et al., 2015). For electrodes without an assigned 922 

label, the process was repeated using the AFNI atlas (Lancaster et al., 1997). The assigned 923 

positions were manually verified and adjusted based on electrode reconstructions visualized in 924 

native Talairach space. Electrodes near the Temporoparietal Junction (TPJ) were manually 925 
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localized, as TPJ definitions were not available in either the VTPM or AFNI atlases (see Helfrich 926 

et al., 2018 for more details). 927 

 928 

iEEG Data. Preprocessing: All intracranial EEG channels were manually examined by a 929 

neurologist for epileptiform activity and artifacts. Affected channels and epochs were excluded. 930 

The raw data was preprocessed using the EEGLAB and Fieldtrip toolbox in MATLAB. 931 

Preprocessing included notch filtering at 60 Hz and all harmonics, as well as referencing the data 932 

to the common mean of electrodes as previously described 4,29. Then, the data was time locked to 933 

individual trials. Trials were 8 seconds long, -3 to +5 seconds around cue onsets in the experiment 934 

1 and -2 to +6 seconds around cue onsets in the experiment 2. As a control, we re-referenced the 935 

datasets from common average referencing to local composite referencing (LCR), a spatial 936 

Laplacian estimate relative to nearest neighbors. This re-referencing did not alter the main results. 937 

 938 

Analysis of high frequency activity bursts (HFAbs) 939 

HFAb detection and density analysis. We adopted an adaptive burst detection approach, similar 940 

to previous work 7, to identify high-frequency oscillatory bursts (65-115 Hz) at each electrode. 941 

The frequency band was selected based on spectral peaks observed across all individuals (87 Hz 942 

trials ± 14; mean ± SD) and in the modeling. Similar analyses were conducted for a broader band 943 

(65-175 Hz) and the low gamma band (35-65 Hz). While the broader band produced similar results, 944 

the low gamma band yielded inconsistent responses and noisy clustering. We selected the 945 

frequency band based on spectral peaks across individuals and in the modeling. First, we applied 946 

a zero-phase Butterworth bandpass filter to the padded signal and then calculated the analytic 947 
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signal x(t) using the Hilbert transform. We extracted the instantaneous amplitude as the real part 948 

of the analytic signal 𝑧(𝑡) following eq. 1:  949 

𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) = 𝑎(𝑡)𝑒!"($)     eq. 1 950 

where 𝑦(𝑡) is the Hilbert transform of 𝑥(𝑡):  951 

𝑦(𝑡) = 	 &
'
	∫ (())

$*	)
,-
*- 	𝑑𝜏 .      eq. 2 952 

The instantaneous energy 89 𝐼𝐸(𝑡)	of the signal is calculated from its Hilbert transform: 953 

𝐼𝐸(𝑡) = 	∫ 𝐻.(𝑡, 𝜔)	𝑑𝜔/!
0       eq. 3 954 

𝜔(𝑡) = 1"($)
1$

         eq. 4 955 

where 𝜔(𝑡) corresponds to instantaneous angular velocity. If the frequency band is narrow and if 956 

the instantaneous frequency (eq. 4) is small enough, it can be approximated by squared 𝑎(𝑡), which 957 

is the instantaneous amplitude. The marginal mean energy of the signal then can be estimated as 958 

eq. 5:  959 

𝐼𝐸888 = 	 &
2 ∫ 𝑎(𝑡).2

0 	𝑑𝑡       eq. 5 960 

where T represents the duration of the signal. For skewed energy distributions in empirical data, 961 

we determined a threshold by setting it to 3.3 times the standard deviation of a half-normal 962 

distribution based on the median energy, plus the mean energy. 963 

To qualify as a burst, the energy level had to exceed this threshold for at least 1.5 cycles of the 964 

upper bond frequency, and the instantaneous amplitude needed to surpass √2	times the RMS of 965 

the peaks. Burst boundaries were marked by the closest points to a burst peak where either the 966 

instantaneous energy fell below the signal's mean energy or the deviation in instantaneous 967 

frequency exceeded the mean change plus two standard deviations. This was to exclude multi-968 

component or noisy events. Bursts were considered significant if their duration was at least 2.5 969 
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times the upper bond frequency cycle and exceeded the average span of adjacent local minima of 970 

the energy function. Finally, when bursts were too close (less than five frequency cycles apart), 971 

only the burst with the higher energy peak was kept. 972 

To estimate how HFAb events are distributed over time, we calculate the HFAb density by 973 

convolving a vector of burst events with a gaussian window of 500 ms and a standard deviation of 974 

100ms. After estimating the HFAb density for each channel and trial, we investigated whether the 975 

cue and target stimuli affected burst density. For each electrode, the average burst density aligned 976 

to the cue and target onsets were calculated separately. Following that, we normalized timeseries 977 

to the baseline (1000 ms before each event onset) by subtracting the mean and dividing it by the 978 

standard deviation (see Fig. 1c). This is a similar approach to the peri-stimulus time histogram 979 

(PSTH) for spike trains 90. 980 

 981 

Visualization of individual and group average responses on 3D brains. To visualize how HFAb 982 

responses were topographically organized in the 3D brains, we plotted both individual (Extended 983 

Data Fig. 1e, 2c) and group responses to cue (Fig. 1f) and target onset (Fig. 1g). Each electrode 984 

value was calculated as the mean of Z-scores within 500 ms of cue and target onset. For individual 985 

subjects, the plotted value for each electrode was linearly attenuated with distance from the 986 

electrode and for a sphere of 1 cm radius (illustrating correct versus incorrect trials separately, Fig. 987 

1h, Extended Data Fig. 1e,2c). The group average plot (Fig. 1f,g, Extended Data Fig. 2b) was 988 

calculated using electrode locations from both experiments to better cover the entire brain. The 989 

MNI coordinates of electrodes were used for rendering on a template brain (subject S4 from 990 

experiment 1 and subject S12 from experiment 2 were excluded due to suboptimal wrapping of 991 

Tal to MNI spaces). We set the value of all mesh surfaces to zero for each subject. Then, similar 992 
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to the plotting for individual data, we calculated the value for mesh surfaces by using linear 993 

attenuation (the sphere radius was set to 2.5 cm in order to achieve a smoother visualization of the 994 

whole brain). As a last step, we averaged the surface values across all subjects to find consistent 995 

patterns of activations for the cue and target. We plotted the data onto 3D brain for correct and 996 

incorrect trials separately. 997 

 998 

Statistical analysis of HFAb responses to cues and targets events. After calculating the burst 999 

density and finding PSTH for each channel, we examined whether the HFAb responses evoked by 1000 

cues (within a window of 500 ms after cue onset) and targets (750 ms after target) were 1001 

significantly different from baseline. This analysis was done at the network level. The average 1002 

responses of electrodes within the defined time window were determined using the normalized 1003 

HFAb density for each channel. Wilcoxon signed-rank tests were then used to examine if there 1004 

was a non-zero response at the network level to cue and target onsets. Also, we performed a linear 1005 

regression analysis of the cue and target responses in electrodes under the null hypothesis that the 1006 

cue and target responses are independent (Fig. 1e).  1007 

To test whether cue and target responses were different when grouped by trial outcomes, we used 1008 

the Kruskial Wallis test under the null hypothesis that cue, and target responses do not differ by 1009 

outcome condition. For pairwise comparisons between different groups, we used Dunn's test 91 1010 

with Tukey-Kramer multiple comparison correction (Fig. 1d). 1011 

We also tested whether and when burst density profiles in correct trials were different compared 1012 

with other outcome conditions. We used the mean of HFAb-density in correct trials as a test 1013 

statistic. We then randomly selected 1000 samples by permuting trial outcome labels and for each 1014 

randomly selected sample computed the 95% confidence intervals (CIs) around the mean. For 1015 
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multiple comparison correction, we repeated the random permutation 1000 times and constructed 1016 

95% CIs on all 1000 CIs of randomly selected samples under the null hypothesis that the HFAb-1017 

density for correct trials was not different from randomly labeled trials at any timepoint relative to 1018 

cue and target onsets separately (Extended Data Fig. 2a). 1019 

 1020 

Identifying cue-responsive electrodes. We identified Cue+/- electrodes by determining increased 1021 

HFAb rate or density profile within window of 500 ms after cue onsets. For each electrode, we 1022 

compared the average HFAb density following cue onset with that at baseline using Wilcoxon 1023 

rank-sum test. Electrodes with significant increases in HFAb rate after cue onset were labeled as 1024 

Cue+ electrodes, while the remaining electrodes were labeled as Cue- electrodes, which was 1025 

subsequently used in the classification (Fig. 1k).  1026 

 1027 

Generalized Linear Mixed Effect Models. We used generalized linear mixed effects (GLMEs) 1028 

models to examine the effects of each task variable on HFAb response to cue and target events. 1029 

Three main predictors were used for the independent variables: Laterality (if the cue was either 1030 

ipsilateral or contralateral to the electrode) with two levels (Ipsi and Contra), Validity (if the target 1031 

appeared at the cued location) with two levels (valid and invalid), and trial outcome with four 1032 

levels (Correct hit, False alarm, Correct Rejection, Miss). Since not all subjects had trials for all 1033 

four outcome conditions, an alternative analysis also considered outcome as a binary variable 1034 

(Correct and Incorrect) with a logit link function. The random effect was determined by 1035 

considering groups as subject and channel labels. The response variable was either the mean burst 1036 

density in response to the target or the cue. The GLME is then formalized as shown in eq. 6: 1037 
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𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒345/$7895$ = 𝐿𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦 + 𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦	 + 𝑂𝑢𝑡𝑐𝑜𝑚𝑒	 + (1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡) + (1|𝐶ℎ𝑎𝑛𝑛𝑒𝑙) +1038 

𝑏 + 	𝜀        eq. 6 1039 

 1040 

Training classifiers for predicting trial outcome based on HFAb density around cue onset. A 1041 

time-resolved classification approach was used to determine how accurately HFAb responses 1042 

evoked by sensory cues could predict trial outcomes. First, we selected electrodes that showed a 1043 

significant HFAb responses to the cue presentation (Cue+ electrodes, see above), for which we 1044 

then calculated the average HFAb density for Cue+ electrodes for each trial and subject. Next, we 1045 

tested whether the average burst density in sliding windows around the cue onset could predict the 1046 

outcome at the trial level with a sliding window of 350 ms and a step of 25 ms. We used binary 1047 

Support Vector Machine (SVM) with one-to-one comparisons of HFAb density in sliding windows 1048 

with five folds of cross-validation. For training each SVM, a vector of the HFAb density in each 1049 

sliding window was used along with a vector of outcome labels ("Correct" = 1, "Incorrect" = 0). 1050 

The classifier used a Gaussian radial basis function kernel with a scaling factor of one. We assured 1051 

that the number of correct and incorrect trials used in the training was identical, to prevent sample 1052 

size biases. As the number of incorrect trials were lower than the number of correct trials, we 1053 

randomly sampled correct trials with a sampling size equal to the number of incorrect trials in each 1054 

fold. For each sliding window, we trained the classifier 1000 times and calculated the average 1055 

accuracy and confusion matrix across all iterations and folds. (Fig. 1k). 1056 

To determine whether HFAb density after cue onset could more accurately predict trial outcome 1057 

than chance and baseline, we used a binomial test on the accuracy of each window against the 1058 

maximum value of baseline and chance-level prediction accuracy. After obtaining a p-value for 1059 

each binomial test, we corrected the p-values using false discovery rate (FDR) for dependent 1060 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 3, 2025. ; https://doi.org/10.1101/2024.09.11.612548doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.11.612548


 

 

samples with a 0.05 alpha level 92 to correct for multiple comparisons error rate across all windows. 1061 

We performed this procedure separately for each experiment (Fig. 1k, Extended Data Fig. 3h). 1062 

In our main analysis, we pooled data across all subjects in each experiment due to the low number 1063 

of trials per subject. However, to ensure that the results were not solely dependent on one subject, 1064 

we ran a control analysis in which one subject was left out each time and the classifier was trained 1065 

and tested. Controlled analyses in both experiments demonstrated that our observation was not 1066 

based solely on one subject (Extended Data Fig. 3i). We used a similar approach for training the 1067 

classifier on cue and target-subnetworks to train the classifier on cue and target-subnetworks, as 1068 

further detailed in the 'Identifying synchronous subnetworks' section.   1069 

 1070 

HFAb-triggered LFP analysis 1071 

We asked whether HFAbs on average were systematically related to any evoked potentials at lower 1072 

frequencies. To address this question, we extracted a segment of 2 seconds around each burst (1 1073 

second before and after) and calculated the average HFAb-triggered potential for each electrode. 1074 

The HFAb-triggered LFP was then averaged across all electrodes in each subject (Fig. 2a). A 1075 

similar analysis was performed on the simulation results, but with a duration window of one second 1076 

around HFAbs due to shorter trial lengths in simulations (Fig. 5f).  1077 

 1078 

HFAb-triggered spectrum and Phase Locking Value (PLV) analysis. To understand the 1079 

spectral dynamics of HFAbs and local population activities, we performed HFAb-triggered 1080 

spectrum analyses using HFAb centers as discrete points. We estimated the PLV of points (burst 1081 

centers) to their local field activity dynamics (both in the modeling and electrophysiological data) 1082 

in order to investigate the phase synchronization of HFAbs within their local networks. We 1083 
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calculated the HFAb-triggered spectrum using an adaptive window around HFAbs. We extracted 1084 

a window centered around each selected point (HFAb center), which covered 2.5 cycles of the 1085 

frequency of interest before and after the selected point. This window was then multiplied by a 1086 

Hanning window. We estimated the power spectrum for each window using the Fast Fourier 1087 

Transform (FFT) for frequencies ranging from 1 Hz to 100 Hz. To account for trial-wise power 1088 

variations, triggered spectrum estimates were normalized by dividing by total power. We averaged 1089 

spectrum estimates across all points and trials to calculate the final HFAb-triggered spectrum. 1090 

Following the analysis of the HFAb-triggered spectrum, a PLV calculation was performed to 1091 

quantify the level of phase consistency of the HFAbs across trials for the frequencies of interest. 1092 

The phase angle for each frequency was calculated based on the FFT results from the HFAb-1093 

triggered spectrum analysis. The PLV of HFAbs at each frequency was then calculated as the mean 1094 

resultant in eq. 7: 1095 

PLV(f) = T&
:
∑ 𝑒!;",$:
<=& T    eq. 7 1096 

where N is the total number of HFAbs and 𝜙>,< denotes the phase angle for the nth HFAb at 1097 

frequency f. The statistical significance of the observed PLV values was determined using a non-1098 

parametric permutation test with 1000 permutations and the Rayleigh test corrected for multiple 1099 

comparisons, at 0.05. Peaks that passed both tests and had a prominence of 25% higher than the 1100 

PLV range were considered significant (shown in black dots in Fig. 2c).  1101 

 1102 

Time-resolved PLV analysis. To quantify the temporal dynamics of the phase synchronization of 1103 

HFAbs with the low frequency LFP during cue and target processing, we extracted the phase of 1104 

HFAbs at each frequency as explained above. Then, we used a sliding window of 500 ms with a 1105 

step of 25 ms between -1500 and 1500 ms around the cue and target onsets separately. PLV was 1106 
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calculated for each sliding window and across all trials (different types of trials were analyzed 1107 

separately, e.g., correct trials and incorrect trials). We set a minimum number of data points of 50 1108 

bursts for the analysis (to achieve reliable statistics on circular data,  Fisher, 1995). We measured 1109 

the PLV for 1000 samples of 25 HFAbs drawn randomly from a population of HFAbs in each time 1110 

bin to control for the number of bursts. The PLV for each time bin was calculated as the average 1111 

PLV across all randomly drawn samples. The average PLV value for each subject and for all 1112 

subjects in each experiment was calculated separately. 1113 

To test whether HFAb phase synchronization differed during cue and target processing, we used a 1114 

channel-specific randomization test. For each recording channel and time bin, 1000 subsamples of 1115 

HFAbs were randomly selected from the baseline period (within 1 second before each event). For 1116 

each channel, each time bin, and each frequency, we calculated the upper and lower bond CIs 1117 

(2.5% most extreme PLVs). For multiple comparison correction, we repeated this procedure 1000 1118 

time and found the most extreme 2.5% value across all CIs for time bins under the null hypothesis 1119 

that the PLV for each time bin and frequency is not significantly different from the baseline value. 1120 

Each time-frequency bin was considered significant if it differed from the critical values 1121 

(Extended Data Fig. 4d). Each electrode and frequency band (theta/alpha (4-14 Hz) and beta (15-1122 

25 Hz)) for a time bin was considered significant if it showed a significantly different PLV from 1123 

the baseline in more than 25% of the frequency points in that frequency band. Next, we computed 1124 

the mean number of electrodes with significantly different PLVs than the randomized PLV 1125 

distribution for each subject. Using the binomial test, we determined whether the proportion of 1126 

electrodes with significantly lower PLV after the cue and target onset was different from the 1127 

baseline level as well as the chance level (5%, Fig. 2e). To adjust for multiple comparisons, we 1128 

used FDR for dependent samples and an alpha level of 0.05. 1129 
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We also performed a control analysis to ensure that event-evoked iEEG signals are not 1130 

confounding the variation in synchronization. First, we extracted -1.5 to 1.5 seconds around cue- 1131 

and target-aligned iEEG signals for each electrode and trial. We averaged the data across all trials 1132 

and removed the average event-triggered iEEG signal from individual trials. The same 1133 

synchronization and statistical analyses were then performed on the trial with event-evoked iEEG 1134 

subtracted. Subtraction of event-evoked iEEG did not change the main results pattern (Extended 1135 

Data Fig. 4e). 1136 

 1137 

Analysis of Coupling ratio. A Coupling Ratio (CR) index was defined to compare PLV after cue 1138 

and target events as compared to baseline. We used this CR index also to visualize coupling 1139 

variation in both 3D brain renderings (Fig. 2f), and the average network level coupling analysis 1140 

(Fig. 2h,i). We calculated the coupling ratio by: 1141 

𝐶𝑅 = @AB%&%$'*	@AB()*%+,$%
@AB()*%+,$%

     eq. 8 1142 

Where the 𝑃𝐿𝑉C7D5E!<5 is the average PLV for each electrode within 1 second before the event, and 1143 

𝑃𝐿𝑉5F5<$ is the average PLV for each electrode within 0.5 seconds after the event. In this context, 1144 

network decoupling is defined as a negative CR value indicating a reduction in PLV relative to the 1145 

baseline. We show the CR value at both cue and target events for each subject.  1146 

We also used GLME models to investigate the effect of cue and target response on the coupling 1147 

ratio following cue and target onsets (Fig. 2h,i). The GLME is formalized as shown in eq. 9: 1148 

𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔	𝑅𝑎𝑡𝑖𝑜345/$7895$ = 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒345 + 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒$7895$ 	+ (1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡) + 𝑏 + 	𝜀   eq. 9  1149 

 1150 

Quantification and Spectral analysis of HFAb-triggered HFA 1151 
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We calculated the interaction between HFAbs and HFA between each pair of electrodes. To 1152 

estimate HFA, first we used a zero-phase Butterworth filter with cut-off frequencies of 65 Hz and 1153 

175 Hz to bandpass filter the signal. We chose the HFA frequency band broader to capture larger 1154 

spectral content (similar results were obtained by choosing 65-115 Hz band). Next, we performed 1155 

a Hilbert transform and used the real part of the analytical signal as HFA amplitude (eq. 1). We 1156 

extracted a duration of one second around each HFAb from the HFA signal. We then calculated 1157 

the HFAb-triggered HFA for each individual burst event as well as the average value for all bursts 1158 

between each pair of electrodes. Our main analyses were restricted to HFAb-triggered HFA that 1159 

occurred outside of the main behavioral epochs; either before cues or after target detection (for 1160 

those without a response 1 second following target presentation). To control for any burst-1161 

independent correlations of iEEG signals across electrodes, we first calculated the HFAb-triggered 1162 

HFA using randomly assigned burst times. Each burst was jittered with a random time lag of ±1000 1163 

ms. We then subtracted this jittered HFAb-triggered HFA from the original for further analysis. 1164 

We calculated the spectral power of HFAb-triggered HFA across all electrode pairs to assess how 1165 

HFA is organized relative to HFAbs recorded on other channels. The power spectral density was 1166 

computed over the ±500 ms time window using a hanning taper. Additionally, we analyzed peak 1167 

prominence for all pairs and plotted the distribution of spectral peaks. For each pair of electrodes, 1168 

we extracted the prominent spectral peaks and plotted their distribution.  1169 

 1170 

Dimensionality reduction of high-frequency coordination patterns. To identify prominent 1171 

patterns of high-frequency activity coordination within the brain network, we analyzed a high-1172 

dimensional space of HFAb-triggered HFA across all electrode pairs for each subject, with each 1173 
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electrode pair representing a single dimension. Using the HFAb-triggered HFA population, we 1174 

calculated the covariance matrix C by: 1175 

𝐶 = &
<*&

∑ (𝑋! − 𝑋8)(𝑋! − 𝑋8)2<
!=&      eq. 10 1176 

where 𝑋! shows each HFAb-triggered HFA time series, n is the total number of electrode pairs, 𝑋8 1177 

is the marginal mean, and 𝑋2is the transpose matrix of 𝑋. We found the eigenvectors of C as in 1178 

eq. 11:   1179 

𝐶 = 𝑉𝐷𝑉2 	        eq. 11 1180 

where V columns are the eigenvectors and principal components (PCs), and D contains 1181 

eigenvalues indicating how much variance each component explains. In all participants, PC1 1182 

showed a near-symmetric activity state and explained more than 10% of variance in HFAb-1183 

triggered HFA dynamics over the population of electrode pairs (we used multistep Wilcoxon rank-1184 

sum test to examine if there was asymmetry of HFA within mirrored time windows around the 1185 

HFAbs). By projecting the original data to the PC vector space, we calculated the HFAb-triggered 1186 

HFA scores as: 1187 

𝑆𝑐𝑜𝑟𝑒 = 𝑋𝐶        eq. 12 1188 

We then used the scores of electrode pairs on the first component as their loading values on the 1189 

synchronous component of the population. 1190 

 1191 

Identifying synchronous subnetworks. Based on the scores of each electrode pair on the 1192 

synchronous principal component, we generated a network synchrony matrix that describes 1193 

synchronous inter-electrode interactions. For each electrode, we then defined a vector of variables 1194 

with a dimension equal to the total number of electrodes. Each element of this vector describes the 1195 

score of an electrode pair on the synchronous component. This vector was defined for all 1196 
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electrodes, which generated a matrix in which each row represented one observation (electrode) 1197 

and each column represented the score of the observed electrode on another electrode. 1198 

𝑆! = 	𝑆𝑐𝑜𝑟𝑒	(𝑋𝑖, 1: 𝑛)       eq. 13  1199 

Using this matrix, we clustered the electrodes using resampling-based consensus K-Means 1200 

algorithm with a correlational defined distance as in eq. 14: 1201 

di,j = 1 - r(Si , Sj )        eq. 14 1202 

where di,j is the correlation distance between two electrodes i and j. The correlational distance 1203 

between two electrodes is low when the coordination between them is synchronous, and when they 1204 

show similar coordination patterns to the rest of the network. First, we used several clustering 1205 

indices, including Hubert, Silhouette, Davies-Bouldin, Calinski-Harabasz, Hartigan, 1206 

Homogeneity, and Gap, to find an optimal range of cluster numbers (between 2 and 8 for all 1207 

subjects) 94–97. 1208 

For each cluster number, we ran the K-means algorithm 1000 times. The sample size was 1209 

subsampled and only 25 percent of electrodes were randomly selected for each clustering (we 1210 

ensured that each cluster had at least an average of 5 data points). After running the clustering 1211 

1000 times, a probability matrix for electrode pairs was defined as the ratio of numbers that 1212 

electrode pairs clustered together, divided by the number of electrode pairs in the same random 1213 

sampling for K-Means clustering. This ratio was calculated for all electrode pairs and used to 1214 

create a matrix of pair-wise grouping probabilities. We then ran a second K-means clustering 1215 

algorithm on this matrix to identify clusters that were similar in their network-level pair-wise 1216 

grouping likelihood. Using a similar approach and random sampling of electrodes, we generated 1217 

another pair-wise grouping probability matrix indicating how often electrodes were clustered 1218 
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together based on their pair-wise grouping likelihood (Extended Data Fig. 5e). Using this 1219 

hierarchically defined pair-wise clustering likelihood, we ran a final K-means clustering on all 1220 

electrodes, labeling them according to the probability of being stably grouped together for each 1221 

cluster number. For each K (cluster number), we calculated clustering accuracy, confusion 1222 

(probability of non-diagonal clusters), a confusion rank, and a ratio from dividing median accuracy 1223 

(diagonals) by median confusion. We normalized each of the measures between 0 and 1 (1 showing 1224 

the best, and 0 showing the worst performance between all clusters). We used these four measures 1225 

and in a non-parametric vote, we chose the cluster number that outperformed others in this voting 1226 

pool. This non-parametric measure shows how well each K performs to detect more stable clusters 1227 

with high accuracy and low confusion level and estimate the optimal number of clusters. While 1228 

there is no definitive answer on what number of clusters is the best, we selected the optimal number 1229 

of clusters using this method to conduct further analysis. In summary, this clustering technique 1230 

reduces clustering biases caused by outlier electrode pairs in all clustering realizations as well as 1231 

stabilizes clusters. 1232 

To determine whether identified clusters were functionally specialized, we compared their 1233 

responses evoked by cues and targets to their baseline activity levels. We calculated the averaged 1234 

baseline normalized burst density within windows of 500 ms after cue onset and 750 ms after target 1235 

onset. The Wilcoxon test was used to determine if this response was non-zero across the electrodes 1236 

in each subnetwork. We corrected for multiple comparisons by using FDR for dependent samples 1237 

with an alpha level of 0.05. Clusters that were significantly activated by cue events are referred to 1238 

as “cue-subnetworks” and clusters that were significantly activated by target events are referred to 1239 

as “target-subnetworks". The cue and target-subnetworks were found in each data set for the 1240 

optimal number of clusters. For datasets, for which the optimal number of clusters did not contain 1241 
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distinct cue and target-subnetworks, if existed, we chose the next K (cluster number) with highest 1242 

ranking in the clustering measures that contained both subnetworks. 1243 

 1244 

Time-lag analysis between cue and target-subnetworks 1245 

We calculated the HFAb-triggered-HFA for pairs of electrodes during the period between the 1246 

target onset and the manual response to understand how the HFAbs were temporally ordered after 1247 

the target onset in both the cue and target-subnetworks. Next, we compared HFAb-triggered HFA 1248 

between electrodes in cue- and target-subnetworks to determine whether there was any asymmetry 1249 

in the distribution of HFAbs between the two subnetworks. A total of six subjects (3 in experiment 1250 

1 and 3 in experiment 2) showed both stable cue and target-subnetworks. We then calculated once 1251 

the HFAb-triggered HFA when HFA in the target-subnetwork was measured around the HFAbs 1252 

in cue-subnetworks, and when the HFA in the cue-subnetwork was measured around the HFAbs 1253 

in target-subnetworks. A lead state was indicated by HFAbs followed by stronger HFA power; a 1254 

lag state was when HFAbs followed stronger HFA power. First, we measured the maximum 1255 

asymmetry around the burst onset across all subjects (by calculating the absolute difference 1256 

between windows of varying lengths, 25 ms to 250 ms every 25 ms). We then calculated the 1257 

averaged HFAb-triggered-HFA within 150 ms of burst onsets where asymmetry was at its 1258 

maximum. Next, we asked if the value differed based on the directionality of the two subnetworks. 1259 

For both directions, we used the Wilcoxon test to determine whether the asymmetry around burst 1260 

onset is non-zero. Additionally, we tested whether HFAb-triggered HFA differs between the two 1261 

directions after and before bursts. 1262 

For each subject, we visualized the lead/lag interactions between stable cue and target-1263 

subnetworks. To achieve a better visualization of lead/lag interactions, we measured the HFA peak 1264 
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time for each electrode in cue/target-subnetworks relative to HFAb onset across all cluster 1265 

numbers. Each electrode that was a member of the target-subnetwork or the cue-subnetwork was 1266 

analyzed to determine its median peak-time-lag relative to the other cluster members. A median 1267 

peak-time-lag of all electrodes satisfying this condition was then plotted, with red representing a 1268 

lead, and blue representing a lag (Fig. 4d, Extended Data Fig. 11c).    1269 

 1270 

Delayed Mutual Information Analysis. We used mutual information (MI) which is a non-linear 1271 

metric used in information theory to estimate the shared information between different time 1272 

segments in two electrodes to find where their mutual predictability is maximized. For each 1273 

electrode, we extracted data (HFAb density) from -1500 ms to 1500 ms around the target onset 1274 

(and for the control analysis, around the cue onset). We normalized the data and calculated MI for 1275 

segments of 750 ms sliding every 50 ms. The MI between electrodes X and Y is given by eq. 15: 1276 

 1277 

MI(X,Y)= ∑G∈I- 	∑J∈K- 	p(x, y)	log b
L(G,J)
L(G)L(J)

c   eq. 15 1278 

 1279 

where p(x,y) is the joint probability distribution function of each windowed segment of electrodes 1280 

X and Y, and p(x) and p(y) are their marginal probability distributions. We estimated the 1281 

probability distribution for each variable and for the joint distributions using a histogram-based 1282 

approach and binning the data (the number of bins was selected based on the Freedman-Diaconis 1283 

rule 98 to balance the trade-off between estimation resolution and statistical reliability. 1284 

To further quantify how information is directionally coupled between cue and target-subnetworks, 1285 

we calculated delayed mutual information (DMI). The DMI was calculated by comparing the 1286 

temporal dynamics and dependencies between these two subnetworks. 1287 
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The DMI between X and Y was calculated similar to MI, except that one of the timeseries was 1288 

delayed incrementally to determine whether the past of one electrode is a better predictor of the 1289 

future of the other electrode. The delay time-lag ranged from -500ms to 500ms with a step of 25ms, 1290 

as in eq. 16. 1291 

DMI(X,Y) = ∑G∈I- 	∑J∈K-. 	p(x, y)	log b
L(G,J)
L(G)L(J)

c  eq. 16 1292 

where	XM is segmented windows of electrode X, and 	YMN 	is segmented windows of electrode Y 1293 

shifted by a time lag of τ. 1294 

The DMI analysis of each electrode pair can inform us about (i) when the electrodes showed 1295 

maximum inter-predictability relative to an event onset (e.g., target), and (ii) at what time-lag the 1296 

inter-predictability was maximized. To address this question, we extracted the DMI peaks in a 2D 1297 

space, which gave us both the time-lag and the timepoint relative to the event onset where two 1298 

electrodes showed maximum DMI values. We then asked if the time-lag of this peak is different 1299 

between electrodes in the cue-subnetworks and electrodes in the target-subnetworks. For example, 1300 

when we shifted the timeseries of electrodes in target-subnetworks, for each electrode in the cue-1301 

subnetwork, we measured its mean DMI relative to electrodes in target-subnetworks. We 1302 

determined at what time lag and at what time relative to target onset DMI was maximized. We 1303 

used the Wilcoxon test to see if the maximum DMI time-lag (τOPG	) occurred between electrodes 1304 

in cue and target-subnetworks was non-zero. The lead and lag patterns in inter-predictability 1305 

between cue and target-subnetworks were then determined by the sign of the average over τOPG	for 1306 

all electrodes in the shifting subnetworks.   1307 

 1308 

Modeling iEEG by spiking neural networks 1309 
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We investigated high frequency activity in general and high frequency burst events in particular 1310 

using a limited network of two recording sites placed on two interconnected networks of spiking 1311 

neurons. For modeling the spiking networks, we used a framework described in 7. Neuronal point-1312 

source models can accurately simulate electrical fields in cortical neural networks 99. Two cubic 1313 

neuronal structures were simulated in three dimensions. Synaptic dynamics and connectivity 1314 

patterns were implemented as explained in 7. Each cubic network consisted of 1000 neurons (10 x 1315 

10 x 10, xyz). We modeled neurons as spherically symmetric points in a 3D grid (with r units on 1316 

each axis). A recording disk was implemented on top of each network at a distance three times 1317 

greater than the network depth (Fig. 5a). Pairwise connectivity was calculated based on anatomical 1318 

studies (discussed below) and a distant-dependent Gaussian rule 100,101. The distant dependent 1319 

connectivity factor is: 1320 

𝑃(𝑑) = 	𝑃0	𝑒
*(18)

/

Q/ 																																																				𝑒𝑞. 17 1321 

where r is the grid unit, d is the distance between two neurons, 𝜎 is the standard deviation of 1322 

distances between neurons (Barral and Reyes, 2016), and 𝑃0	is a structural scaling factor reflecting 1323 

the maximum connection probability across the network (see Supplementary Table 3). 1324 

Four interneuron types were used: Parvalbumin (PV), Calbindin (CB), Calretinin (CR), and 1325 

Cholecystokinin (CCK) expressing interneurons. Excitatory neurons were divided into regular 1326 

spiking neurons (70%), intrinsic low-threshold spiking bursting neurons (10%), and fast adapting 1327 

regular spiking neurons (20%). 1328 

Neuron models. We used Izhikevich neuron model 46 for simulating regular spiking, burst spiking, 1329 

fast spiking and low-threshold spiking neurons. Each neuron is modeled by a series of differential 1330 

equations as in eq 18.  1331 
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𝑑𝑣
𝑑𝑡 = 0.04𝑣. + 5𝑣 + 140 − 𝑢 + 𝐼																																																																			𝑒𝑞. 18 1332 

𝑑𝑢
𝑑𝑡 = 𝑎(𝑏𝑣 − 𝑢) 1333 

where variables 𝑣 and 𝑢 denote neural membrane potential and membrane recovery, respectively. 1334 

Parameters 𝑎 and 𝑏 define the recovery rate and sub-threshold fluctuations sensitivity, 1335 

respectively. For after-spike resenting the model uses two auxiliary equations as in eq. 19,  1336 

if 𝑣 > 30	𝑚𝑉	, then r 𝑣 = 𝑐
			𝑢 = 𝑢 + 𝑑 																																																																											𝑒𝑞. 19 1337 

the parameter 𝑐 resets the value of membrane potential 𝑣 after a spike, and the parameter 𝑑 adjusts 1338 

the after-spike recovery variable 𝑢. Parameters for different neuron types were chosen as suggested 1339 

in 102 to approximately generate firing patterns of each neuron type (See Supplementary Table 4 1340 

for each neuron type parameter). 1341 

 1342 

Neural connectivity. Besides distance-based connectivity factors, neuron types had different 1343 

connection probabilities. We adapted the scaling factor for connectivity between excitatory 1344 

neurons and inhibitory interneurons from 101. Additionally, rodent anatomical studies were 1345 

considered in determining the connectivity among different types of neurons. Generally, PV 1346 

interneurons inhibit themselves and VIP interneurons (likely similar to CR), whereas SOM 1347 

interneurons (likely similar to CB) do not inhibit each other, and VIP interneurons disinhibit SOM 1348 

interneurons preferentially 103,104. The connectivity between networks was defined by a probability 1349 

and a rate of connection. This connectivity was attributed primarily to excitatory neurons (90%). 1350 

 1351 

Simulation of post-synaptic potentials. For each neuron the postsynaptic potentials were 1352 

modeled by a biexponential function as in eq. 20, 1353 
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𝑔(𝑡) = 	𝑒*
$
)0	 − 	𝑒*

$
)2	 																																																𝑒𝑞. 20 1354 

where 𝜏8 and 𝜏1 denote the rise and decay time constant of postsynaptic current, respectively. The 1355 

biexponential function was implemented through a second-order ordinary differential equation as 1356 

in eq. 21.  1357 

 1358 

𝑑.𝑔(𝑡)
𝑑𝑡. = −

(𝜏1 + 𝜏8)
𝜏1𝜏8

	
𝑑𝑔(𝑡)
𝑑𝑡 −

𝑔(𝑡)
𝜏1𝜏8

																											𝑒𝑞. 21 1359 

 1360 

Where t is time relative to spike, and g(t) is the synaptic conductivity. The rise time was set 1361 

similarly to ~1ms for all neurons while the decay time for pyramidal neurons were and 1362 

interneurons varied from ~6ms to 24ms 105–108 as shown in Supplementary Table 4. 1363 

 1364 

Network external inputs. Each network was fed external currents to generate firing rates similar 1365 

to cortical neurons. Each neuron received a cosine input. The objective was to first control 1366 

externally induced rhythmicity in network activation by frequency, as well as phase coherence 1367 

between the input function and neurons. On average, each network received external input 1368 

sufficient to generate a 5 Hz firing rate 109. The external input to pyramidal neurons was three times 1369 

greater than the external input to inhibitory neurons. In addition, a Brownian noise  ( &
>/
)  was added 1370 

to the input as per previous experimental observations 110. 1371 

For nonrhythmic input, we considered slow and ultraslow oscillatory (<1 Hz) input to each neuron 1372 

with an initial phase lag. Then a coherence index was used to determine the distribution of phase 1373 

lags among neurons. Thus, the phase range was defined: 1374 

𝜑	= 2𝜋 (1 - coherence)    eq. 22 1375 
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For the rhythmic input, we incrementally increased the cosine input frequency up to 12 Hz for 1376 

each simulation run. For networks with shared input, we ran 100 simulations in which networks 1377 

were not connected but received correlated inputs (5-25 percent of neurons received the same 1378 

input). For networks with feedforward connection, we simulated feedforward networks in which 1379 

the connections between the two networks are unidirectional. The connectivity strength was 1380 

changed from 0.001 to 0.1 by one order of magnitude. For each value, we ran 100 simulations. For 1381 

Networks with reciprocal connections, we fed the networks with uncorrelated inputs, but both 1382 

networks were reciprocally connected. The connectivity strength was changed by one order of 1383 

magnitude from 0.001 to 0.1 and the simulation was run 100 times for each value. 1384 

To investigate the effect of an external stimuli on directional networks, we simulate a feedforward 1385 

network as explained before with an internetwork connectivity ratio of 9 to 1 (network 1 and 2 1386 

respectively, Extended Data Fig. 12e). We then fed network 1 with an external input pulse of 500 1387 

ms duration and 250 ms duty cycles (Extended Data Fig. 12f). The input was fed to 50 percent 1388 

of neurons in the network 1. We then calculated the time resolved PLV in both networks as 1389 

explained before (Fig. 5i, Extended Data Fig. 12g). 1390 

     1391 

Integration of postsynaptic currents and neural activities at the recording sites. For each 1392 

simulation, we estimated the field potential at two recording sites (black disks Fig. 5a). By 1393 

assuming neurons as point-source field, we measured field dynamics at each recording site by 1394 

summing the attenuated membrane potentials and the postsynaptic currents from all neurons. We 1395 

estimated the voltages at the recording disk by considering membrane and post-synaptic potentials 1396 

as electrical dipoles (with negligible distance between poles relative to the recording disk). The 1397 
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electric filed is then represented by 𝐸(𝑟, 𝑡), where 𝑟 and 𝑡 denote the distance from the source and 1398 

the time, respectively. The extracellular potential is then calculated by: 1399 

E = −∇𝑉																																															𝑒𝑞. 23 1400 

Using Ohm’s law, the electric field at distance r from each dipole with a current density of 𝐼< (t) 1401 

is equal to: 1402 

𝐸(𝑟, 𝑡) = 	
𝐼<(𝑡)
4𝜋𝑟R𝜎 																														𝑒𝑞. 24 1403 

with 𝐼<(𝑡)	represented as: 1404 

																																																					𝐼<(𝑡) = 𝐼S(𝑡) + 𝐼DT<(𝑡)															𝑒𝑞. 25			   1405 

where 𝜎 denotes the medium conductivity (which we assumed is independent of distance from 1406 

sources). 𝐼S(𝑡) and  𝐼DT<(𝑡) are the transmembrane current and the synaptic current of each neuron 1407 

respectively. By integrating the electric field, we calculated the potential at the disk by: 1408 

𝑉(𝑟, 𝑡) = −x 𝐸(𝑟U, 𝑡)𝑑𝑟U
8

-
=	−x

𝐼<(𝑡)
4𝜋𝑟′.𝜎 		𝑑𝑟

U
8

-
 1409 

	1410 

𝑉(𝑟, 𝑡) = 	
𝐼<(𝑡)
4𝜋𝑟.𝜎 																																								𝑒𝑞. 26 1411 

The voltage recorded at each site is calculated as in eq 27: 1412 

𝑉(𝑡) =
1

4𝜋𝑟.{
𝐼<(𝑡)
𝑟!

:

!=&

																			𝑒𝑞. 27 1413 

where  𝑟! is the distance between the recording disk and the ith point-source, and N is equal to the 1414 

total number of neurons in each network. 1415 

We used a non-ohmic filter to attenuate higher frequencies by getting insights from 111. We 1416 

implemented an exponential attenuation in the frequency domain. First for each signal we 1417 

computed the FFT. We then applied an exponential attenuation factor to the magnitude of the 1418 
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frequency components (Extended Data Fig. 12b). This factor exponentially decreases the 1419 

amplitude for higher frequencies as in eq. 28: 1420 

𝐴(𝑓) 	= 𝑒*V>																		𝑒𝑞. 28 1421 

 1422 

Where A(f) is the attenuation factor for frequency f, and α is a parameter that controls the rate of 1423 

exponential decay which we set to 0.01. After multiplying the attenuation factor, we performed 1424 

the inverse FFT (iFFT) to transform the signal back to the time domain. 1425 

For each condition, we ran simulations 100 times, each simulating iEEG signals and neural activity 1426 

for three seconds. We detected HFAbs at each recording site and calculated the amplitude of the 1427 

analytical signal as explained in (eq. 1). Next, we examined whether there was a correlation 1428 

between the density of bursts and the aggregated spike density in each network. The spike density 1429 

was calculated and smoothed using a Gaussian window of 25 ms. We measured the correlation 1430 

coefficient between aggregated spike density and burst density for each simulation. On average, 1431 

burst events were significantly correlated with spike densities in each network.   1432 

In a control condition, we randomly assigned burst times and examined the correlation between 1433 

burst density and spike density. This randomization was performed 1000 times and we found the 1434 

95% confidence interval under the null hypothesis that burst density is not related to spike density. 1435 

All other analyses of the modeling results were conducted in a similar manner to those of the 1436 

experimental data. 1437 

 1438 

  1439 
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 1440 

 1441 

Extended Data Fig. 1. HFAb activation patterns in experiment 2. (a) Task structure of 1442 
experiment 2. Subjects hold their gaze fixation to the center of a screen (a white plus sign) with 1443 
red circles turning on and off. A spatial cue endogenously cues subject’s attention to a hemifield. 1444 
A target appears at one hemifield and subjects should report whether the target was seen in the 1445 
cued hemifield. The brain shows the localization of electrodes across all subjects. (b) Similar to 1446 
Fig. 1b for experiment 2. (c) Similar to Fig. 1d, for experiment 2. (d) Activation profiles of HFAbs 1447 
grouped by trial outcome, for experiment 2. (e) Similar to Fig. 1h, for individual subjects in 1448 
experiment 2. Participants not having enough incorrect trials for this analysis are not visualized.1449 
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 1450 

 1451 
Extended Data Fig. 2. HFAb responses to cue and target events in experiment 1. (a) 1452 
Activation profiles of HFAbs grouped by trial outcome. (b) similar to Fig. 1e, f for incorrect trials. 1453 
(c) similar to Fig. 1h, for individual subjects. 1454 
 1455 
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 1456 
Extended Data Fig. 3. HFAb responses to different experimental conditions in experiment 1 1457 
and 2. (a) Similar to Fig. 1I, showing responses to valid and invalid cues. (b) Similar to Fig. 1j, 1458 
showing target responses in trials with cues contra- and ipsi-lateral to the electrode. (c,d) Similar 1459 
plots as in Fig. 1i,j for experiment 2 (each line is an individual, error bars are standard errors of 1460 
the mean, thick lines show average over all subjects). (e) Temporal profile of average HFAb 1461 
density across all subjects and electrodes relative to cue and target onset, for trials with cues contra- 1462 
and ipsi-lateral to the electrode (left), and for trials with valid or invalid sensory cues (right). (f) 1463 
Similar to E for experiment 2. (g) Confusion matrix showing the classifier accuracy (Fig. 1k) 1464 
within 500 ms of cue onset (white asterisks denote significantly higher prediction accuracy than 1465 
baseline and chance level, binomial test, P < 0.05). (h) Similar results as in Fig. 1k for experiment 1466 
2. (i) Similar classifier analysis results to Fig. 1k when one subject is omitted (each line indicates 1467 
the result of omitting one subject). Red lines indicate prediction accuracy higher than baseline 1468 
(dashed lines) and chance levels (binomial test, P < 0.05, FDR corrected for dependent samples). 1469 
Shaded error bars indicate the standard error of the mean across all realizations and cross 1470 
validations. 1471 
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 1472 
Extended Data Fig. 4. HFAb coordination with low frequency activity in experiment 1 and 1473 
2. (a) Group level average spatial pattern of observed frequency peak of HFAb phase locking to 1474 
LFP. (b) Individual examples showing the spatial pattern of the observed frequency peaks of the 1475 
HFAb phase locking to LFP. (c) An individual electrode example of the phase-frequency 1476 
distribution of HFAbs locked to both theta/alpha and beta frequency bands. (d) Corresponding to 1477 
Fig. 2e, showing the proportion of time-frequency points where phase locking was significantly 1478 
lower than baseline (P < 0.05, random permutation test). (e) Similar to Fig. 2e, but after removing 1479 
event-related potential from the LFP (see Methods). (f) Examples of the coupling ratio between 1480 
HFAb and low frequency (4-25 Hz) LFP following cue and target onsets in correct and incorrect 1481 
trials. (g) Similar to Fig. 2e for experiment 2. (h,i) Regression plots showing correlation of 1482 
coupling ratios following cue onset with target responses (green, h), and coupling ratios following 1483 
target onset with cue responses (purple, i). Scatter points denote electrodes, lines indicate 1484 
individual subjects with orange line showing the regression across all subjects. 1485 
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 1486 
Extended Data Fig. 5. A network clustering approach based on the coordination of HFAbs 1487 
between electrodes. (a) The average HFAb-triggered HFA for individuals in experiment 2. (b) 1488 
The normalized PSD for HFAb-triggered HFA in experiment 2. (c) HFAb-triggered HFA for 1489 
electrodes distanced in 4 different quantiles (25,50, 75, 100 mm), ranging from green (short) to 1490 
red (long) in experiment 2, similar to Fig. 3c. (d) The first and second principal components of 1491 
HFAb-triggered HFA for individual subjects in experiment 2. (e) A schematic demonstration of 1492 
network clustering algorithm. We used HFAbs outside of cue/delay and target/response periods. 1493 
The network synchrony matrix shows the loading values for each electrode pair on the 1494 
synchronized component. A K-means clustering was performed on randomly selected electrode 1495 
samples for different cluster numbers (K = 2 to 8). We calculated a pair-wise grouping probability 1496 
matrix in which each element indicates how likely it is that two electrodes will be grouped together. 1497 
The next step was clustering with network subsampling, similar to the previous step but based on 1498 
the pairwise grouping likelihood matrix. The final clustering of the pair-wise grouping likelihood 1499 
results indicated stable clusters for each K (see Methods). 1500 
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 1502 
Extended Data Fig. 6. Clustering results for individual subjects in experiment 1. (a) For each 1503 
subject, the square matrix shows color-coded loading values on the synchronized PC (left) and the 1504 
pairwise grouping probability (right). (b) The confusion matrix for the optimal number of clusters. 1505 
The diagonals show the average percentage of cluster members grouped together across all 1506 
clustering over subsamples. The non-diagonals indicate the percentage of members in one cluster 1507 
who were confused with members in another cluster across all clustering over subsamples. (c) 1508 
Optimal number of clusters is selected using four metrics and a nonparametric voting rank metric 1509 
(black). The accuracy is determined by the median diagonals, the confusion by the median 1510 
nondiagonal, selectivity by the relative rank of the diagonal over the highest nondiagonal rank, 1511 
and stability by the relative rank of the diagonal over the nondiagonal rank. (d). Similar to Fig. 3g 1512 
for different subjects. Shaded error bars indicate the standard error of the means, thicker lines 1513 
indicate significant functional subnetworks. 1514 
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 1515 
 1516 

 1517 

Extended Data Fig. 7. Clustering results for individual subjects in experiment 2. (a-d) Similar 1518 
to Extended Data Fig. 6. a-d for experiment 2. 1519 
 1520 

  1521 
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Extended Data Fig. 8. Organization of clusters based on cluster numbers. Columns from left 1522 
to right show the results for cluster numbers K = 2 - 8. The cluster IDs are sorted by cluster stability. 1523 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 3, 2025. ; https://doi.org/10.1101/2024.09.11.612548doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.11.612548


 

 

 1524 
 1525 
Extended Data Fig. 9. Results for different cluster numbers for an individual subject. (a) 1526 
Similar to Extended Data Fig. 6a for different Ks. (b) Confusion matrices for different Ks. (c) 1527 
Cluster topography for different Ks. (d) Similar to Extended Data Fig. 6d for different Ks. 1528 
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 1529 
Extended Data Fig. 10. Classifier trained on cue-subnetworks predicts outcome. (a) As in 1530 
Fig. 3h, each line represents classifier results when one subject is omitted. (b, c) Classifier 1531 
accuracy in predicting correct trials (green), errors (brown), and the average accuracy (gray) for 1532 
(b) experiment 1 and (c) experiment 2. The shaded error bars show the standard error of the mean. 1533 
Thick lines indicate timepoints where the accuracy of the prediction is significantly higher than 1534 
the baseline (dashed lines) and chance level (P < 0.05, binomial test, FDR corrected for dependent 1535 
samples). 1536 
 1537 
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 1539 
Extended Data Fig. 11. Temporal precession between cue and target-subnetworks. (a) HFAb-1540 
triggered HFA examples for individual subjects similar to Fig. 4a. (b) Group-level average of 1541 
HFAb-triggered HFA, similar to Fig. 4b, but for HFAbs during the cue/delay period. (c) 1542 
Visualization of lead-lag patterns across members of the cue and target-subnetworks during target 1543 
processing for all clusters (similar to Fig. 4d). (d) DMI results for individual subjects similar to 1544 
Fig. 4e. (e) similar to Fig. 4g, around the cue onset. 1545 
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 1547 
Extended Data Fig. 12. Computational modeling of iEEG signal. (a) A factor that scales the 1548 
connection probability between neurons in each network as a function of their distance. (b) A 1549 
factor used to attenuate high frequency activity in iEEG signals. (c) A complete trial simulation 1550 
example. Rasters show the activity of neurons in one network (bottom, blue and red show 1551 
excitatory and inhibitory neurons, respectively). Raw and attenuated traces correspond to field 1552 
dynamics of the same network. (d) Ultra slow inputs to one network when inputs to neurons have 1553 
coherent (top) and random (bottom) phases. (e) Detailed network structure for simulating a 1554 
directional network with stronger input from network 1 to network 2 (each scatter point indicates 1555 
whether two neurons have excitatory (blue) or inhibitory (red) connections). (f) An input design 1556 
evaluating how a transient stimulus affects HFAb coherence with LFP in a network as shown in E 1557 
(network 1 (top) receives a transient coordinated input). (g) Similar to Fig. 5I, showing PLV 1558 
changes in both networks by transient input. (h) In both networks 1 and 2, the PLV drops within 1559 
500ms of stimulus onset (P < 0.001, Wilcoxon test). (i) Normalized burst rate relative to stimulus 1560 
onset. 1561 
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Supplementary Tables 1564 
 1565 
 1566 
 1567 

Subject 
ID 

Cue + Target + 

S1 IFG, TPJ, V3b, hV4 ISP0, MFG, MTG, TPJ 
S2 Cingulate Gyrus, ISP2, IFG, IPL, LO2, MFG, 

Postcentral Gyrus, SFG, 
 

Cingulate Gyrus, ISP1, ISP3, IPL, MFG, 
Paracentral Lobule, Postcentral Gyrus, 
Precentral Gyrus, SFG, STG 

S3 IPL IFG, IPL, ITG, MTG, Orbital Gyrus, Precentral 
Gyrus, SFG, STG, TPJ 

S4 IPL, MFG, hMT, Postcentral Gyrus, LO2 
 

Angular Gyrus, FEF, FFG, IFG, IPL, MFG, 
Postcentral Gyrus, Precentral Gyrus, SFG, STG, 
TPJ, 

S5 FFG, ISP2, ISP3, LO2, MOG, MTG, Postcentral 
Gyrus, hMT 

FEF, FFG, IPL, MTG, Postcentral Gyrus, 
Precentral Gyrus, SFG, TPJ 

S6 FEF, IPL, Postcentral Gyrus, SFG, TPJ FEF, IPL, MFG, Paracentral Lobule, Postcentral 
Gyrus, Precentral Gyrus, Precuneus, SFG, STG, 
TPJ 

S7 ISP2, ISP3, IPL, Postcentral Gyrus, SFG, SPL, TPJ FEF, ISP2, ISP3, ISP5, IPL, 
Paracentral Lobule, Postcentral Gyrus, 
Precentral Gyrus, Precuneus, SFG, SPL, TPJ 

S8 LO1 FEF, ISP1, ISP2, MFG 
S9 ISP2, ISP3, MFG, STG ISP1, ISP2, ISP3, MFG, MTG, 

Precentral Gyrus, SFG, STG 
S10 ISP2, ISP3, MFG, Postcentral Gyrus, FEF FEF, ISP2, ISP3, IFG, IPL, MFG, MTG, 

Postcentral Gyrus, Precentral Gyrus, SFG, STG 
S11 ISP2, MFG, hV4 ISP1, ISP2, ISP3, IFG, MFG, MTG, Postcentral 

Gyrus, STG 
S12 ISP2, ISP3, Postcentral Gyrus FEF, ISP1, ISP2, ISP3, IPL, MFG, MTG, 

Postcentral Gyrus, Precentral Gyrus, SFG 
Supplementary Table 1. List of brain areas containing electrodes that showed significant HFAb response to cue (cue 1568 
+) and target (target +, see Methods). The abbreviations are: Inferior Frontal Gyrus (IFG), Temporoparietal Junction 1569 
(TPJ), Visual area 3b (V3b), human Visual area 4 (hV4), Intraparietal Sulcus (IPS1, IPS2, IPS3, IPS5), Middle Frontal 1570 
Gyrus (MFG), Middle Temporal Gyrus (MTG), Inferior Parietal Lobule (IPL), Lateral Occipital area 2 (LO2), 1571 
Superior Frontal Gyrus (SFG), Superior Temporal Gyrus (STG), Inferior Temporal Gyrus (ITG), Frontal Eye Field 1572 
(FEF), Fusiform Gyrus (FFG), Inferior Occipital Gyrus (IOG), Parahippocampal Gyrus (PHG), Middle Occipital 1573 
Gyrus (MOG), human Middle Temporal/V5 (hMT), Superior Parietal Lobule (SPL), and Lateral Occipital area 1 1574 
(LO1). 1575 
  1576 
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Subject ID Cue Subnetworks Target Subnetworks 

S2 Cingulate Gyrus, ISP2, ISP3, IFG, 
IPL, MTG, Paracentral Lobule, 
Postcentral Gyrus, Precentral Gyrus, 
STG 

Cingulate Gyrus, ISP1, ISP2, ISP3, IFG, IPL, MFG, 
MTG, Paracentral Lobule, Postcentral Gyrus, Precentral 
Gyrus, SFG, STG 

S3  IFG, IPL, ITG, MFG, MTG, Postcentral Gyrus, 
Precentral Gyrus, STG, TPJ 

S4  Angular Gyrus, Anterior Cingulate, Cingulate Gyrus, 
FEF, FFG, IFG, IOG, IPL, ITG, MFG, MTG, PHG, 
Postcentral Gyrus, Precentral Gyrus, SFG, STG, TPJ 

S5 FFG, LO2, MOG, Postcentral Gyrus, 
hMT 

FEF, IPL, Postcentral Gyrus, Precentral Gyrus, SFG 

S6  FEF, ISP2, ISP3, IPL, MFG, Paracentral Lobule, 
Precentral Gyrus, Precuneus, SFG, STG, TPJ 

S7 ISP2, ISP3, ISP5, IPL, SPL, TPJ FEF, ISP2, ISP3, ISP5, IPL, Paracentral Lobule, 
Postcentral Gyrus, Precentral Gyrus, Precuneus, SPL, 
SFG, TPJ 

S8  FEF, ISP1, ISP2, MFG 
S9 ISP1, ISP2, ISP3, MFG, STG ISP1, ISP2, ISP3, MFG, MTG, Precentral Gyrus, SFG, 

STG 
S10 FEF, ISP2, IPL, MFG, Postcentral 

Gyrus, Precentral Gyrus, SFG, STG 
FEF, ISP2, IFG, IPL, MFG, MTG, Postcentral Gyrus, 
Precentral Gyrus, SFG, STG, TPJ, V3b 

S11 ISP1, ISP2, ISP3, MFG, Postcentral 
Gyrus, Precentral Gyrus 
 

FEF, ISP1, ISP2, ISP3, IFG, IPL, MFG, MTG, 
Postcentral Gyrus, Precentral Gyrus, SFG, STG 

Supplementary Table 2. List of brain areas containing cue- and target-activated subnetworks (see Methods). The 1577 
abbreviations are: Intraparietal Sulcus (IPS1, IPS2, IPS3, IPS5), Inferior Frontal Gyrus (IFG), Inferior Parietal Lobule 1578 
(IPL), Middle Temporal Gyrus (MTG), Superior Temporal Gyrus (STG), Middle Frontal Gyrus (MFG), Superior 1579 
Frontal Gyrus (SFG), Inferior Temporal Gyrus (ITG), Temporoparietal Junction (TPJ), Frontal Eye Field (FEF), 1580 
Fusiform Gyrus (FFG), Inferior Occipital Gyrus (IOG), Parahippocampal Gyrus (PHG), Middle Occipital Gyrus 1581 
(MOG), Visual area 3b (V3b), Superior Parietal Lobule (SPL), and human Middle Temporal/V5 (hMT). 1582 
 1583 
 1584 
 1585 
 1586 

Cell-

type 

Pyr PV CCK CB CR 

 Pyr 0.3 0.5 0.5 0.5 0.5 

PV 0.6 0.4 0.25 0.15 0.05 

CCK 0.6 0.25 0.4 0.15 0.05 

CB 0.6 0.6 0.6 0.05 0.25 

CR 0.05 0.05 0.05 0.6 0.05 

Supplementary Table 3. Connectivity strength between neuron types in each network (see Methods). 1587 
  1588 
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Cell-type 

Parameters 

Pyr PV CCK CB CR 

population 0.76 0.07 0.02 0.9 0.06 

a 0.02 0.1 0.05 0.02 0.02 

b 0.2 0.23 0.23 0.23 0.23 

c -65 -65 -65 -65 -65 

d 8 2 2 2 2 

𝜏3 1 1 1 1 1 

𝜏4 6.4 8 12.4 16 16 

Supplementary Table 4. Parameters used for modeling different neuron types. The parameter 𝑎 indicates a recovery 1589 
rate variable, 𝑏 the sensitivity to sub-threshold fluctuations,	𝑐 the membrane potential, 𝑑 adjusts the after-spike 1590 
recovery variable, 𝜏3	synaptic potential rise time, and 𝜏4 synaptic potential decay time (see Methods). 1591 
 1592 
 1593 
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