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Sentence comprehension involves the decoding of both semantic and grammatical information, a process fundamental to communi-
cation. As with other complex cognitive processes, language comprehension relies, in part, on long-term memory. However, the elec-
trophysiological mechanisms underpinning the encoding and generalization of higher-order linguistic knowledge remain elusive,
particularly from a sleep-based consolidation perspective. One candidatemechanism thatmay support the consolidation of higher-order
language is the coordination of slow oscillations (SO) and sleep spindles during nonrapid eye movement sleep (NREM). To examine this
hypothesis, we analyzed electroencephalographic (EEG) data recorded from 35 participants (Mage = 25.4; SD= 7.10; 16 males) during an
artificial language learning task, contrasting performance between individuals whowere given an 8 h nocturnal sleep period or an equiv-
alent period of wake. We found that sleep relative to wake was associated with superior performance for sequence-based word order
rules. Postsleep sequence-based word order processing was further associated with less task-related theta desynchronization, an elec-
trophysiological signature of successful memory consolidation, as well as cognitive control and working memory. Frontal NREM SO–
spindle coupling was also positively associated with behavioral sensitivity to sequence-based word order rules, as well as with task-
related theta power. As such, theta activity during retrieval of previously learned information correlates with SO–spindle coupling,
thus linking neural activity in the sleeping and waking brain. Taken together, this study presents converging behavioral and neurophys-
iological evidence for a role of NREM SO–spindle coupling and task-related theta activity as signatures of memory consolidation and
retrieval in the context of higher-order language learning.
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Significance Statement

The endogenous temporal coordination of neural oscillations supports information processing during both wake and sleep
states. Here we demonstrate that slow oscillation–spindle coupling during nonrapid eye movement sleep predicts the consol-
idation of complex grammatical rules and modulates task-related oscillatory dynamics previously implicated in sentence
processing. We show that increases in theta power predict enhanced sensitivity to grammatical violations after a period of
sleep and strong slow oscillation–spindle coupling modulates subsequent task-related theta activity to influence behavior.
Our findings reveal a complex interaction between both wake- and sleep-related oscillatory dynamics during the early stages
of language learning beyond the single word level.
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Introduction
The human brain is adept at extracting regularities from sensory
input, a process pivotal for generating knowledge of one’s phys-
ical and social environment (Santolin and Saffran, 2018).
Notably, learning of such regularities plays a key role in the devel-
opment of linguistic competencies, enabling the implicit acquisi-
tion of grammatical rules embedded in ambient speech
(Romberg and Saffran, 2010; Cross et al., 2021; Isbilen et al.,
2022). While this perspective of language learning has informed
insights concerning the encoding of local dependencies, the
acquisition of more complex linguistic structures remains less
understood. Here, we address this gap from the perspective of
sleep-based memory consolidation, a well-established mecha-
nism governing the generalization of knowledge from sensory
experience (Diekelmann et al., 2009; Xie et al., 2018; Brodt
et al., 2023).

A plethora of evidence (for review, see Rasch and Born 2013)
demonstrates that sleep plays an active role in memory by con-
solidating and generalizing mnemonic information. This
dynamic account of the sleeping brain is captured by the active
system consolidation hypothesis (ASC; Born and Wilhelm,
2012; Klinzing et al., 2019). Core to ASC is that sleep facilitates
repeated reactivation of encoded memory representations
(Rasch and Born, 2013). This reactivation is dependent on corti-
cal glutamatergic synapses, which weaken during prolonged
wakefulness (Kavanau, 1997; Rasch and Born, 2013). The ASC
is supported by electrophysiological evidence that learned
sequences are replayed during nonrapid eye movement
(NREM) sleep, potentially via sleep spindle and slow oscillatory
(SO) activity. Sleep spindles are bursts of electrical activity occur-
ring between 11 and 16 Hz, while SOs centered at 1 Hz reflect
synchronized membrane potential fluctuations between hyper-
polarized upstates and depolarized downstates of neocortical
neurons (Crunelli and Hughes, 2010; Vyazovskiy and Harris,
2013). The precise coupling between SOs and spindles provides
a temporal receptive window for the replay of hippocampal
memory traces and their transfer to the cortex for long-term sto-
rage (Mikutta et al., 2019; Bastian et al., 2022). Critically, the
transfer of newly encoded information from the hippocampus
to cortex enables generalization of mnemonic information,
allowing the cortex to learn the regularities of sensory input grad-
ually—a process known to support language learning (Davis and
Gaskell, 2009; Rasch, 2017; Cross et al., 2018).

Mechanisms of sleep-based memory consolidation have been
associated with aspects of language learning, including novel-
word learning (Bakker et al., 2015; Mirković and Gaskell, 2016;
James et al., 2017) as well as the generalization of grammatical
rules (Nieuwenhuis et al., 2013; Batterink et al., 2014). Positive
associations have also been identified between rapid eye moment
(REM) sleep percentages and language learning proficiency
(De Koninck et al., 1989, 1990), supporting a link between REM
sleep and language learning. To elucidate the mechanism of this
relationship, Thompson et al. (2021) examined oscillatory dynam-
ics during REM sleep and demonstrated that sleep spindles and
theta power predicted language learning among individuals
engaged in second language immersion programs. This effect was
stronger when time locked to eye movements during REM sleep.

Together, extant work on sleep and language learning under-
score the significance of both REM and NREM sleep, sleep spin-
dles, and theta power in facilitating second language learning.
However, work examining the association between sleep and
language often involves only behavioral measures as proxies for

memory consolidation (Nieuwenhuis et al., 2013; Mirković and
Gaskell, 2016) or examines structure (e.g., grammar;
Nieuwenhuis et al., 2013) and meaning (i.e., semantics; Bakker
et al., 2015; Batterink et al., 2017; Batterink and Paller, 2017) in
the language input separately (cf. Batterink et al., 2014). Markers
of sleep-based memory consolidation are also often based on
coarse experimental contrasts (i.e., sleep vs wake conditions) or
macroarchitectural measures (i.e., percent time spent in a particu-
lar sleep stage), rather than neurophysiological events that can
more directly test models of systems consolidation anchored in
NREM sleep, such as SO–spindle coupling. Online EEG measures
during language learning and comprehension and their relation to
offline states, such as sleep, are also lacking.

From this perspective, neurobiological models of sleep, mem-
ory, and language processing would benefit from a direct inves-
tigation of the relation between sleep and higher-order
language, such as at the sentence level that have differing gram-
matical rules (Rasch, 2017; Schreiner and Rasch, 2017; Cross
et al., 2018), in conjunction with online measures of neural activ-
ity. This would extend our understanding of the complexity of
language learning beyond single words and how the generaliza-
tion of newly acquired linguistic knowledge is supported by sleep
(for review, see Cross et al., 2018) and how the brain learns envi-
ronmental regularities that span multiple scales of complexity
and how this information is organized across sleep and wake.

Here, we present data addressing the contribution of sleep-
based memory consolidation to complex rule learning in lan-
guage at the sentence level. We used the modified miniature lan-
guage Mini Pinyin (Cross et al., 2021), which is modeled on
Mandarin Chinese, to contrast rules that instantiate a fixed or
flexible word order. Mandarin naive Monolingual native
English speakers completed a learning task where they were
shown pictures of two-person events, followed by a sentence
describing the event in the picture. During this task, participants
learned varying word order rules without explicit instruction and
then completed a baseline memory task prior to either 8 h of
sleep or an equivalent period of wake (Fig. 1). Participants then
completed a delayed memory task to assess changes in memory
of the word order rules after the 8 h delay.

We focused on theta oscillations (∼3–7 Hz), which were
quantified using complex Morlet wavelets across sentence pre-
sentation during the memory tasks. Theta oscillations are impli-
cated in relational binding and memory-based decision-making
(Buzsáki, 2002; Jacobs et al., 2006; Backus et al., 2016). From
this perspective, theta should track successful language learning
and sleep-based consolidation (Cross et al., 2018). We further
quantified whole-scalp NREM SO–spindle coupling by detecting
spindle events and quantifying the percentage of spindle events
that occurred during SO events. SO–spindle coupling and
task-related theta power were used to independently predict lan-
guage learning and to determine whether task-related theta is
modulated by sleep-based memory consolidation.

Materials and Methods
Participants. We recruited 36 right-handed participants who were

healthy, monolingual, native English speakers (16 male) aged 18–40 years
old (Mage = 25.4; SD=7.0). Participants were randomly assigned to either a
sleep (n= 18) or wake condition. All participants reported normal or
corrected-to-normal vision, no history of psychiatric disorders, substance
dependence, or intellectual impairment and were not taking medication
that influenced sleep or neuropsychological measures. All participants
provided informed consent and received a $120 honorarium. One partic-
ipant from the sleep condition was removed from the analysis due to
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technical issues during the experimental tasks and sleep period, resulting
in a total sample size of 35 (Mage = 25.4; SD=7.10; 16 males; sleep n=
17). Ethics approval was granted by the University of South Australia’s
Human Research Ethics committee (I.D: 0000032556).

Screening and control measures. The Flinders Handedness Survey
(FLANDERS; Nicholls et al., 2013) was used to screen handedness, while
the Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989) screened
for sleep quality. PSQI scores ranged from 1–5 (M = 2.9; SD= 1.33) out
of a possible range of 0–21, with higher scores indicating worse sleep
quality. Prospective participants with scores >5 were unable to partici-
pate. As an additional control, the Stanford Sleepiness Scale (SSS) was
administered at the beginning and end of the experiment tomeasure self-
perceived sleepiness.

Electroencephalography. The electroencephalogram (EEG) was
recorded during the learning and sentence judgment tasks and sleep
opportunities using a 32-channel BrainCaps with sintered Ag/AgCI elec-
trodes (Brain Products) mounted according to the extended International
10–20 system. The reference was located at FCz, with EEG signals rerefer-
enced to linked mastoids offline. The ground electrode was located at AFz.
The electrooculogram (EOG) was recorded via electrodes located 1 cm
from the outer canthus of each eye (horizontal EOG) and above and below
participants’ left eye (vertical EOG). Submental electromyography (EMG)
was added to facilitate accurate scoring of sleep periods. The EEG was
amplified using a BrainAmpDCamplifier (Brain Products) using an initial
bandpass filter of DC 250 Hz with a sampling rate of 1,000 Hz.

Vocabulary and structure of Mini Pinyin. Stimuli consisted of sen-
tences from a modified miniature language based on Mandarin
Chinese (Cross et al., 2021). This language contained 32 transitive verbs,
25 nouns, two coverbs, and four classifiers. The nouns included 10
human entities, 10 animals, and five objects (e.g., apple). Each category

of noun was associated with a specific classifier, which always preceded
each of the two noun phrases in a sentence. As illustrated in Figure 2B,
ge specifies a human noun, zhi for animals, and xi and da for small
and large objects, respectively. Overall, this stimulus set contained 576
unique sentences (288 grammatical, 288 ungrammatical) which are
divided into two equivalent sets (Cross et al., 2021) for a complete
description of the stimuli; for the complete set of stimuli, visit https://
tinyurl.com/3an438h2).

We focused on a subset of sentence conditions to investigate the
mechanisms underlying the learning of different word order rules, which
fundamentally differs between natural languages (for review, see
Bates et al., 2001). Languages like English and Dutch rely primarily on
word order, while languages like German and Turkish rely more on
cues such as case marking and animacy (MacWhinney et al., 1984;
Bornkessel and Schlesewsky, 2006; Bornkessel-Schlesewsky et al.,
2015). From this perspective, Mini Pinyin enabled a comparison between
sentences with differing word orders (Fig. 3A) and the influence sleep
may have on the respective consolidation of fixed and flexible word order
rules. The subset of stimuli in the current analysis contained 96 sentences
in the sentence learning task and 144 sentences in the grammaticality
judgment tasks. The remaining sentences were considered fillers.
These filler sentences included sentences that violated classifier–noun
pairs and thus were not suitable for testing predictions regarding fixed
and flexible word order processing (for a full description of all sentence
conditions present in this language, please see Cross et al., 2021).

As is apparent in Figure 3A, sentences that do not contain the coverb
ba (i.e., actor–verb–undergoer, AVU; undergoer–verb–actor, UVA) yield
a flexible word order, such that understanding who is doing what to whom
is not dependent on the ordering of the noun phrases. Instead, determin-
ing who is doing what towhom is facilitated by animacy cues. For instance,
in the UVA condition, the bear is interpreted as the actor despite the first
noun phrase being the apple, since it is implausible for an apple to eat a
bear. Therefore, both AVU and UVA are grammatical constructions.

Figure 1. Illustration of stimulus presentation and experimental protocol. A, Schematic representation of a single trial of a grammatical sentence during the sentence learning task.
B, Schematic representation of a single trial during the baseline sentence judgment task. This sentence is a violation of the verb position, whereby the verb chile is positioned in the middle
of the sentence when it should be positioned at the end of the sentence. Here, the participant incorrectly categorized this sentence as grammatical and thus received feedback indicating that their
response was incorrect. C, Schematic diagram of the vocabulary test, which required participants to translate the nouns (e.g., yegou) into English (e.g., dog) using a keyboard. D, Experimental
protocol representing the time course of the conditions (sleep, wake) and testing sessions (sentence learning task, baseline, and delayed sentence judgment tasks). After completing the vocab-
ulary test, participants were randomly assigned to either the sleep or wake conditions, with each participant only completing one of the two conditions. Time is represented along the x-axis,
while each colored block corresponds to a different task during the experimental protocol.
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In contrast, sentences such as AbaUV yield a fixed word order, such that
the inclusion of ba strictly renders the first noun phrase as the actor. Note
that the positioning of the verb is critical in sentences with and without a
coverb. With the inclusion of a coverb, the verb must be placed at the end
of the sentence, while the verb must be positioned between the noun
phrases in constructions without a coverb.

Experimental protocol. Participants received a paired picture–word
vocabulary booklet containing the 25 nouns and were asked to maintain
aminimum of 7 h sleep per night (Fig. 2A for a portion of nouns from the
vocabulary booklet). Participants were required to learn the 25 nouns to
ensure that they had a basic vocabulary of the nouns to successfully learn
the 32 transitive verbs. They were asked to record periods of vocabulary
learning in an activity log. Participants were instructed to study the book-
let for at least 15 min per day and were informed that they would need to
pass a vocabulary test before commencing the main experimental proto-
col. After ∼1 week, participants returned to complete the main experi-
mental session, where EEG was recorded during a sentence learning
task, baseline, and delayed sentence judgment tasks.

Vocabulary test. Participants completed a vocabulary test by trans-
lating the nouns fromMini Pinyin into English using a keyboard, as illus-
trated in Figure 1C. Each trial began with a 600 ms fixation cross,
followed by the visual presentation of the noun for up to 20 s.
Prospective participants who scored <90% were unable to complete the
main experimental EEG session. As such, all 36 participants included
in the current paper obtained over 90% correct on the vocabulary test.
The proportion of individuals who did not pass the vocabulary test
was small (e.g., approximately less than five cases); however, the exact
number was not recorded.

Sentence learning. Sentence and picture stimuli were presented using
OpenSesame (Mathôt et al., 2012). During sentence learning, pictures
were used to depict events occurring between two entities. The pictures
and entities shown during the learning task were combinations of the
static pictures shown in the vocabulary booklet (for an example of book-
let versus sentence learning picture stimuli, see Fig. 2A,B, respectively).

While participants were aware that they would complete sentence
judgment tasks at a later point, no explicit description of or feedback
regarding grammatical rules was provided during the learning task.
Each picture corresponded to multiple sentence variations, similar to
the grammatical conditions in Figure 3A. Picture–sentence pairs were
presented to participants as correct language input. Participants were
presented with a fixation cross for 1,000 ms, followed by the picture illus-
trating the event between two entities for 5,000 ms. A sentence describ-
ing the event in the picture was then presented on a word-by-word basis.
Each word was presented for 700 ms followed by a 200 ms ISI. This pat-
tern continued for the 96 reported combinations, until the end of the
task, which took ∼40 min. The 96 sentences included in this analysis
included the flexible (i.e., AVU, UVA) and fixed (i.e., AbaUV) sentence
constructions. Sentences considered as fillers contained a coverb that was
not ba and thus were not relevant to testing the predictions posited in
the current analysis. During this task, participants were required to learn
the structure of the sentences and the meaning of the verbs, classifiers,
and the coverb ba. Stimuli were pseudorandomized, such that no stimuli
of the same construction followed each other, and each sentence con-
tained a different combination of nouns and verbs. This was done to
encourage learning of the underlying grammatical rules rather than
episodic events of individual sentences. Further, the two lists of sentences
were counterbalanced across participants and testing session. Following
the sentence learning task, participants completed the baseline judgment
task.

Baseline and delayed judgment tasks. The baseline sentence judg-
ment task taken immediately after learning provided a baseline to control
for level of encoding, while the delayed judgment task took place ∼12 h
after the learning and baseline judgment tasks. During both judgment
tasks, 288 sentences without pictures (144 grammatical, 144 ungrammat-
ical), 156 of which are reported here, were presented word-by-word with
a presentation time of 600 ms and an ISI of 200 ms. The 156 included
sentences included a combination of grammatical and ungrammatical
flexible and fixed sentence constructions, while the 132 sentences that
were considered fillers contained coverbs that were not ba, and class-
ifier–noun pair violations, and thus were not relevant to testing the

Figure 2. Example of images used in vocabulary and sentence learning phases. A, Portion of the 25 illustrations used in the vocabulary booklet, which included human, animal, and inanimate
objects (i.e., bag, apple). B, Portion of the illustrations used in the sentence learning task, illustrating the interaction between two entities. Note that the entities used in sentence learning task
are the same as the illustrations used in the vocabulary booklet.

4 • J. Neurosci., January 15, 2025 • 45(3):e2193232024 Cross et al. • Neural Correlates of Sleep and Language Learning



predictions of the current analysis. Participants received feedback on
whether their response was correct or incorrect during the baseline but
not the delayed judgment task. This was to ensure that participants
were able to continue learning the language without explicit instruction.
Figure 1, A and B, illustrates the sequence of events in the sentence learn-
ing and baseline judgment tasks, respectively.

Participants were instructed to read all sentences attentively and to
judge their grammaticality via a button press. As a cue for judgment, a
question mark appeared in the center of the monitor for 4,000 ms after
the offset of the last word. Two lists of sentence stimuli were created,
which were counterbalanced across participants and the baseline and
delayed sentence judgment tasks. Half of the sentences were grammati-
cal, with each of the grammatical constructions shown an equal number
of times. The other half of the sentences were ungrammatical construc-
tions. Stimuli were pseudorandomized, such that no stimuli of the same
construction followed each other.

Main experimental procedure. For the wake condition, participants
completed the vocabulary test and EEG setup at ∼08:00 h. The learning
task was administered at ∼09:00 h, followed by the baseline judgment
task, with EEG recorded during both the learning and judgment task.
Participants then completed the behavioral control tasks and were free
to leave the laboratory to go about their usual daily activities, before
returning for EEG setup and the delayed judgment task at ∼21:00 h
the same day. EEG was also recorded during the delayed judgment task.

Participants in the sleep condition arrived at ∼20:00 h to complete
the vocabulary test and EEG setup before completing the learning task
at ∼21:00 h, followed by the baseline judgment task, with EEG recorded
during both the learning and judgment tasks. Participants were then

given an 8 h sleep opportunity from 23:00–07:00 h. Polysomnography
was continuously recorded and later scored. After waking, participants
were disconnected from the head box and given a ∼1 h break to alleviate
sleep inertia before completing the delayed judgment task and behavioral
control tasks. During this time, participants sat in a quiet room and con-
sumed a small meal. Resting-state EEG recordings were obtained during
quiet sitting with eyes open and eyes closed for 2 min, respectively. See
Figure 1D for a schematic of the experimental protocol.

Data analysis
Behavioral analysis
Two measures of behavioral performance were calculated. For the
behavioral analysis, grammaticality ratings were calculated on a
trial-by-trial basis, determined by whether participants correctly
identified grammatical and ungrammatical sentences. For EEG
analyses, memory performance was quantified using the sensitivity
index (d′) from signal detection theory (Stanislaw and Todorov,
1999). Hit rate (HR) and false alarm rate (FA) were computed
to derive d′, defined as the difference between the z-transformed
probabilities of HR and FA (i.e., d′ = z[HR]− z[FA]), with extreme
values (i.e., HR and FA values of 0 and 1) adjusted using the
recommendations of (Hautus, 1995).

EEG recording and preprocessing
Task-related EEG analyses during the baseline and delayed sen-
tence judgment tasks were performed using MNE-Python

Figure 3. Exemplar word order rules and vocabulary items of Mini Pinyin. A, Example of grammatical and ungrammatical fixed and flexible word order sentences. Classifiers and nouns are
coded in blue, while verbs are red. The coverb ba is coded in green. For the ungrammatical sentences (right), the point of violation in the sentence is underlined. The direct English translation for
each sentence construction is provided below (i.e., the bear eats the apple). B, A sample of the linguistic elements present in Mini Pinyin and their English translation. Note that ba does not have
a specific meaning, but when present in a sentence, instantiates a strict actor–undergoer–verb word order.
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(Gramfort et al., 2013). EEG data (C3, C4, CP1, CP2, CP5, CP6,
Cz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Fp1, Fp2, Fz, O1, O2, P3,
P4, P7, P8, Pz) were rereferenced offline to the average of both
mastoids and filtered with a digital phase-true finite impulse
response (FIR) bandpass filter from 0.1–40 Hz to remove slow
signal drifts and high frequency activity. Data segments from
−0.5–6.5 s relative to the onset of each sentence were extracted
and corrected for ocular artefacts using independent component
analysis (fastica; Hyvarinen, 1999). Epochs were dropped when
they exceeded a 150 μV peak-to-peak amplitude criterion or
were identified as containing recordings from flat channels
(i.e., <5 μV).

Task-related time frequency analysis
To determine the individualized ranges used to define the theta
frequency band, individual alpha frequency (IAF) was estimated
from participants’ pre- and postexperiment resting-state EEG
recording. IAFs were estimated from an occipital-parietal cluster
(P3/P4/O1/O2/P7/P8/Pz/Oz) using philistine.mne.savgol_iaf
(Corcoran et al., 2018) implemented in MNE (philistine.mne).
IAF-adjusted frequency bandwidths were calculated according
to the harmonic frequency architecture proposed by Klimesch
(2012, 2013) and which is in line with previous work
(Doppelmayr et al., 1998; Corcoran et al., 2018; Sauppe et al.,
2021; Cross et al., 2022), in which the center frequency of each
successive band constitutes a harmonic series scaled in relation
to the IAF.

We conducted task-related time–frequency analyses by con-
volving the preprocessed EEG with a family of complex Morlet
wavelets using the MNE function tfr_morlet. Theta activity was
analyzed using wavelet cycles, with the mother wavelet defined
as the center frequency value divided by four. Relative power
change values in the poststimulus interval were computed as a
relative change from a baseline interval spanning −0.5 s to the
onset of each sentence. As such, theta power during the sentence
period reflects deviations from the baseline interval, such that
higher theta power would indicate an increase in power relative
to baseline, while a decrease in power indicates a decrease in
power relative to baseline. Five hundred milliseconds were added
to the beginning and end of each sentence epoch to avoid edge
artefacts. From this, we derived power estimates from individu-
ally defined (i.e., based on participants’ IAF values) theta activity
from the start to end of each sentence stimulus, electrode, and
from the baseline and delayed testing sessions.

Finally, in order to determine whether changes in neural activ-
ity between the sleep and wake conditions were truly oscillatory,
we used the irregular-resampling auto-spectral analysis toolbox
(IRASA v1.0; Wen and Liu, 2016) to estimate the 1/ƒ power law
exponent characteristic of background spectral activity, which
was used as a covariate in EEG-based statistical models.

Sleep parameters and sleep EEG analyses
Sleep data were scored by two sleep technicians (Z.R.C and
S.W.C.) according to standardized criteria (Berry et al., 2012)
using Compumedics Profusion 3 software. The EEG was viewed
with a high-pass filter of 0.3 Hz and a low-pass filter of 35 Hz.
The following sleep parameters were calculated: total sleep
time, sleep onset latency, wake after sleep onset, time (minutes),
and percent of time spent in each sleep stage (N1, N2, N3, and R).
The EEG data were rereferenced to linked mastoids and filtered
from 0.3 t6 30 Hz using a digital phase-true FIR bandpass filter.
Data were then epoched into 30 s bins and subjected to a multi-
variate covariance-based artifact rejection procedure. This

approach estimates a reference covariance matrix for each sleep
stage and rejects epochs that deviate too far from this reference,
where deviation is established using Riemannian geometry
(Barachant et al., 2013; Barthélemy et al., 2019). Slow oscilla-
tion–spindle coupling strength was extracted via the danalyzer
toolbox implemented in MATLAB based on published algo-
rithms (Denis et al., 2021).

Briefly, sleep spindles were automatically detected at every
electrode during NREM sleep based on individual peak spindle
frequencies between 12 and 16 Hz. The raw EEG time series
was transformed to the frequency domain by estimating the
power spectral density (PSD) of the time series using Welch’s
method with 5 s windows and 50% overlap. Note that the PSD
was calculated on a derivative time series to remove the 1/f com-
ponent and to make the peak spindles more prominent (Sleigh
et al., 2001; Demanuele et al., 2007). For each participant at every
channel, spindle peak frequencies were automatically detected.
Sleep spindles were then automatically detected using a wavelet
decomposition, with the Morlet wavelets generated using partic-
ipants’ peak spindle frequencies. A thresholding algorithm was
then applied to every channel to detect spindles in the narrow-
band data, with a detected spindle needing to exceed a threshold
of six times the median amplitude for a minimum of 400 ms.

For SOs, continuous NREM EEG data were bandpass filtered
between 0.5 and 4 Hz, with all positive-to-negative zero crossings
identified based on published algorithms (Staresina et al.,
2015; Helfrich et al., 2018). Potential SOs were flagged if two
such positive-to-negative crossings occurred 0.5–2 s apart.
Peak-to-peak amplitudes for all potential SOs were isolated,
and oscillations in the top quartile (i.e., with the strongest ampli-
tudes) at each channel were considered SOs (Staresina et al.,
2015; Helfrich et al., 2018).

Slow oscillation–spindle coupling was analyzed at each channel
during NREM sleep. Specifically, for each identified spindle, we
assessed whether it occurred during an identified SO event.
These co-occurring events were deemed coupled, and we quan-
tified the percentage of spindle events that were coupled for each
channel. For each coupled event, the instantaneous phase of the
SO at the time of the peak spindle amplitude was extracted. SO–
spindle coupling was further quantified using the mean SO phase
and vector length of coupled events for each channel. Finally, the
Rayleigh test for circular nonuniformity with alpha set to 0.01 was
used to evaluate phase preference regularity across participants.

Statistical analysis
Data were imported into R version 4.0.2 (R Core Team, 2020) and
analyzed using (generalized) linear mixed-effects models fit by
restricted maximum likelihood (REML) using lme4 (Bates, 2010).
For the behavioral model, we used a logistic mixed-effects regres-
sion, modeling response choice (correct, incorrect) as a binary out-
come variable. This model also factored in by-item and
by-participant differences by specifying them as random effects
on the intercept. The behavioral model took the following form:

Logit(responsei) = b0

+ b1grammaticalityi ∗b2typei ∗b3conditioni

+ b4accuracy baselinei + b5sssi

+ subject0i + item 0i + e,

where grammaticality encodes sentence grammaticality (grammat-
ical, ungrammatical), type refers to word order (fixed, flexible),
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condition is sleep versus wake, baseline is performance on the
baseline (i.e., presleep and prewake) judgment task, and sss refers
to self-perceived sleepiness estimated from the SSS. Asterisks
denote interaction terms, including all subordinate main effects;
pluses denote additive terms.

Cluster-based permutation testing (Maris and Oostenveld,
2007) on task-related EEG data was performed in MATLAB
R2022a (v9.12.0.1884302; The MathWorks) using the FieldTrip
toolbox (v20220810; Oostenveld et al., 2011). Baseline-corrected
power estimates for each channel and frequency band (theta, alpha,
beta) were averaged over the grammaticality factor for both fixed
and flexible sentence types. The difference in spectral estimates
between fixed and flexible word orders was calculated for each
channel and frequency band within-subjects. These difference
scores were then contrasted between sleep and wake conditions
(thereby testing the interaction between type and condition).
Between-subject t statistics were computed using the
ft_statfun_indepsamplesT function. Channels with t values that
exceeded an alpha threshold of 0.10 were considered as candidates
for cluster inclusion. The t values of resolved clusters were then
summed and compared with the null distribution of t statistics
obtained from1,000 randompartitions of the data. The cluster-level
statistic was considered significant if it attained a p value < 0.05.

Following the identification of significant topographical
differences in oscillatory power, the following structure was
used for the EEG models, where we were interested in predicting
behavior from task-related theta activity, and which did not
include trial-based response accuracy:

dprimei = b0 + b1poweri ∗b2conditioni ∗b3typei

+ b4dprime baseline+ b5aperiodici + b6channeli

+ subject0i + e.

power is theta power from the postsleep and postwake testing
session, condition is sleep versus wake, and type is sentence
word order (fixed, flexible). Baseline is theta power from the
baseline judgment task (presleep and prewake session). aperiodic
refers to the 1/ƒ exponent estimated from the task-related EEG,
and channel refers to the significant channels isolated from the
cluster-based permutation test. Subject was modeled as a random
effect on the intercept. d′ was specified as the outcome.

For sleep-related analyses, we first constructed linear
mixed-effects model to predict judgment accuracy from the com-
bination of SO–spindle coupling strength, sentence type, sagittal-
ity, and laterality, while controlling for baseline (i.e., presleep and
prewake) judgment accuracy and sleep stage (N2, N3), with a
random intercept of subject. A second linear mixed-effects model
was constructed predicting delayed judgment accuracy from
anterior task-related theta power, anterior SO–spindle coupling
strength, and sentence type, while controlling for laterality and
baseline judgment accuracy, with random intercepts of subject.

p values for all models were estimated using the summary func-
tion from the lmerTest package, which is based on Satterthwaite’s
degrees of freedom (Kuznetsova et al., 2017), while effects were
plotted using the package effects (Fox and Hong, 2010) and ggplot2
(Wickham and Wickham, 2016). Post hoc comparisons for main
effects were performed using the emmeans package (Lenth et al.,
2019). The Holm–Bonferroni method (Holm, 1979) was used to
correct for multiple comparisons, while outliers were isolated
using Tukey’s method, which identifies outliers as exceeding ±
1.5 × interquartile range. Categorical factors were sum-to-zero
contrast coded, such that factor level estimates were compared

with the grand-mean (Schad et al., 2020). Further, for modeled
effects, an 83% confidence interval (CI) threshold was used
given that this approach corresponds to the 5% significance
level with nonoverlapping estimates (Austin and Hux, 2002;
MacGregor-Fors and Payton, 2013). In the visualization of effects,
nonoverlapping CIs indicate a significant difference at p< 0.05.

Results
Sleep supports the consolidation of fixed word order rules
Across testing sessions and grammaticality, participants showed
a moderate degree of accuracy for fixed (M= 64.00; SD= 48.00)
and flexible (M= 58.00; SD= 49.00) word orders, with perfor-
mance accuracy ranging from 37.18 to 93.75%. As shown in
Table 1, performance also varied by sentence type, condition,
and grammaticality, with the sleep relative to the wake condition
performing higher for fixed word orders at delayed testing.

Generalized linear mixed-effects modeling of single trial
response accuracy (controlling for baseline performance) revealed
a significant grammaticality × sentence type × condition interaction
(β=0.13; se = 0.03; p<0.001; Fig. 4). TheHolm–Bonferroni adjusted
post hoc comparisons revealed that response accuracywashigher for
the sleep relative to wake condition for fixed grammatical (OR=
0.55; se = 0.12; z=−2.60: padj = 0.03) but not fixed ungrammatical
(OR=0.89; se = 0.19; z=−0.52; padj = 1.00) word orders.

Response accuracy was also higher in the sleep condition for
grammatical fixed relative to grammatical flexible word orders
(OR= 0.58; se = 0.06; z=−4.63; padj < 0.001). The sleep condition
also judged flexible over fixed word order sentences as ungram-
matical (OR= 1.59; se = 0.23; z= 3.10; padj = 0.01). These results
indicate that sleep may benefit the consolidation of fixed (but
not flexible) word order rules, although this pattern may be
due to differing response strategies adopted between the sleep
and wake conditions. To address this in subsequent analyses,
we examine the sensitivity index d′ to account for potential
response biases (Table 1 for d′ values).

Theta power after sleep is associated with increased memory
for fixed but decreased memory for flexible word order rules
Based on the differences in behavioral performance between the
sleep and wake conditions on fixed and flexible word orders, we
asked whether task-evoked theta power predicts differences in

Table 1. Percent correct and the sensitivity index d′ by condition (sleep, wake),
sentence judgment task (baseline, delayed), grammaticality (grammatical,
ungrammatical), and sentence type (fixed, flexible)

Condition Session Grammaticality Sentence type Correct (SD) d′ (SD)

Sleep Baseline Grammatical Flexible 65.14 (47.67) 0.79 (1.24)
Fixed 67.44 (46.90) 0.90 (0.80)

Ungrammatical Flexible 58.88 (49.26)
Fixed 47.65 (50.00)

Delayed Grammatical Flexible 57.92 (49.38) 1.00 (1.90)
Fixed 71.28 (45.28) 1.50 (1.34)

Ungrammatical Flexible 64.85 (47.80)
Fixed 49.50 (50.00)

Wake Baseline Grammatical Flexible 63.04 (48.28) 1.11 (1.34)
Fixed 67.66 (46.81) 1.40 (0.91)

Ungrammatical Flexible 68.88 (46.35)
Fixed 51.14 (50.00)

Delayed Grammatical Flexible 66.82 (47.10) 1.41 (1.48)
Fixed 61.11 (48.80) 1.20 (1.42)

Ungrammatical Flexible 71.12 (45.31)
Fixed 51.50 (50.00)

Standard deviations (SD) are given in parentheses.
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behavior across sleep and wake. A nonparametric cluster-based
permutation test (see Materials and Methods) contrasting
Condition (sleep, wake) and Sentence Type (fixed, flexible)
revealed a significant difference in baseline-corrected theta power
during the delayed session (Monte Carlo p= 0.008; see Fig. 5A for
topography and demarcation of the cluster). No significant clus-
ters were identified for alpha- or beta-band estimates.

Given the significant theta band effects, we constructed a lin-
ear mixed-effects model with judgment accuracy (d′) as the out-
come and task-related theta power (drawn from the significant
cluster identified above) and Condition (sleep, wake) and
Sentence Type (fixed, flexible) as predictors. This analysis
revealed a significant theta × condition × sentence type interac-
tion (β=−1.09; se = 0.34; p= 0.001). The Holm–Bonferroni
adjusted post hoc comparisons revealed that for flexible word
orders, greater theta synchronization was associated with poorer
judgment accuracy for the sleep but not wake condition.

However, the inverse was observed for fixed word order sen-
tences, such that less theta desynchronization was associated
with improved judgment accuracy for the sleep but not wake
condition (β=−4.70; se = 1.10; padj < 0.001). Coupled with the
behavioral model, the current analysis demonstrates that sleep
preferentially consolidates fixed word order rules at the expense
of flexible word order rules and that this is reflected in
task-related theta power. For a visualization of these effects, see
Figure 5C. For time–frequency and power spectral density plots
for the sleep and wake conditions across fixed and flexible word
orders, see Figures 6 and 7, respectively.

SO–spindle coupling is predictive of memory for fixed but not
flexible word order rules
Having observed differences between the sleep and wake condi-
tions on the relationship between task-related theta activity and
behavioral performance, a logical next step was used to test

Figure 4. Visualization of the behavioral results. Relationship between the probability of correct response (y-axis; higher values indicate a higher probability of a correct response),
grammaticality (x-axis; grammatical, ungrammatical), sentence type (left column, flexible; right column, fixed), and condition (wake, salmon; sleep, purple). Bars represent the 83% confidence
interval around group level expected marginal mean estimates. Dots represent individual data points per subject for aggregated data.

Figure 5. Theta power and judgment accuracy. A, Cluster-based permutation testing on the theta band contrasting differences between Condition (sleep, wake) and Sentence Type (fixed,
flexible). Warmer colors denote a higher t statistic. Significant channels are indicated by white asterisks. B, Raincloud plots illustrating average theta power over significant channels between
sentence type and condition. Positive values on the y-axis denote increased theta power relative to the prestimulus interval. C, Modeled effects of task-related theta power (x-axis; higher values
indicate increased power) on judgment accuracy (y-axis; higher values indicate better performance) for the sleep and wake conditions (sleep, purple solid line; wake, dashed pink line) for flexible
(left facet) and fixed (right facet) sentences. The black dashed line indicates chance-level performance, while the shaded regions indicate the 83% confidence interval. The x-axis reflects theta
power estimates, with more negative values reflecting a decrease in power and positive values reflecting an increase in power from the prestimulus interval, respectively. Individual data points
represent raw (single subject) values.
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whether behavioral performance for fixed word order rules is asso-
ciated with SO–spindle coupling. Based on previous work
(Helfrich et al., 2018; Mikutta et al., 2019), we focused on the cou-
pling strength, measured as the mean vector length of spindle

phase during coupled SO–spindle events (for a summary of typical
sleep parameters and their correlation with d′, see Table 2). There
was a significant nonuniform distribution for the precise SO phase
during peak spindle activity (p≤ 0.001; Rayleigh test). In predicting

Figure 6. Differences in time–frequency activity between sleep and wake and fixed and flexible word orders. Time–frequency plots for the sleep (top) and wake (bottom) conditions for fixed
(left column) and flexible (right column) word order sentences. Time is presented on the x-axis (dashed vertical bar represents sentence onset), while frequency is presented on the y-axis.
Warmer colors denote an increase in power relative to the prestimulus period, while cooler colors represent a decrease in power. The z-scale is in arbitrary units.

Figure 7. Power spectral density plots for the sleep (blue) and wake (red) conditions for frontal, central, parietal, and occipital regions of interest. Fixed word order sentences are on the left,
while flexible word orders are on the right. The solid red and blue lines represent the mean power spectral density for the wake and sleep conditions, respectively, while the dashed lines
represent the aperiodic (1/f ) power law. Individual lines represent individual participant power spectral densities.
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behavioral performance, mixed-effects modeling revealed a signifi-
cant Coupling strength × sentence type × sagittality interaction (β=
3.05; se = 0.97; p=0.002). Pairwise contrasts further revealed that
this effect was largest anteriorly for fixed sentences (β=6.85; se =
2.01; padj < 0.001; Fig. 8B), but nonsignificant in central (β=
−0.75; se = 2.62; padj = 0.77) and posterior regions (β=−3.90; se =
3.47; padj = 0.26). Also note that while stronger SO–spindle cou-
pling predicted improved judgment accuracy for fixed word order
sentences, the inverse relationship was present for flexible word
order sentences. Figure 8 illustrates an exemplary full-night

spectrogram, distribution of SO–spindle coupling strength across
channels, as well as exemplar single subject and group level como-
dulagrams and preferred phase of SO–spindle coupling for NREM
sleep. For a summary of sleep microarchitecture characteristics, see
Table 3.

Frontal SO–spindle coupling and task-evoked theta power
interact to predict judgment accuracy
Having shown that SO–spindle coupling is associated with
improved judgment accuracy for fixed word orders, and judg-
ment accuracy is tracked by task-related theta power, we exam-
ined whether frontal theta power interacts with frontal
SO–spindle coupling strength to predict judgment accuracy.
A mixed-effects model regressing SO–spindle coupling strength,
task-based theta power, sagittality (anterior, central, posterior),
and sentence type (fixed, flexible) onto judgment accuracy
revealed a significant three-way interaction between SO–spindle
coupling strength, task-based theta power, and sentence type
(β=−41.60; se = 16.70; p= 0.01). As illustrated in Figure 9, high
anterior task-based theta power and stronger anterior SO–spindle
couplingwas positively associatedwith delayed judgment accuracy
for fixed but not flexible word order sentences. This finding links
frontal neural activity in the sleeping and waking brain to predict
higher-order language learning.

Discussion
Coordination between SOs and sleep spindles is hypothesized to
provide an optimal temporal receptive window for hippocam-
pal–cortical communication during sleep (Staresina et al., 2015;

Table 2. Descriptive statistics for sleep parameters and correlations with the
difference between d′ at delayed and baseline testing for fixed and flexible word
order sentences

Sleep
parameter Mean minutes (SD) % in stage (SD)

Correlations with d′

(delayed− baseline)

Fixed Flexible

r p r p

TST 400.00 (67.02) −0.44 0.42 0.30 0.96
SOL 15.23 (12.23) 0.45 0.42 −0.47 0.35
WASO 52.64 (55.60) 0.41 0.42 −0.19 1.00
N1 38.05 (29.47) 10.05 (8.21) 0.12 1.00 0.10 1.00
N2 196.30 (46.29) 49.52 (10.36) 0.26 0.93 0.33 0.95
SWS 104.23 (42.27) 25.84 (9.60) 0.02 1.00 −0.48 0.35
REM 61.30 (39.39) 14.57 (8.56) −0.46 0.42 0.04 1.00

Note. SD, standard deviation. TST, total sleep time; SOL, sleep onset latency; WASO, wake after sleep onset;
N1, stage 1; N2, stage 2; SWS, slow wave sleep; REM, rapid eye movement sleep. Significance values are
Holm–Bonferroni corrected (Holm, 1979).

Figure 8. Sleep neurophysiology metrics and relationship between phase amplitude coupling and judgment accuracy. A, Hypnogram and full-night multitaper spectrogram for a single
participant from channel Cz. B, Modeled effects from the linear mixed-effects regression of SO–spindle coupling strength (x-axis; higher values indicate stronger coupling) on judgment accuracy
(y-axis; higher values indicate better performance) for fixed and flexible word order sentences (fixed, purple solid line; flexible, dashed pink line) across levels of anterior (left), central (middle),
and posterior (right) regions. The black dashed line indicates chance-level performance, while the shaded regions indicate the 83% confidence interval. C, Scatterplot indicating the relationship
between judgment accuracy (y-axis; higher values denote better memory performance) and SO–spindle coupling strength (x-axis; higher values denote stronger coupling) for flexible (left) and
fixed (right) word order sentences across anterior channels. The topoplot visualizes the beta coefficient from the SO–spindle coupling strength × sentence type interaction, with higher values/
warmer colors denoting a stronger interaction coefficient. D, Single-subject and group-level average time–frequency response of all SOs coupled to a spindle (−1,200 to 1,200 ms, centered on
the trough of the SO), with the time-domain averaged SO overlaid. To the right is the preferred phase of SO–spindle coupling for NREM sleep. Note that 0 represents the peak of the SO. E, Ridge
plot illustrating the distribution of SO–spindle coupling strength (x-axis; higher values indicate stronger coupling) across channels (y-axis).

10 • J. Neurosci., January 15, 2025 • 45(3):e2193232024 Cross et al. • Neural Correlates of Sleep and Language Learning



Helfrich et al., 2019) in the support of memory consolidation.
Here, we show that the beneficial effect of SO–spindle coupling
on memory extends to sentence-level regularities. Behaviorally,
we demonstrated that a period of sleep compared with an equiv-
alent period of wake benefits the consolidation of fixed relative
to flexible word order rules and that this effect is modulated
by the strength of coupling between spindles and SOs. Our
results further reveal that SO–spindle coupling correlates with
changes in task-evoked theta activity during sentence processing.
Interestingly, participants in the sleep condition exhibited overall
less theta power at delayed testing relative to the wake condition;
however, less theta desynchronization was associated with
improved judgment accuracy for fixed word orders in the sleep
group. Lastly, we reveal that the interaction between frontal
SO–spindle coupling and task-related frontal theta power pre-
dicts improved judgment accuracy for fixed but not flexible
word order rules. In sum, our results establish converging beha-
vioral and neurophysiological evidence for a role of NREM
SO–spindle coupling and task-related theta activity as signatures
of successful memory consolidation and retrieval in the context
of higher-order language learning

Beyond single word learning: a role for sleep in consolidating
word order rules
Using a complex modified miniature language paradigm (Cross
et al., 2021), we demonstrated that a period of sleep facilitates
the extraction of fixed relative to flexible word order rules.
Importantly, the key distinction between these word order per-
mutations is that successful interpretation of fixed word order
sentences relates to the sequential position of the noun phrases
and verb (i.e., the first noun phrase is invariably the actor, and

the sentence is verb-final). In contrast, successful interpretation
of flexible word order sentences dependsmore heavily on the ani-
macy of the nouns. As such, fixed word order sentences, requir-
ing a more sequential order-based interpretation, are more
compatible with an English word order-based processing strategy
(MacWhinney et al., 1984; Bornkessel and Schlesewsky, 2006;
Bornkessel-Schlesewsky et al., 2015). Critically, this sleep-based
enhancement for fixed word order rules was predicted by stron-
ger SO–spindle coupling (Fig. 8F).

Sleep-related memory effects are proposed to be biased
toward stimuli following temporal or sequence-based regularities
compared with relational information (for review, see Lerner and
Gluck 2019). This is posited to occur via the hippocampal
complex encoding temporal occurrences of sensory input
(Durrant et al., 2011), which are replayed during SWS, poten-
tially via SO–spindle coupling (Navarrete et al., 2020; Solano
et al., 2022). Here, we provide evidence supporting this account.
Specifically, sleep-based consolidation of higher-order language
may favor sequence-based regularities, with mechanisms of
sleep-related memory consolidation generalizing fixed over
flexible word order rules, indexed by task-related theta activity.

It is important to note, however, that our sample of partici-
pants were native monolingual speakers and as such, may have
preferentially consolidated fixed word order rules at the expense
of flexible rules. While behavioral work demonstrates sentence-
level preferences of grammatical rules that are analogous to
learners’ native languages (Cross et al., 2021), less is known
regarding the neural underpinnings of this phenomenon. We
now turn to how the neurobiological processes underpinning
the beneficial effect of SO–spindle coupling on memory consol-
idation extends to higher-order language learning.

Slow oscillation–spindle coupling as a marker of
sleep-associated memory consolidation and higher-order
language learning
Coupling between SOs and spindles predicts successful overnight
memory consolidation (Helfrich et al., 2018; Mikutta et al., 2019;
Hahn et al., 2020, 2022). However, these studies often use old–
new paradigms with single words (Helfrich et al., 2018;
Mikutta et al., 2019) or word–image pairs (Muehlroth et al.,
2019). Here, we found that the generalization of sequence-based
(or fixed word order) rules is facilitated by the strength of NREM
SO–spindle coupling. Mechanistically, during SWS, the cortex is
synchronized during the up state of the SO, allowing effective
interregional communication, particularly between the prefron-
tal cortex and hippocampal complex (Helfrich et al., 2019). It
is during this SO upstate that spindles induce an influx of Ca2+

into excitatory neurons, enabling synaptic plasticity and the gen-
eralization and stabilization of memory traces (Niethard et al.,
2018). Here we revealed that the interaction between these cardi-
nal markers of sleep-related memory processing extend to

Table 3. NREM slow oscillation–spindle coupling characteristics for frontal, central, and parietal channels

Channel Coupling strength Phase % coupled n coupled n uncoupled Coupled density Uncoupled density

C3 0.53 (0.11) −0.27 (0.29) 16.95 (4.15) 399.34 (161.21) 1,934.81 (651.20) 1.33 (0.38) 6.55 (1.50)
C4 0.55 (0.11) −0.24 (0.32) 17.36 (4.58) 397.81 (169.80) 1,870.47 (660.39) 1.32 (0.39) 6.33 (1.56)
F7 0.44 (0.11) 0.08 (0.73) 18.39 (4.88) 317.75 (133.49) 1,422.44 (514.52) 1.09 (0.38) 4.81 (1.38)
F8 0.52 (0.11) −0.14 (0.29) 18.78 (5.17) 333.47 (152.94) 1,425.06 (492.26) 1.13 (0.42) 4.81 (1.22)
P3 0.58 (0.11) −0.34 (0.26) 17.36 (3.65) 435.38 (166.33) 2,038.84 (589.56) 1.45 (0.35) 6.93 (1.29)
P4 0.57 (0.12) −0.39 (0.23) 17.11 (4.53) 414.84 (174.65) 1,972.50 (619.66) 1.37 (0.39) 6.69 (1.40)

Note: % coupled, percent of spindles coupled to an SO; n coupled, total number of coupled spindles to SOs; n uncoupled, total number of uncoupled spindles; coupling density, average number of coupled spindles to SOs per 30 s epoch;
uncoupled density, average number of uncoupled spindles per 30 s epoch. Standard deviations are provided in parentheses.

Figure 9. The interaction between task-related theta power and SO–spindle coupling
strength predicts judgment accuracy. Delayed judgment accuracy (y-axis; higher values
denote higher accuracy), SO–spindle coupling strength (x-axis; higher values denote stronger
coupling) and task-related theta power (facetted; low and high contrast for plotting purposes
only) averaged across anterior channels. Fixed sentences are color coded in yellow, while
flexible sentences are color coded in gray.
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sentence-level regularities. This finding also accords with previ-
ous work examining not only NREM sleep and language learning
(Batterink et al., 2014; Mirković and Gaskell, 2016; Schreiner and
Rasch, 2017), but also REM (De Koninck et al., 1989, 1990;
Thompson et al., 2021). For example, the interaction between
time spent in NREM and REM modulates the amplitude of
language-related ERPs (N400, late positivity) during the process-
ing of novel grammatical rules (Batterink et al., 2014), while per-
cent of time spent in REM is predictive of French learning in a
naturalistic multi-week program (De Koninck et al., 1989,
1990). By demonstrating sleep-related consolidation effects for
linguistic stimuli of varying complexity, these findings have
begun to establish a link between sleep-relatedmemory consolida-
tion of various aspects of language (Rasch, 2017). Building on this
foundational work, we have provided empirical evidence support-
ing a link between oscillatory-based models of hippocampo-
cortical memory consolidation and sentence-level learning and
how this effect manifests in on-task oscillatory theta activity. In
the following, we discuss how SO–spindle coupling, as a marker
of sleep-associated memory consolidation, modulates task-related
oscillatory activity and how these interactions affect sentence
processing.

Task-related theta oscillations index successful memory
consolidation of complex linguistic rules
Theta is the dominant frequency in the hippocampal complex and
surrounding structures during wake (Duff and Brown-Schmidt,
2012; Covington and Duff, 2016). Oscillations in this frequency
range are critical for associativememory formation and coordinat-
ing hippocampal–cortical interactions, having been related to
associative memory formation (Tort et al., 2009), tracking sequen-
tial rules (Crivelli-Decker et al., 2018), and predicting words based
on contextual linguistic information (Piai et al., 2016; Corcoran
et al., 2023). In the sleep and memory literature, increased theta
power has been reported for successfully remembered items, inter-
preted as reflecting a stronger memory trace induced by sleep-
based consolidation. Here, we observed that less theta desynchro-
nization relative to the prestimulus interval predicted higher sen-
sitivity for fixed word order rules after a 12 h delay period and that
the effect of theta on fixed word order processing was more pro-
nounced in the sleep relative to wake condition. This finding
accords with the general memory literature, possibly reflecting
the binding of linguistic items in a sequence to generate a coherent
sentential percept.

We also observed that frontal NREM SO–spindle coupling
and task-related theta power interacted to predict improved
delayed judgment accuracy for fixed but not flexible word order
rules. In line with systems consolidation theory (Born and
Wilhelm, 2012), NREM oscillatory activity contributes to the
consolidation of newly encoded memory representations, which
may manifest in stronger theta power during retrieval, indicating
a stronger neocortical memory trace (Schreiner and Rasch,
2015), reflected in improved sensitivity to fixed word order rules.

Future directions and concluding remarks
Future studies may include groups in AM–PM (12 h Wake),
PM–AM (12 h Sleep), PM–PM (24 h Sleep early), and AM–AM
(24 h Sleep late), as recommended by Nemeth et al. (2024). We
did, however, model participants’ sleepiness levels and the 1/ƒ
exponent in our statistical analyses, which partially controlled
for potential time-of-day effects. Further, the evidence presented
here is correlational and neuroanatomical inferences are unable
to be drawn based on scalp-recorded EEG. However, this is the

first study to relate sleep-based memory consolidation mecha-
nisms (i.e., SO–spindle coupling) to online sentence-level oscilla-
tory activity and as such, has set the foundation for future work
using techniques with greater spatial-temporal resolution. For
example, electrocorticography and stereoelectroencephalography
would allow for a better characterization of task-evoked cortical
dynamics and SO–spindle coupling between cortical regions and
the hippocampal complex, respectively (Helfrich et al., 2018,
2019). This approach would be complemented by demonstrating
a selective reinstatement of memory traces during SO–spindle
coupling using representational similarity analysis (Zhang et al.,
2018). Identifying stimulus-specific representations during the
encoding of sentence-level regularities and tracking the replay of
stimulus activity related to SO–spindle coupling events would fur-
ther demonstrate the critical role of sleep-based oscillatory mech-
anisms on higher-order language learning. Comparisons between
sleep-related consolidation effects on language-specific and non-
language but related tasks (i.e., statistical learning tasks) in the
same group of participants would also further establish the role
of sleep in higher-order language learning.

In addition to representational similarity analyses, we suggest
that research examine different baselining approaches to task-
related differences in theta activity in conditions of sleep and
wake. Here, we adopted a conventional baselining approach of
subtracting theta power from the prestimulus interval from the sti-
mulus period. In doing so, we observed that the sleep group had
greater theta desynchronization than the wake group but that
less desynchronization was associated with improved recognition
accuracy. From this perspective, it appears that more theta power
is indeed associated with better memory, but future research
should establish whether this effect is driven by a limiting of
task-related desynchronization, as we observed, or if a different
baselining procedure would reveal an increase in theta power.

Taken together, our results demonstrate that the temporal cou-
pling between NREM SOs and spindles supports the consolidation
of complex sentence-level rules. We demonstrated that SO–
spindle coupling promotes the consolidation of sequence-based
rules and modulates task-evoked theta oscillations previously
implicated in language learning (de Diego-Balaguer et al., 2011;
Kepinska et al., 2017) and sentence processing (Vassileiou et al.,
2018). Critically, these findings add tomodels of sleep-basedmem-
ory consolidation (Lewis and Durrant, 2011; Born and Wilhelm,
2012) and help characterize how effects of sleep-related oscillatory
dynamics on memory manifest in oscillatory activity during com-
plex language-related operations.
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