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Sleep constitutes a brain state of disengagement from the external world that supports memory consolidation and
restores cognitive resources. The precise mechanisms how sleep and its varied stages support information pro-
cessing remain largely unknown. Synaptic scaling models imply that daytime learning accumulates neural in-
formation, which is then consolidated and downregulated during sleep. Currently, there is a lack of in-vivo data
from humans and rodents that elucidate if, and how, sleep renormalizes information processing capacities. From

an information-theoretical perspective, a consolidation process should entail a reduction in neural pattern
variability over the course of a night. Here, in a cross-species intracranial study, we identify a tradeoff in the
neural population code during sleep where information coding efficiency is higher in the neocortex than in
hippocampal archicortex in humans than in rodents as well as during wakefulness compared to sleep. Critically,
non-REM sleep selectively reduces information coding efficiency through pattern repetition in the neocortex in
both species, indicating a transition to a more robust information coding regime. Conversely, the coding regime
in the hippocampus remained consistent from wakefulness to non-REM sleep. These findings suggest that new
information could be imprinted to the long-term mnemonic storage in the neocortex through pattern repetition
during sleep. Lastly, our results show that task engagement increased coding efficiency, while medically-induced
unconsciousness disrupted the population code. In sum, these findings suggest that neural pattern variability
could constitute a fundamental principle underlying cognitive engagement and memory formation, while pattern
repetition reflects robust coding, possibly underlying the consolidation process.

1. Introduction

Contemporary theories of sleep function posit that sleep reflects a
brain state supporting memory consolidation, which involves the over-
night regulation of neural activity at both synaptic and systems levels
(Brodt et al., 2023; Lendner et al., 2023; Rasch and Born, 2013; Tononi
and Cirelli, 2014). Far from being a passive state reflecting disengage-
ment from the external world, recent theories highlight that sleep con-
stitutes an active brain state that facilitates information processing
(Brodt et al., 2023; Girardeau and Lopes-dos-Santos, 2021; Klinzing
et al., 2019). At the systems-level, it has been suggested that mnemonic

information might be actively recapitulated through pattern repetition.
This is exemplified by a process termed replay, which involves the pe-
riodic recurrence of neural firing patterns that were first present during
encoding of new information (Foster, 2017; Olafsdéttir et al., 2018). At
the cellular level, pattern repetition might constitute a possible mech-
anism that promotes synaptic plasticity. Over the course of a night,
repeated reactivation might strengthen relevant synapses, while irrele-
vant synapses are downscaled or ‘pruned’ (Tononi and Cirelli, 2014;
Girardeau and Lopes-dos-Santos, 2021; Klinzing et al., 2019). From a
Shannon information-theoretical perspective, neural information is re-
flected in patterns of neural activity, where high variability corresponds
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to a large amount of information (Luppi et al., 2024; Quian Quiroga and
Panzeri, 2009; Timme and Lapish, 2018). Hence, the concepts of
consolidation and downscaling entail that neural information content
decreases over the course of the night, since information becomes
repeated and condensed.

Pattern repetition is most commonly studied using single neuron
recordings in the rodent hippocampus, as well as in putative human
frontal cortex homologues (Olafsdéttir et al., 2018; Euston et al., 2007;
Peyrache et al., 2009). In humans, it remains challenging to record
single unit activity from sufficiently large neuronal populations to reli-
ably quantify recapitulated patterns. High-frequency band activity
(HFA; 70 — 150 Hz) constitutes a viable proxy of multi-unit firing that
can readily be obtained from macroelectrodes that are placed intracra-
nially for localization of the seizure onset zone in pharmaco-resistant
epilepsy patients (Leonard et al., 2024; Leszczynski et al., 2020; Par-
vizi and Kastner, 2018; Ray and Maunsell, 2011; Rich and Wallis, 2017).
Importantly, the association between unit-firing and HFA has also been
demonstrated in rodents using microelectrodes (Watson et al., 2018),
providing a viable basis for cross-species comparisons. Pattern repetition
had been described at the level of large-scale activity in humans (Jiang
et al., 2017; Liu et al., 2019; Schwartenbeck et al., 2023); however, it
remains unclear if the identified principles are comparable to the sig-
natures previously identified in rodents. This gap in knowledge is due to
the lack of comparative studies assessing human and rodent sleep using
the same analytical methodology. In this study, we employed the
information-theoretical approach of contrast entropy to quantify the
neural information coding efficiency of HFA population signals in both
species. Contrast entropy is defined as the ratio between the empirical
entropy of a signal and its theoretical maximum, thereby reflecting its
information coding efficiency.

We validated the analytical approach in simulations and then
directly compared intracranial multi-site recordings from the hippo-
campus (HC; and adjacent structures in the medial temporal lobe; MTL)
as well as from the medial and orbitofrontal cortex (mPFC/OFC) in ro-
dents and humans during sleep. Moreover, we also included recordings
from the human dorsolateral PFC (dIPFC), which is commonly consid-
ered the key structure underlying human cognitive abilities and which
does not have clear homologue in rodents. We hypothesized that (1)
neural efficiency should be higher in humans than in rodents, possibly
reflecting the superior cognitive and mnemonic abilities. In addition, we
reasoned that (2) neural efficiency should be higher in the frontal cortex
as compared to the hippocampus. We predicted that (3) neural efficiency
is lower during sleep, since neural patterns are replayed, especially
during NREM sleep. We reasoned that recapitulation during sleep might
support overnight consolidation. Hence, (4) we expected that informa-
tion coding efficiency decreases over the course of the night. If the
identified neural patterns are behaviorally relevant, then (5) neural ef-
ficiency should increase during cognitive engagement and (6) decrease
in states of unconsciousness.

2. RESULTS

We assessed neural population information coding efficiency in
nineteen human patients with pharmacologically intractable epilepsy
(Helfrich et al., 2019) and eight Long Evans rats (Watson et al., 2018,
2016a) (for sleep characteristics see Table S1 & S$2). In humans
(Fig. 1A), electrode coverage encompassed the dorsolateral prefrontal
cortex (dIPFC, N = 170), medial prefrontal cortex (mPFC, N = 134),
orbitofrontal cortex (OFC, N = 62) and medial temporal lobe (MTL, N =
172) including contacts in the Hippocampus (HC, N = 124). All contacts
with epileptic activity were excluded (Helfrich et al., 2019; Gelinas
etal., 2016). We also leveraged rodent recordings (Fig. 1B; Watson et al.,
2018) with comparable electrode coverage in mPFC (N = 718), OFC (N
= 240) and HC (N = 104). We investigated sleep recordings in both
species (Fig. 1C/D, top) to ensure a comparable brain state where a
sufficient amount of data was available (Human: subset of 16 recording
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sessions with concurrent coverage in all regions-of-interest, 12.59h
mean duration; Rodent: 20 recording sessions, 5.04 h mean duration).
We analyzed high frequency activity (HFA, z-normalized analytical
amplitude in the 70 — 150 Hz range; Fig. 1C/D, bottom) in both species
to approximate coordinated population activity (Leonard et al., 2024;
Leszczynski et al., 2020; Ray and Maunsell, 2011; Rich and Wallis, 2017;
Watson et al., 2018; Manning et al., 2009). Specifically, we examined
the HFA peak rate analogous to spike rate analyses, since HFA peaks are
indicative of coordinated population firing. HFA power exhibits an
approximate Gaussian distribution with a heavy tail distribution at z > 1
(Fig. 1E/F, left); hence, we employed this threshold to define individual
HFA peaks. A direct correlation between HFA and population firing had
been established using the same dataset (Watson et al., 2018), sup-
porting that HFA constitutes a proxy of coordinated population firing
(Leonard et al., 2024; Parvizi and Kastner, 2018).

In humans (Fig. 1E, right), all prefrontal regions-of-interest (ROI)
exhibited a higher peak rate than the MTL (Wilcoxon Rank Sum tests; all
p < 0.001, FDR-corrected). The mPFC displayed the highest peak rate of
the frontal ROIs (all p < 0.007), while OFC and dIPFC did not differ
significantly (z = —1.14, p = 0.254, r = —0.074). Rodents displayed a
highly comparable pattern (Fig. 1F, right) where the highest peak rate
was observed in mPFC as compared to OFC and HC (all p < 0.042).
However, peak rate was lower in the OFC than in HC (z = —3.43,p <
0.001, r = —0.185). When directly comparing both species within the
specified ROIs (Fig. 1G), we observed that humans exhibited a higher
peak rate than rodents in the mPFC and OFC (all p < 0.001). Interest-
ingly, the opposite pattern was evident in the HC, where peak rate in the
rodent HC was higher than in the human MTL/HC (z = —10.57, p <
0.001, r = —0.637; for the full statistical report see Table S2). To
investigate whether short, volatile HFA peaks bias these results towards
higher peak frequencies, we additionally analyzed the widths of the
detected peaks, but found no consistent relationships across regions,
species and brain states (Figure S1).

Next, we estimated the information coding efficiency of the HFA
signal using Shannon entropy. When assessing entropy and related
information-theoretical metrics, differences in peak rate between re-
gions and species pose a substantial challenge since entropy is con-
strained by (and increases with) the peak rate (i.e., the relative
frequency, cf. Fig. 2B, bottom left; Pryluk et al., 2019; Rieke et al.,
1999). As a direct result, information content is directly related to the
HFA peak rate. To mitigate the dependency between peak rate and en-
tropy and approximate the information content independent of the HFA
peak rate, we employed a related information-theoretical metric, termed
contrast entropy. Contrast entropy normalizes the observed information
content of a signal relative to its own theoretical maximum, given a
certain HFA peak rate (Pryluk et al., 2019). An intuitive description of
contrast entropy is how many different neural patterns were observed,
relative to the theoretical maximum. Hence, contrast entropy quantifies
the amount of information a signal conveys, based on what it potentially
could convey indicating the information coding efficiency of the neural
population (Pryluk et al., 2019). In other words, contrast entropy quan-
tifies the percentage of unique pattern combinations in the signal
capturing pattern variability. Conversely, this metric is inversely
correlated with pattern robustness (Pryluk et al., 2019). Here, we
employ these terms interchangeably to contextualize the results.

To calculate contrast entropy, we first binarized the continuous, z-
normalized HFA signal (Fig. 2A, top; Methods). Next, we defined a neural
pattern (bin size). We employed various pattern lengths (4, 8 and 16;
Fig. 2A, middle). For each pattern, we computed the population entropy
and its analytical maximum (Methods; Fig. 2A, bottom). Lastly, we
normalized the empirically observed entropy by the analytical
maximum entropy to obtain the contrast entropy.

In order to validate the analytical approach, we first simulated ten
one-hour trials of poisson-distributed peak trains from 1 to 30 Hz in
integer steps (Fig. 2B, top). As expected, entropy is strongly related to
peak rate (r(300) = 0.996, p < 0.001). This dependency is significantly
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Fig. 1. Intracranial electrode placement, sleep recordings and high frequency activity peak statistics for humans and rodents. (A) Intracranial electrode
placement in pharmaco-resistant epilepsy patients warped to MNI space with four regions-of-interest (top): dorsolateral prefrontal cortex (dIPFC; red), medial
prefrontal cortex (mPFC; dark green), orbitofrontal cortex (OFC; light green) and medial temporal lobe (MTL; blue) including contacts in the Hippocampus (HC,
bottom). (B) Schematic depiction of electrode placement in Long Evans rats using silicone probes with comparable coverage to the human sample in the mPFC, OFC
and HC. (C) 1.5-hour excerpt from a full night’s sleep of a single human subject with sleep stages (top) and corresponding HFA peak density (N per 30 s) of a mPFC
(green) and a MTL (blue) electrode (bottom). (D) Same conventions as in C but for an exemplary sleep recording in a rat. (E) Left: probability density function (PDF)
of the z-normalized HFA peak amplitudes across the whole night of all electrodes for each recording in humans. Peaks exceeded a HFA cutoff of 1 (blue) were
considered as a proxy for multi-unit activity. Right: Peak rate for HFA peaks for each ROI Depicted are PDFs and individual data points (median) for each electrode.
Boxplots represent median, lower and upper quartiles and outlier-adjusted minimum and maximum values. Note, the higher peak rate in prefrontal ROIs as compared
to the MTL. (F) Same conventions as in E but for rodents. (G) Same data as presented in E and F but visualized to compare both species. Note the overall higher peak
Eate in human prefrontal ROIs (circles) as compared to rodents (triangles), as well as the inversed pattern in rodent HC as compared to human MTL/HC.

<

reduced when accounting for peak rate using contrast entropy (Steiger
test for dependent correlations: t(297) = 38.18, p < 0.001; r(300) =
0.55, p < 0.001). Note, that the residual correlations in simulated data
reflects an additive effect that stems from the invariant peak rate across
time at a given frequency. Thus, small correlations within one frequency
are amplified when computing the correlation across the whole fre-
quency range. Critically, this dependency was not present in empirical
data (Fig. 2C). While we observed a high correlation between peak rate
and entropy across all electrodes in humans and rodents (r(1599) =
0.996, p < 0.001; Fig. 2C, left), peak rate only explained 0.06 % of
variance of contrast entropy (" = 0.006, r(1599) = 0.08, p < 0.001;
Steiger test vs. entropy correlation: t(1596) = 62.105, p < 0.001,
Fig. 2C, right).

Moreover, entropy is not only impacted by peak rate but also by
limited data sampling (Treves and Panzeri, 1995). To verify that the
available data enabled appropriate sampling to estimate neural popu-
lation efficiency, we analyzed contrast entropy in the simulated data
across various time windows, pattern lengths and peak rates (Fig. 2D).
These results demonstrate that longer neural patterns (larger bin size)
require longer sampling intervals and higher peak rates to appropriately
estimate contrast entropy. As expected, longer patterns displayed lower
contrast entropy because of the coarser discretization, stronger de-
pendency on data sampling and correlation of consecutive patterns
(Pryluk et al., 2019). Importantly, all analyzed pattern lengths
converged for recording durations of ~1 hour (Fig. 2E). Hence, the
extensive data sampling during sleep recordings (up to 14 h) provides
sufficient data to reliably estimate contrast entropy. Previously, various
methods to estimate maximum entropy have been introduced and either
determine maximum entropy based on the probability of a pattern given
an empirical firing rate (Pryluk et al., 2019) or based on the probability
of a peak occurring at a specific position within a pattern at a given
empirical firing rate (Maoz et al., 2020). Here, we followed the defini-
tion of Maoz et al., but also implemented the alternative method. Both
methods yielded nearly identical estimations of contrast entropy and
were highly correlated (r = 0.973; p < 0.0001; mean correlation across
all bin sizes).

After having verified the analytical approach in simulations, we
computed the contrast entropy of the continuous signal for humans and
rodents within each ROI to determine which neural populations code
information more efficiently (Fig. 3A). Our results demonstrated higher
contrast entropy in human cortex as compared to their rodent homo-
logues (Wilcoxon Rank Sum tests; all p < 0.001, FDR-corrected,
Table S4). Note, that despite higher peak rates in rodent HC (Fig. 1G),
we observed increased neural efficiency in the human MTL/HC (p <
0.001). Humans also showed higher overall contrast entropy across all
ROIs compared to rodents when the HFA amplitude constraint of z > 1
was removed (Figure S2). Importantly, contrast entropy was higher in
humans than in rodents regardless of neural pattern length (all p <
0.001; Fig. 3B). The differences between species increased as a function
of neural pattern length (mean effect size ryqttern length 4 = 0.55; Tpattern length
8 = 0.70, Tpattern tength 16 = 0.71). Therefore, we report all results for a
pattern length of 4 as the most conservative estimate to quantify dif-
ferences between species. Moreover, we confirmed that differences be-
tween species were not driven by recording length differences. We

predicted contrast entropy with the factors species and recording length
using a robust linear regression. The overall model was significant (R =
0.684, F(2,1596) = 1730, p < 0.001) and demonstrated that rodents
exhibited lower contrast entropy than humans (b = —1.86*107%, p <
0.001) when accounting for recording length (b = 3.36*1077, p <
0.001).

To determine whether neural populations in evolutionary younger
brain structures, such as the neocortex, exhibit higher information
coding efficiency as compared to populations in evolutionary older
structures (archicortex), we compared all ROIs within each species. In
humans (Fig. 3C, top), we observed that contrast entropy in prefrontal
areas was higher than in the MTL/HC (all p < 0.001), but did not differ
significantly between the different prefrontal ROIs (all p > 0.239, also
see Table S4). In rodents (Fig. 3C, bottom), the mPFC displayed higher
contrast entropy than the OFC (z = 6.78, p < 0.001, r = 0.219) and the
HC (z = 3.14, p = 0.002, r = 0.110). In sum, these results demonstrate
that human neural populations exhibit higher information coding effi-
ciency than rodents. In both species, we observed than neocortical re-
gions were more efficient than archicortical areas.

To further dissect the contrast entropy differences between regions
and species, we computed the observed probability of single and mul-
tiple HFA event patterns for 4-, 8- and 16-sized patterns (Figure S3). In
line with the contrast entropy analyses, humans and the prefrontal
cortex exhibited a higher probability to form multi-event patterns, i.e.,
more complex and less redundant patterns.

Next, we asked whether information coding efficiency differs be-
tween sleep stages. Given that there is no clear differentiation between
NREM2 and NREM3 in rodents, we focused on wakefulness, NREM3
(just termed NREM from here on), and REM sleep. In order to resolve
information coding per sleep stage, we computed entropy in 10 s seg-
ments and subsequently normalized it to its theoretical maximum across
the entire recording. Note that the theoretical maximum is computed
based on the average peak rate across different brain states. Thus, in-
dividual contrast entropy values may exceed a value of 1. This
normalization approach restricted the subsequent analyses to within-
species comparisons across different sleep stages.

Analyzing the sleep stage specific information coding dynamics
within each ROI, we found that contrast entropy in the human dIPFC
(Fig. 3D, top left) was lower during NREM-sleep than during wakeful-
ness and REM-sleep (Wilcoxon Rank Sum tests; all p < 0.001, FDR-
corrected, Table S5). Likewise, contrast entropy was lower during
NREM-sleep as compared to wakefulness in the OFC and mPFC (all p <
0.001). While contrast entropy was higher during wakefulness as
compared to REM-sleep in the OFC (z = 4.76, p < 0.001, r = 0.43;
Fig. 3D, top right), the opposite pattern was evident in the mPFC (z =
—3.14, p < 0.001, r = —0.20; Fig. 3D, bottom left). In contrast, the
human MTL/HC displayed no sleep stage specific changes in contrast
entropy (all p > 0.22; Fig. 3D, bottom right). Importantly, we also
verified that our analyses in human patients were not confounded by
possible residual epileptic activity by detecting and removing segments
with interictal epileptiform discharges (Figure S4). Furthermore, using
within segment maximum entropy normalization confirmed these ob-
servations with decreasing contrast entropy from wakefulness to NREM-
sleep in all prefrontal ROIs (Figure S5). This pattern was absent in the
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Fig. 2. Simulation of neural population information coding efficiency. (A) Schematic depiction of the analysis strategy. HFA as a proxy for multi-unit activity is
discretized into peak trains. Peak trains are segmented according to a neural pattern length (i.e. elements per bin) of 4, 8 and 16. Population entropy is computed
based on the probability (p;) for each unique pattern. The peak rate of the same signal is used to calculate the analytical maximum entropy (py, i.e. probability of a
peak at a given position in a given pattern). Normalizing the empirical population entropy by its theoretical maximum results in contrast entropy. Contrast entropy
expresses the amount of information a signal conveys based on what it potentially could convey and therefore, indicates the efficiency of a signal. (B) Top: one hour
of simulated poisson-distributed peak trains from 1 to 30 Hz in integer steps color coded by frequency. Bottom, left: relationship between peak rate und entropy for
an exemplary pattern length of 4. Note the near perfect correlation. Bottom, right: relationship between peak rate and contrast entropy. Importantly, the correlation
with peak rate and contrast entropy is strongly attenuated. (C) Empirical data from humans (red circles) and rodents (blue triangles) for all ROIs across the
continuous recordings for an exemplary pattern length of 4. Left: strong relationship between peak rate and entropy as in panel B. Right: no correlation was observed
between contrast entropy and peak rate. Note, neural populations of both species code information close the theoretical maximum. (D) Contrast entropy as a function
of time segment length and peak rate for all three pattern lengths. In order to maximize contrast entropy, longer word length require higher peak rates and longer
sampling intervals (E) Contrast entropy as a function of time collapsed over all frequencies for each pattern length (same data as in C). Note, with sufficient data
s‘ampling, contrast entropy irrespective of word length converges. Lines indicate the median, with shaded areas representing outlier adjusted maxima and minima.

MTL.

In the rodent OFC and mPFC (Fig. 3E, top right & bottom left)
contrast entropy decreased from wakefulness to NREM sleep (Wilcoxon
Rank Sum tests; all p < 0.001, FDR-corrected, Table S6) but increased
again from NREM to REM-sleep (all p < 0.001). Furthermore, during
wakefulness both ROIs displayed higher contrast entropy than during
REM:-sleep (all p < 0.001). This was also the case when using within
segment maximum entropy normalization (Figure S6). In contrast, ro-
dent HC (Fig. 3E, bottom right), as also observed in humans, did not
exhibit a significant difference between wakefulness and NREM dy-
namic (z = —0.95, p = 0.344, r = —0.07) but instead displayed higher
contrast entropy during REM-sleep compared to wakefulness and
NREM-sleep (all p < 0.001). Taken together, we found a striking
accordance between the two species, demonstrating that information
coding efficiency decreases in frontal cortices, but remains stable in the
MTL/HC from wakefulness to NREM-sleep.

Next, similar to the species and regions pattern probability analyses
(Figure S3), we also investigated the probability of forming multi-event
neural patterns across sleep stages. Multi-event patterns were more
likely to occur during wakefulness and REM-sleep compared to NREM-
sleep in both species (Figure S7). Combined with the contrast entropy
analyses these results suggest a more repetitive and, thus, less efficient
neural code during NREM-sleep.

To assess whether sleep actively decreases information coding effi-
ciency, we directly compared contrast entropy during wakefulness in the
first half of the sleep recordings with the second half of the recordings in
both species. As hypothesized, we observed a reduction information
coding efficiency in humans for all recorded ROIs (Fig. 3F; Wilcoxon
Rank Sum tests; all p < 0.030, FDR-corrected, Table S7). This was also
the case when only comparing wakefulness periods before and after
sleep (Figure S8). In contrast to humans, rodents’ information coding
efficiency increased in the OFC and mPFC from the first to the second
half of the sleep recording (Fig. 3G; Wilcoxon Rank Sum tests; all p <
0.001, FDR-corrected, Table S8), which is likely due to a more frag-
mented sleep cycle. We found no differences for the rodent HC (p =
0.399). Note, isolating wakefulness periods before and after sleep was
not possible in rodents due to limited data availability. In sum, these
results demonstrate that information coding efficiency differs between
species, regions and brain states.

Next, we addressed the relevance of the observed neural pattern
variability for different behavioral states. We compared neural effi-
ciency during cognitive engagement in the awake state (task and sleep
recordings were available for subset of N = 8 participants) as well as
during medically-induced unconsciousness during electrode explanta-
tion (subset of N = 6 participants) to coding efficiency during sleep and
quiet wakefulness.

The visual search task required participants to memorize a given
target orientation and maintain the representation throughout a delay
phase (Fig. 4A). Subsequently, participants had to indicate on which side
of the screen the target appeared. In the search condition, the three
distractors were presented in the same color as the target. In the pop-out
condition, distractors were displayed in a different color. We reasoned

that information coding efficiency should increase when the brain is
actively processing information during task engagement. We calculated
the contrast entropy in 6 s segments during task engagement irre-
spective of condition and in 6 s segments in the sleep recordings that
were scored as wakefulness to match the trial duration and avoid a
sampling bias. To counterbalance the trial counts between task and quiet
wakefulness, data was randomly resampled and contrast entropy was
calculated of a subset of the wakefulness data (1000 iterations). The
subset was determined by the available trials of the task data for each
patient. As hypothesized, contrast entropy increased during task
engagement as compared to quiet wakefulness across all ROIs (Fig. 4B;
Wilcoxon Rank Sum tests; allp < 0.001, FDR-corrected, Table S9). Note,
contrast entropy values in the task data are lower compared to the sleep
analyses because of shorter data segments (cf. Figure 2DE & 3A-C).
Furthermore, we used 6 s second segments that included an overlap
between trials in order to maximize segment length for a more accurate
estimation. Importantly, analyzing shorter segments without overlap
yielded similar results (Figure S9). This set of findings indicates that
contrast entropy captures behaviorally relevant information coding
efficiency.

Finally, we asked whether information coding efficiency decreases in
states of altered arousal that do not promote memory consolidation like
sleep. We analyzed contrast entropy while participants underwent
propofol-induced general anesthesia. Concordant with the sleep stage
analyses, we calculated contrast entropy by assessing entropy in 10 s
segments and subsequently normalized it based on the maximum of the
continuous signal. Propofol injection resulted in a steep decline in
contrast entropy, with the decline marking the transition from wake-
fulness to unconsciousness (Fig. 4C). The decline in contrast entropy was
a global effect, observed in all analyzed ROIs (Fig. 4D; Wilcoxon Rank
Sum tests; all p < 0.001, FDR-corrected, Table S10). Furthermore, when
comparing anesthesia to physiologic sleep, contrast entropy was lower
as compared to NREM and REM sleep (all p < 0.001). To ensure, that
our results are not due to non-stationaries caused by the propofol in-
jection, we also compared contrast entropy before and after injection
using within-segment maximum entropy normalization and within-
segment z-normalization. We observed consistent results, with an
overall decrease in contrast entropy following injection (Figure S10).
These results demonstrate that medically-induced unconsciousness dis-
rupts information coding efficiency.

3. DISCUSSION

How does the sleeping brain store behaviorally relevant information,
while discarding irrelevant information to free cognitive resources for
the next day? Prominent theories of sleep function emphasize its
importance for memory consolidation (Brodt et al., 2023; Klinzing et al.,
2019), but sleep also improves other cognitive functions, including
attention, problem-solving, cognitive flexibility and emotional regula-
tion (Krause et al., 2017). It is well established that sleep facilitates
learning and skill acquisition, but the neurophysiological mechanisms
that explain why it is easier to imprint new information onto existing
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Fig. 3. Species-, ROI-, and sleep stage-specific neural efficiency. (A) Contrast entropy for humans (circles) and rodent (triangles) for each ROI (pattern length 4).
Individual data points represent the median per electrode. Boxplots depict the population median, lower and upper quartiles and outlier-adjusted minimum and
maximum values (truncated for data visualization). Overall humans displayed higher contrast entropy for all ROIs. (B) Summary statistics for species contrasts per
each ROI for every neural pattern length. Humans (red) have higher contrast entropy than rodents (blue) regardless of pattern length. Lines show the median, shaded
areas represent outlier adjusted maxima and minima. (C) Top: ROI contrast for humans. Same conventions as in panel A. Prefrontal cortices display higher contrast
entropy than the MTL/HC. Bottom: ROI contrast for rodents. Rodent mPFC exhibits higher contrast entropy than OFC and HC, but rodent HC displays higher contrast
entropy than the rodent OFC. (D) Sleep stage resolved contrast entropy (entropy of 10 s segments normalized by the maximum entropy of the continuous recording)
during wakefulness, NREM and REM of the human sample for dIPFC (red), mPFC (dark green), OFC (light green) and MTL (blue). All prefrontal ROIs display a similar
dynamic with decreasing contrast entropy from wakefulness to NREM sleep and increasing contrast entropy from NREM to REM sleep. This pattern was absent in the
MTL. Individual data points represent the median of an electrode across all trials per sleep stage. Boxplots depict the population median, lower and upper quartiles
and outlier-adjusted minimum and maximum values. (E) Same conventions as in D but for rodents. Comparable sleep stage dynamics for rodents as compared to
humans. Frontal cortices similarly decrease in contrast entropy from wakefulness to NREM but increase from NREM to REM sleep. Rodent HC displays highest
contrast entropy during REM sleep. (F) Comparison of contrast entropy during wakefulness between the first half of the sleep recoding and the second half in humans.

All ROIs show a reduction in contrast entropy. (G) Same conventions as in F but for rodents. Prefrontal ROIs increase in contrast entropy.

circuits after sleep remain unknown. At the cellular level, it has been
suggested that daytime learning is associated with synaptic potentiation,
while sleep may re-regulate synaptic weights in a process that also been
termed synaptic downscaling or pruning (Tononi and Cirelli, 2014).
Hence, downscaling might reestablish the optimal milieu for next day
learning. That a similar process occurs at the systems level so far remains
largely speculative (Lendner et al., 2023).

Here, we employed an information-theoretical approach to estimate
the information coding efficiency of neurophysiological population
signals. In a comparative cross-species approach in rodents and humans,
we demonstrate that (1) sleep reduces neural pattern variability,
possibly reflecting the recapitulation of mnemonic information. (2) This
reduction was most pronounced during NREM sleep in both species, (3)
only occurred in the neocortex and (4) persisted after a full night of
sleep. These observations could suggest that sleep-dependent memory
consolidation might entail pattern repetition to form permanent en-
grams and highlights the importance of the neocortex as a presumed
anatomical structure for long-term storage. While we did not conduct a
sleep-dependent memory task to formally test this hypothesis, the
behavioral relevance of the identified patterns was evident for increased
pattern variability during cognitive engagement. In contrast, pattern
variability was strongly attenuated during medically-induced loss of
consciousness.

3.1. What constitutes information during sleep?

While previous research conceptualized sleep as a ‘offline’ state,
recent work highlights its importance for active reprocessing of newly
acquired information. Converging evidence across multiple lines of in-
quiry demonstrated that the sleeping brain actively recapitulates mne-
monic information to selectively strengthen their representations, in a
process termed replay (Wilson and McNaughton, 1994). Replay has
mainly been observed at the cellular level in single neuron recordings in
the rodent (Girardeau and Lopes-dos-Santos, 2021; Foster, 2017;
Olafsdéttir et al., 2018; Diba and Buzsaki, 2007) and human brain (Vaz
et al., 2020, 2023), but may also take place at the systems level,
amenable to LFP and EEG recordings (Brodt et al., 2023; Schreiner and
Staudigl, 2020). Moreover, replay is temporally coupled to the periodic
reoccurrence of large-scale neural oscillations during NREM sleep,
specifically hippocampal sharp-wave ripples (SWR; ~100-200 Hz),
which are in turn nested in thalamocortical spindles (~12-16 Hz) and
cortical slow oscillations (Girardeau and Lopes-dos-Santos, 2021; Hel-
frich et al., 2019; Diekelmann and Born, 2010; Maingret et al., 2016;
Rothschild et al., 2017; Staresina et al., 2015; Wilber et al., 2017).
Hence, it is conceivable that neural pattern repetition, which is facili-
tated by sleep oscillations providing an endogenous timing mechanisms,
might constitute a substrate of memory consolidation (Helfrich et al.,
2021). This consideration raises the question how mnemonic informa-
tion can be conceptualized and quantified in humans, not only at the
cellular level, but also at the large-scale systems level.

Common approaches define information either as percent explain

variance (or correlation) of memory retention to SO, spindle or SWR
activity (Gais et al., 2002; Hahn et al., 2020; Helfrich et al., 2018;
Khodagholy et al., 2017; Schabus et al., 2004). Alternatively, informa-
tion can be defined as decoding accuracy using multivariate pattern
classifiers during endogenous and targeted memory reactivation
(Cairney et al., 2018; Schonauer et al., 2017; Schreiner et al., 2021) or
via the Shannon information theory framework (Luppi et al., 2024;
Quian Quiroga and Panzeri, 2009; Helfrich et al, 2019).
Information-theoretical metrics such as entropy, mutual information or
Lempel-Ziv complexity have previously been shown to delineate
different stages and quantify information flow during sleep (Abasolo
et al., 2015; Gonzalez et al., 2023; Helfrich et al., 2019; Hohn et al.,
2024; Hou et al., 2021; Pascovich et al., 2022). A common finding is that
information coding decreases during NREM sleep. However, the critical
shortcoming of information theory is the strong dependence of entropy
on the instantaneous neural activity. Neural firing rates are strongly
attenuated during NREM sleep (Cirelli, 2017; Steriade et al., 2001) and
hence, it is difficult to assess whether previous findings reflected limited
information coding or whether they are the consequence of attenuated
firing during NREM sleep. Here, we employed an analytical approach
that quantifies the information content of a signal, which is normalized
to its own theoretical maximum at a given activity rate (Pryluk et al.,
2019). This approach enables the quantification of intrinsically gener-
ated neural activity patterns, irrespective of any outside variables, such
as behavior or targeted memory reactivation.

Using this approach, we observed that the information coding effi-
ciency is increased in neocortex as compared to archicortex. Moreover,
it is also higher in humans than in rodents, and further increases during
task engagement. Both observations suggest that diversified neural
patterns could reflect a correlate of evolutionary younger and more
developed brain structures, possibly underlying superior human cogni-
tive abilities, which specifically rely on prefrontal cortex functionality
(Pryluk et al., 2019; Carlén, 2017; Hanganu-Opatz et al., 2023; Laubach
etal., 2018; Mendoza-Halliday et al., 2024; van Schalkwijk et al., 2023).
In line with these findings, it has been argued that increased pattern
variability makes the neural code more efficient, at the expense of
pattern redundancy (Pryluk et al., 2019). A redundant coding scheme
renders the neural code more reliable and robust, while a variable
coding scheme might benefit cognitive flexibility. Our results replicate
and extend the finding by Pryluk et al. (2019), who demonstrated a
similar tradeoff between coding efficiency and robustness between
subcortical and cortical regions in humans and non-human primates at
the level of single neurons. Critically, these authors also observed the
highest pattern variability in human neocortex. Conceptually, the
increased variability has been suggested to support a synergistic coding
scheme that formed during evolution to complement the evolutionary
preserved archicortical system that is optimized for robustness. Hence,
this is in accordance with the idea that sleep oscillations, which reflect
recurrent and therefore, redundant neural patterns, are highly preserved
across species.

A testable hypothesis for future studies is that a decrease in pattern



M.A. Hahn et al. Progress in Neurobiology 242 (2024) 102672

A B XXK FXK *XH KKK
[ 1 [ 1 [ 1 [ 1
[ ]

0.996
Pop-out .
K
RT 209941 ’:«
9 9:
- po
c
+ + (i)
= L
o©
Sample WM c 2%
\ Search S 0992}
&
i )
RT L
[ ]
099 —4PFc _OFC _mPFC _ MTL
Task Wake Task Wake Task Wake Task Wake
C D **X
157 1 1
‘i,‘, o
edIPFC @ OFC Propofol
e mPFC @ MTL/HC injection °
25r > 0o
o 11
2r c
2 o
o & ®
= 1.5 = 16}
b o
g : Yost
=
S
0.5 *
\ dIPFC ®
O 1 1 0 . | . |
0 5 10 15 20 25 Wake- ANA NREM REM

Time [min] fulness

Fig. 4. Contrast entropy during cognitive engagement and medically-induced unconsciousness. (A) Visual search task (Slama et al. 2021). Target triangles
(sample) with different colors and angles were presented for 1000 ms. After a short working memory delay (WM, 500 ms), participants indicated whether targets
appeared on the left or right side. In the pop-out condition, the distractors differed in color from the target. In der search condition, distractors and target had the
same color (RT, reaction time). (B) Contrast entropy for 6 s segments and a pattern length of 4 during task engagement (diamonds) and quiet wakefulness (circles) for
all ROIs. Higher contrast entropy was evident during task engagement than during quiet wakefulness. Individual data points represent the median per electrode.
Boxplots depict the population median, lower and upper quartiles and outlier-adjusted minimum and maximum values (C) Single subject example depicting the time
course of contrast entropy (10 s segments normalized by the maximum entropy of the continuous recordings) before and after propofol injection during electrode
explantation. Contrast entropy remains high during wakefulness, but rapidly declines upon propofol injection and remains low during medically-induced uncon-
sciousness in all ROIs (dIPFC, red; mPFC, dark green; OFC, light green; MTL, blue). Lines show the median, shaded areas represent outlier adjusted maxima and
minima. (D) Contrast entropy in 10 s segments normalized by the maximum entropy of the continuous recordings during wakefulness, anesthesia (ANA), NREM and
REM sleep for dIPFC contacts (exemplary for all other ROIs) of a subset of patients. Same conventions as in B. The lowest contrast entropy was observed dur-

ing anesthesia.

variability throughout the night correlates with memory consolidation. 3.2. A hierarchy of information processing in the (sleeping) brain?

At the neurophysiological level, it is conceivable that the consolidation

process and the associated reduction in pattern variability improves the The MTL and PFC constitute two key nodes of the memory network.
signal-to-noise ratio. Hence, one prediction arising from these consid- Converging evidence across multiple lines of inquiry gave rise to a
erations is that decodability (pattern separability) is better once pattern conceptual model positing that newly acquired information is initially
variability has been decreased, which could indicate systems-level hippocampus-dependent by engaging hippocampal-neocortical loops
process of consolidation. In sum, the present results indicate that (Rasch and Born, 2013; Frankland and Bontempi, 2005). Over the course
information-theoretical approaches could provide a complementary of the consolidation process, mnemonic information is then permanently
perspective to assess the memory function of the sleeping brain, by stored in the neocortex; hence, long-term memories progressively
focusing on intrinsically generated neural patterns as the functional become independent of the hippocampus. At the cellular level, the

substrate of mnemonic information. neurophysiological substrate of long-term neocortical storage is likely a
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modulation of synaptic weights enhancing neuroplasticity. It remains
unclear if similar principles apply at the systems level amendable to LFP
or EEG recordings. Here, we directly quantified the information coding
efficiency of hippocampal and neocortical recordings. Our results are
line with a model of overnight consolidation, where neocortical infor-
mation content is high before sleep onset and lower after a full night of
sleep. Importantly, a reduction in information coding efficiency during
sleep is likely the result of pattern repetition, especially during NREM
sleep, which may constitute a neurophysiological substrate of how new
information is permanently imprinted onto existing neocortical circuits
in a Hebbian manner (Buzsaki, 1998). In line with the systems consol-
idation model, we did not observe a strong overnight or sleep
stage-dependent modulation in the hippocampus, possibly reflecting
that the MTL does not constitute the structural correlate of long-term
mnemonic storage. We also did not observe a strong modulation in ro-
dents, which was likely the result of the fragmented sleep cycles that
were characterized by frequent arousals. Our results are further sup-
ported by a recent human intracranial EEG study that demonstrated that
non-oscillatory EEG background activity, which also captures neural
variability, undergoes a downregulation of the course of a full night of
sleep (Lendner et al., 2023). In sum, our results support the view that the
neocortex may reflect an anatomical substrate of long-term storage.
Moreover, the results demonstrate that information coding is more
efficient in phylogenetically younger brain regions, especially in the
human prefrontal cortex, which constitutes the key structure that en-
ables unique human cognitive abilities.

3.3. Limitations and implications

In order to infer the information coding efficiency during sleep in a
cross-species comparative design, we first employed simulations to
determine the feasibility of the approach. Then, we performed the same
analyses during rodent and human sleep. While we carefully controlled
for a number of confounds and limitations, which arise from studying
two different species using related methodologies, a number of impor-
tant limitations and caveats remains.

First, brain anatomy and connectivity are vastly different between
rodents and humans, especially the prefrontal cortex and its subdivisions
(Carlén, 2017; Hanganu-Opatz et al., 2023; Laubach et al., 2018). Here,
we recorded from putatively homologue regions, which are much larger
in humans than in rodents and therefore, might differ in their dynamics.
Second, while human NREM sleep is typically subdivided into three
sub-stages, there is currently no clear consensus if rodent sleep exhibits
the same number of sub-stages (Rayan et al., 2024). Hence, we focused
on the presence of slow wave sleep, which dominates non-REM sleep in
both species. Third, rodents exhibit more fragmented sleep cycles with
frequent arousals as compared to humans. However, it needs to be
highlighted that all human sleep recordings were carried out as part of
clinical monitoring, which might have altered sleep properties due to
specific circumstances in the clinical setting as exemplified by wake-
fulness, which was defined as spontaneous, unconstrained wakefulness
before or after sleep and differs from the wakefulness experienced
during states of high alertness or task engagement (cf. Fig. 4B). Fourth,
differences between species also might be attributed the current phar-
macological state of the patients. While the precise medication state
could not be retrieved for the current participants, typical medications
rather increase than decrease signal regularity (Limotai et al., 2020;
Holler et al., 2018; Salinsky et al., 1994); hence, implying that we might
have underestimated the true effect magnitude. Fifth, we assessed HFA,
a proxy of population activity, to bridge the gap in recording modalities
between both species. HFA has previously been shown to constitute a
surrogate marker for neural population activity in humans with mac-
roelectrodes (Leonard et al., 2024; Leszczynski et al., 2020) and in ro-
dents with microelectrodes (Watson et al., 2018). Albeit these reports
highlight that HFA might be comparable irrespective of the precise
recording setup, we cannot rule out potential influences from the
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recording modality and its spatial specificity. Collectively, these con-
siderations might account for differences in peak rates between species.
However, we observed that contrast entropy did account for these
inherent differences and enabled studying similarity and differences
between both species.

In addition, it is essential to consider that we interpret the present
findings mainly in light of a sleep-dependent memory consolidation
framework, which entails concepts, such as memory replay and synaptic
homeostasis (Brodt et al., 2023; Tononi and Cirelli, 2014). Since we did
not include a dedicated learning task data in our experimental design, it
remains elusive how the identified patterns relate to mnemonic infor-
mation processing. A testable hypothesis for future studies that arises
from our findings is that the degree of information coding efficiency
predicts overnight memory retention in sleep-dependent memory tasks.
Moreover, it remains to be determined whether the coding efficiency
correlates with mnemonic information as defined by decodability during
targeted memory reactivation and how it relates to replay as commonly
observed in rodent studies at the level of single neurons (Foster, 2017;
Olafsdéttir et al., 2018).

Lastly, we need to draw attention to the fact that other sources might
have contributed to the reduced neural pattern variability during NREM
sleep. For example, the lack of external input and recovery from prior
wakefulness could render population activity more regular, sparse and
lower dimensional (Vyazovskiy and Delogu, 2014). Indeed, a recent
study demonstrated that decreased entropy during NREM sleep is
attributed slow oscillation down states, which impose a repetitive
pattern on neural firing (Gonzalez et al., 2023). These slow oscillations
are absent during REM sleep, where we observed overall higher contrast
entropy compared to NREM sleep and, in one instance, even higher than
during wakefulness (Fig. 3D). Hence, it appears plausible that REM sleep
exhibits a higher degree of contrast entropy than quiet wakefulness
before bedtime, which is accordance with the notion that REM sleep
constitutes "paradoxical sleep’, which has been linked to vivid dreams,
memory reactivation, and emotional processing (Simor et al., 2020).

In sum, despite these inherent differences and limitations, it is crit-
ical to highlight that we generally observed a high degree of concor-
dance in information coding dynamics during human and rodent sleep.

3.4. Conclusions

In this cross-species intracranial neurophysiology study, we
demonstrate a tradeoff in the neural population code in rodents and
humans during sleep. Our findings appear to align with a model where
pattern repetition during sleep may play a role in the consolidation
process, which seems to primarily involve the neocortex. These results
suggest that neural pattern variability may be an indicator of informa-
tion accumulation, which appears to undergo a process of renormali-
zation during sleep. This could potentially facilitate the clearance of
cognitive resources, allowing for more efficient processing the following
day.

4. Materials and methods

REAGENT or
RESOURCE

SOURCE IDENTIFIER

Software and algorithms

EPrime Psychology Software https://pstnet.com/
Tools
MATLAB 2021a Mathworks http://www.mathworks.com
FieldTrip 20210912 Oostenveld et al., https://www.fieldtriptoolbox.
2011 org/

Maximum Entropy Maoz et al., 2017

toolbox

https://orimaoz.github.io/m
axent_toolbox/
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4.1. RESOURCE AVAILABILITY

4.1.1. Lead contact

Further information and requests for resources and reagents should
be directed to and will be fulfilled by the lead contact (michael.hah-
n@uni-tuebingen.de).

4.1.2. Materials availability
This study did not generate new unique reagents.

4.1.3. Data and code availability

Freely available software and algorithms used for analysis are listed
in the resource table. All custom code in this manuscript is available
upon request from the Lead Contact.

4.1.4. Subjects

4.1.4.1. Human participants. Data of 19 patients (age: 19 — 58 years; 9
female) with pharmacoresistent epilepsy were recorded during seizure
onset zone diagnostics with implanted stereotactic depth electrodes (Ad-
Tech, 5 mm electrode spacing) at the University of California Irvine
Medical Center, USA. Electrode implantation scheme was solely based
on clinical considerations but participants that entered analyses were
selected according to relevant electrode placement in the dIPFC, mPFC,
OFC and MTL. Before participating in the study, all patients provided
written informed consent. The study was conducted in accordance with
the Declaration of Helsinki and approved by the Institutional Review
Board at the University of California, Irvine (number: 2014-1522) as
well as by the Committee for Protection of Human Subjects at the Uni-
versity of California, Berkeley (number: 2010-02-783). Main analyses
comparing species and ROIs were conducted with N = 16 participants
with concurrent coverage in all ROIs (19 — 58 years; 8 female). When
available, we also analyzed task data and anesthesia data during elec-
trode explantation in two subsets of participants (task subsample: N = 8,
age: 22 — 50 years, 5 females; anesthesia subsample: N = 6, age: 25 - 58
years, 3 female). Note, three subjects without simultaneous ROI
coverage, which are not included in the main analyses, were added to
the anesthesia subsample due to the low sample size.

4.1.4.2. Rodents. Rodent data was acquired from an open dataset con-
taining LFP data of 11 male Long-Evans rats (weight: 250 — 500 g, age: 3
— 7 months) with 27 recording sessions (Watson et al., 2016b). Based on
our pre-specified ROIs, we analyzed 20 recording sessions of eight ro-
dents with coverage in the mPFC, OFC and HC. Sleep data of the freely
behaving animals was recorded in their home cage during daytime with
no specific behavior paradigm. Recordings lasted between one and eight
hours. One or two 64-site silicon probes (Buzsaki64 or Buzsaki64sp
models from NeuroNexus, Ann Arbor, MI) were implanted 0.5 mm
above frontal cortical regions and/or dorsal Hippocampus with < 300
pm advancements per day using a microdrive. For a more detailed
description of the rodent dataset and procedures, please see Watson
et al., (2016a, 2016b, & 2018).

4.1.5. Behavioral task

Participants completed a visual search task (Fig. 4A; for more details
see Li et al., 2010; Slama et al., 2021). Stimuli were presented on a
laptop at the participants bed side using E-Prime 2.0 software (Psy-
chology Software Tools). In brief, a target triangle with a given color and
tilted at a given angle (0°, 45°, 90°, 135°, 180°, 225°, 270°, or 315°) was
presented for 1000 ms. After a short memory delay (500 ms), the target
with three distractors appeared again. Two stimuli were presented on
the left side of the screen and two on the right side. Then participants
indicated whether the target appeared on the left or right side with a
button press. In the pop-out condition, the distractors exhibited a
distinct color compared to the target. In the search condition, both
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distractors and the target shared the same color, with the sole distinction
being the tilt angle. Participants had a response window of up to
2000 ms. The response was followed by a 1000 ms inter trial interval
with a fixation cross. The task comprised four blocks, each containing 32
trials. Half of these trials were designated as search trials, while the
remaining half were categorized as pop-out trials. Conditions were
presented in randomized order. For analyses we segmented the data into
—2000 ms — 4000 ms epochs relative to target triangle onset.

4.1.6. iEEG data acquisition and preprocessing

4.1.6.1. Human. We collected electrophysiological data with a 256-
channel Nihon Kohden recording device (JE120A). The signal was
recorded at 5 kHz sampling rate and analog filtered at 0.01 Hz. For
analyses, we selected contacts with dIPFC, mPFC and OFC placement.
The MTL ROI comprised electrodes within and in close proximity to the
hippocampus as well as in the entorhinal cortex (Helfrich et al., 2019).
Electrode placement was verified in native space by two independent
neurologists. Electrophysiological data were analyzed using Matlab
2021a (Mathworks Inc) and the Fieldtrip Toolbox (Oostenveld et al.,
2011) as well as custom written code. To appreciate the electrode dis-
tribution across the whole sample, we subsequently warped electrode
placement to MNI space for visualization purposes only (Fig. 1A). We
demeaned the continuous data and down-sampled to 500 Hz. To
approximate a local field potential, we bipolar referenced each contact
to the closest neighbor along the depth electrode.

4.1.6.2. Interictal epileptiform discharge detection. To detect interictal
epileptiform discharges (IED) we employed an established automatic
detection algorithm (Gelinas et al., 2016). In brief, we filtered the
continuous signal with a two-way least-squares FIR filter between 25
and 80 Hz. Next, we extracted the analytical amplitude via the Hilbert
transform and subsequently z-scored the signal. An IED event was
identified if the signal exceeded the mean by three standard deviations
for at least 20 ms and no more than 100 ms.

4.1.6.3. Rodent. Data were recorded using a 256-channel Amplipex
recording system (Szeged, Hungary) at 20 kHz sampling rate and after
400x headstage gain. The continuous data were low-pass-filtered to
1250 Hz in order to obtain the local field potential. Additionally, we
demeaned the signal and re-referenced every channel against the
average activity within the specified ROIL The signal was subsequently
down-sampled to 500 Hz to match the sampling rate for the human
recordings.

4.1.7. Sleep staging

4.1.7.1. Human. In addition to intracranial electrodes, we recorded
scalp EEG to support sleep staging based on Rechtschaffen & Kales
criteria (Rechtschaffen and Kales, 1968) using the same Nihon Kohden
recording system. Coverage typically included Fz, Cz, C3, C4, and Oz
placed according to the 10-20 system. For REM sleep classification, we
placed four Electrooculogram (EOG) using four electrodes placed
around the right and left outer canthi. To obtain a surrogate electro-
myogram (EMG) signal, we high-pass filtered either the ECG or EEG
channels that were close to neck or skeletal muscles above 40 Hz
(Helfrich et al., 2019). Sleep stages were classified in 30 second epochs
by an expert human scorer. We combined sleep stage S3 and S4 to
NREMS3 in order adhere to the international AASM standard (Iber et al.,
2007).

4.1.7.2. Rodent. For the sleep analyses in rodents, we utilized the pro-
vided sleep stages from the original study (for more detail see Watson
et al., 2016). In brief, a broadband LFP and a narrowband theta fre-
quency band LFP ratio signal (5-10 Hz/2-16 Hz) were extracted from
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Spectrograms using a sliding window FFT (10 s window, 1 s steps) at
frequencies between 1 and 100 Hz (log-spaced) Next, principal com-
ponents (PC) form the broadband LFP signal of a cortical probe were
extracted. The first PC captured the variation of synchronized (i.e.
NREM) and desynchronized states (Wakefulness & REM) based on low
frequency power (< 20 Hz). The theta ratio was extracted from channels
(preferably hippocampal contacts when available) with the most
prominent theta signal upon manual inspection. The EMG signal was
constructed from intracranial data by computing zero time-lag correla-
tion coefficients between two signals filtered in the 300 — 600 Hz range
from different channels with a minimum distance of at least two shanks.
All pairwise correlations calculated in each 0.5 s bin were averaged to
obtain an EMG score. NREM stage was identified with a high LFP PC1
and a low EMG, whereas REM stage was identified with a high Theta and
low EMG. A third, diffuse state was marked by low broadband LFP,
higher EMG and Theta. The sleep scoring algorithm involved multiple
divisions, with thresholds established at the points where the troughs
separated the peaks in the distributions of the PC1, Theta and EMG
metrics. All automated scorings were manually verified and corrected if
necessary.

4.1.8. Anesthesia

For human subjects only, we obtained intracranial anesthesia data
during electrode explantation up to the point of electrode removal.
Before the procedure, all patients resumed their usual antiepileptic
medication regime and received up to 2 mg of midazolam as premed-
ication. To induce anesthesia, patients were administered an intrave-
nous injection of Propofol, with the dosage ranging from 50 mg to
200 mg, tailored to individual needs. Half of the patients also received
between 50 mcg and 100 mcg of Fentanyl for pain management and to
balance anesthesia. During the explantation procedure, Remifentanil,
Propofol or Sevoflurane were injected for anesthetic maintenance. All
procedures were conducted at the University of California Irvine Med-
ical Center.

4.1.9. iEEG analysis

4.1.9.1. High frequency activity and peak detection. For both species we
extracted the instantaneous amplitude of the filtered continuous signal
via the Hilbert transform in the 70 — 150 Hz frequency range. Next, we z-
normalized the signal per channel in the time domain. Subsequently, we
extracted the HFA peak amplitudes using the findpeaks.m matlab
function (default settings; no additional peak distance or peak width
criteria) and binarized the signal for every peak exceeding the threshold
of z = 1. While there is no consensus in literature about a definitive HFA
frequency range, which is often defined from 50 Hz upwards, we opted
for the frequently employed 70 — 150 Hz range to avoid line-noise at
60 Hz (Leonard et al., 2024; Leszczynski et al., 2020; Parvizi and Kast-
ner, 2018; Rich and Wallis, 2017; Helfrich et al., 2019). Importantly,
activity in this frequency range has been demonstrated to be directly
correlated to multi-unit activity (Leonard et al., 2024; Leszczynski et al.,
2020; Rich and Wallis, 2017).

4.1.9.2. Contrast entropy. We calculated contrast entropy to approxi-
mate the information content of the neural population firing indepen-
dent of the HFA peak rate. Contrast entropy is an information theoretical
measure that normalizes a signal’s observable information content by its
theoretical maximum, given an empirical firing rate and has been pre-
viously employed in a cross-species single-unit study (Pryluk et al.,
2019). Here, to obtain the contrast entropy of a surrogate of multi-unit
activity, we first binarized the continuous, z-normalized HFA signal
(Fig. 2A, top; threshold at z = 1). To discount epileptic activity in the
human sample, all peaks in the binarized HFA signal were adjusted to
zero + 200 ms surrounding an IED peak. Next, we defined a neural
pattern (segment length or bin size). We employed various pattern
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lengths (4, 8 and 16; Fig. 2A, middle). For each pattern length, we
computed the population entropy and its analytical maximum (Fig. 2A,
bottom). Lastly, we normalized the empirically observed entropy by the
analytical maximum entropy (Pryluk et al., 2019; Maoz et al., 2020) to
obtain the contrast entropy. Hence, contrast entropy quantifies the
amount of information a signal conveys, based on what it potentially
could convey and therefore, indicates the efficiency of the neural pop-
ulation (Pryluk et al., 2019).

Population entropy was computed using the formula where p; is the
probability of a unique pattern given a specified pattern length:

Entropy = —E pilog,pi

The analytical maximum entropy (Maoz et al., 2020; Maoz and
Schneidman, 2017) is given by the equation:

MaxEntropy = —pylog,(ps) — (1 — p)log,(1 — ps)
b

Where py, is the probability of the occurrence of a HFA peak at a given
position b in a given pattern based on the empirical peak rate. In the last
step, we normalized the population entropy by the analytical maximum
entropy to estimate contrast entropy:

Entropy

Contrast Entropy = Im

We calculated contrast entropy in two ways. (1) computing entropy
and maximum entropy on the continuous signal of the whole recording
for the most precise estimate due to maximized data sampling (Fig. 3A/
B/C). (2) Computing entropy in 10 second segments, which we subse-
quently normalized based on the maximum entropy of the continuous
recording to resolve sleep stage specific coding dynamics (Fig. 3D/E &
Fig. 4C/D). For humans, we also calculated contrast entropy in 6 second
segments to compare task data to sleep data (Fig. 4A/B).

4.1.10. Simulation

We simulated one hour of Poisson-distributed peak trains with con-
stant frequencies between 1 and 30 Hz for each integer step (Fig. 2B/D).
For each frequency step, we stimulated 10 trials with a 500 Hz sampling
rate to match the features of the empirical recordings. The probability of

a peak appearing in a given time bin At = is given by fr x At,

1
Sampling rate
where fr denotes the constant frequency. For each time bin, a peak ap-
pears if x < fr x At, where x is a random number drawn from a uniform

distribution between 0 and 1 (Dayan and Abbott, 2001).

4.1.11. Statistical testing

We conducted Wilcoxon rank sum tests to assess the differences be-
tween species and ROIs unless stated otherwise (Fig. 1E/F/G, Fig. 3 &
Fig. 4B/D). For effect sizes, we reported “r” as a standardized metric
using the formula:

2
VN

Where z is the test statistic of the Wilcoxon rank sum test and N the
sample size. To maintain the integrity of our findings, all p values were
corrected using the false discovery rate (FDR) method (Benjamini and
Hochberg, 1995). To address the potential impact of varying recording
lengths between species (Fig. 3A), we utilized a robust linear regression
model with a bi-square weight function and a default tuning constant of
4.685. We modeled the regression with the formula Contrast Entropy ~
1 + Species + Recording length.

In addition, we performed Pearson correlational analyses to assess
the relationships between peak rate and entropy/contrast entropy
(Fig. 2B/C). To determine whether correlations between variables were
significantly different, we computed Steiger Z tests (Steiger, 1980).

r=
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