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2 

Abstract 32 

Prior expectations bias how we perceive the world. Despite well-characterized behavioral 33 

effects of priors, such as confirmation bias, their neural mechanisms remain unclear. 34 

Contemporary theories postulate conflicting predictions: does the brain enhance 35 

expected sensory information (sharpening the expected representation) or rather 36 

prioritize unexpected information (dampening the expected representations)? Here, we 37 

combined reversal learning with a noisy motion discrimination task to investigate how 38 

priors impact sensory and action information processing. Using behavioral modeling to 39 

infer participants’ latent priors and EEG to track neural dynamics, we demonstrated that 40 

priors differentially impact sensory and action representations over time. While priors 41 

introduced long-lasting biases on action coding irrespective of their validity, sensory 42 

information was selectively enhanced with confirmatory evidence. Critically, dampening 43 

of action representations predicted confirmation biases, whereas sensory tuning 44 

dynamics tracked speed-accuracy trade-offs. These findings reveal a dissociable and 45 

temporally dynamic influence of priors in visual decisions, reconciling competing theories 46 

of predictive perception.  47 

 48 

Keywords  49 

Expectation, predictive processing, confirmation bias, speed-accuracy trade-off, belief 50 

updating, electroencephalography (EEG) 51 

 52 

Significance statement  53 

Prior expectations, abstract rules, and recent decisions impact perception and ensuing 54 

actions. While priors are beneficial in most circumstances, they might be detrimental in 55 

other scenarios, as exemplified by confirmation biases, serial response biases, or switch 56 

costs. Albeit well-characterized at the behavioral level, the neural mechanisms underlying 57 

these biases remain undetermined. By tracking participants’ latent priors and neural 58 

dynamics with high-density EEG, the authors demonstrate that priors differentially impact 59 

sensory and action information, uncovering the neural mechanisms underlying 60 

confirmation biases and speed-accuracy trade-offs in predictive perception.  61 
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Introduction 62 

In a dynamic and uncertain world, sensory evidence is often limited. Thus, the ability to 63 

flexibly make perceptual decisions based on available prior and current information is 64 

fundamental for survival. An inherent speed-accuracy trade-off arises for almost every 65 

perceptual decision: should one rely on prior knowledge or gather more evidence before 66 

committing to a choice? For example, prior information on which trees are likely to bear 67 

fruit can save time and energy if correct, but relying on it may incur delays and opportunity 68 

costs if the prior proves wrong, leading to confirmation and choice history biases1–3. While 69 

the effect of priors on behavior is well-characterized, it remains unclear how the brain 70 

flexibly integrates prior information with ongoing sensory input to guide adaptive behavior. 71 

There are two main theories of how prior information is integrated with sensory 72 

input: Bayesian and cancellation theories. According to Bayesian theories4–6, sensory 73 

information is biased relative to its prior probability. Therefore, they predict a relative 74 

enhancement of expected sensory input (sensory sharpening). In contrast, cancellation 75 

theories predict a prioritization of informative signals given the limited capacity of the 76 

brain7,8. Since unexpected sensory inputs are more informative than expected ones, 77 

cancellation theories predict a relative dampening of expected sensory inputs. Therefore, 78 

these theories have conflicting predictions of how sensory processing is modulated by 79 

prior information. 80 

What are the possible solutions to these contradictions? One possibility is that 81 

action and sensory processes are modulated by distinct regimes. Bayesian explanations 82 

are highly prevalent within the perceptual domain5,9,10, whereas cancellation theories are 83 

mostly prevalent within the action literature7,11. Another explanation is that the modulation 84 

of sensory information is a dynamic process that depends on the validity of the prior as 85 

evidence is accumulated over time. As proposed by the Opponent Process Theory8, 86 

sensory information is initially sharpened by prior expectations and only dampened if a 87 

prediction error is signaled by a bottom-up sensory process. While both hypotheses have 88 

received empirical support, both have limited power to explain the balance between 89 

speed and accuracy in visual decisions. To resolve this debate, it is fundamental to 90 
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investigate both action and sensory processing when priors are confirmed or disconfirmed 91 

by sensory information during rapid decision-making. 92 

Here, we investigated how prior expectations modulate action and sensory 93 

information during a cued motion discrimination task. Critically, the cue validity changed 94 

across trials, and participants had to adaptively use the cue information, the prior, across 95 

trials. Behavioral modeling was employed to estimate participants’ prior strength, while 96 

multivariate decoding was used to assess high-density electroencephalography (EEG) to 97 

capture sensory and action information. Our results show that prior expectations 98 

distinctively modulate action and sensory processing while driving a dynamic sensory 99 

tuning that supports flexible decision-making. 100 

 101 

Results 102 

To assess how prior expectations modulate sensory information and ensuing actions, 103 

participants completed a cued motion discrimination task (Fig. 1a). The cues indicated 104 

which direction of motion was more likely to appear in the upcoming stimulus. Cue validity 105 

was unknown to the participants. Each trial began with participants selecting one of two 106 

cues (orange or blue) and rating their confidence in its validity (low or high). Next, the cue 107 

was presented indicating a direction (left or right), followed by a Random Dot 108 

Kinematogram (RDK) with titrated left/right motion coherence to achieve 75% accuracy. 109 

Participants reported the perceived motion direction (left/right) on a response box. As 110 

stimuli were titrated to perceptual threshold and included high noise levels, participants 111 

were instructed to rely on the cue information (i.e., the prior) to guide their motion choices. 112 

In this task design, we modulated the strength of prior information by varying cue 113 

validity across trials. A block design alternated between informative and non-informative 114 

trials. In informative blocks, one cue had a validity of 80%, while the other cue had a 115 

validity of 30%. In non-informative blocks, both cues had low validity (30%). Prior to the 116 

experiment, participants were informed that the validity of the cues would change but 117 

were not informed of the timing or frequency of these changes. Therefore, participants 118 

had to learn the true validity of the cues through experience. 119 
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To encourage participants to balance making accurate motion choices against 120 

learning the cue validities, a dual reward system was implemented (see Methods). 121 

Participants were rewarded for correct motion choices and for selecting a valid cue. Cue 122 

rewards were scaled by their reported confidence. If participants reported high confidence 123 

in their selected cue, they entered a high-risk, high-reward state. In contrast, reporting 124 

low confidence placed participants in a safe reward scheme with lower potential gains 125 

and substantially reduced potential losses. This design incentivized participants to report 126 

low confidence when they were uncertain about the cue validity. However, this reward 127 

system does not guarantee that participants will use the prior information during the 128 

decision. 129 

To promote a flexible reliance on prior information, we induced a speed-accuracy 130 

trade-off. Participants were penalized if they did not respond to the perceived direction of 131 

motion within 1000 ms of RDK onset. In this design, it is beneficial to rely on the prior 132 

even when no coherent motion is perceived. To optimize rewards, participants had to 133 

learn which cue was the best and adaptively use the prior information over trials. 134 

A key feature of this task is that it separates the cue choice from the cue information and 135 

the motion choice. This design disentangles the process of learning the prior (the cue 136 

validity) from forming a specific visual prior (left or right motion) and making a perceptual 137 

choice (left or right button response). As a result, it allows assessing how prior 138 

expectations modulate both sensory (motion perception) and action (overt response) 139 

information processing at different stages. 140 

 141 

Latent priors track reported confidence and learning 142 

Participants' latent priors (i.e., their subjective belief about the cue's validity at each trial) 143 

were estimated using the Volatile Kalman Filter12 (VKF; Fig. 1b), which models 144 

environmental volatility (see Methods). The VKF was fitted to participants' cue choices 145 

and outcomes using Laplace Approximation (see Fig. 1c for a single-subject example). 146 

To validate the estimated priors, we compared how they varied depending on participants' 147 

reported confidence, block type, and cue accuracy on informative blocks. Across 148 

participants, prior strength was significantly higher when confidence was high (Fig. 1d; p 149 

< .001, t(19) = 8.22, d = 1.84) and when the block was informative (p < .001, t(19) = 12.30, 150 
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d = 2.75). Moreover, participants more frequently selected the true best cue in an 151 

informative block when priors were stronger (median split; p < .001, t(17) = 10.78, d = 152 

2.54). Together, these findings provide robust evidence supporting the validity of the 153 

priors—as estimated by the model—as a measure of participants’ latent priors.  154 

 155 

Fig. 1 | Experimental design, modeling, and validation. a, On every trial, participants selected either the 156 
orange or the blue cue, rated their confidence (low or high) that the selected cue would be valid, and were 157 
subsequently presented a cue (colored arrow) indicating the direction of the Random Dot Kinematogram 158 
(RDK; left or right). After a delay, participants were presented with the RDK at their individual discrimination 159 
level (threshold at 75% accuracy) and made a decision about the motion direction (left or right). At the end 160 
of each trial, participants received feedback about their motion choice and the validity of the chosen cue. 161 
b, The Volatile Kalman Filter generative model12 contains two hidden Markov chains that dynamically 162 
diffuse over time, in which 𝑥𝑡 denotes whether the blue cue is the most informative, and 𝑧𝑡 denotes the 163 
inverse volatility of 𝑥𝑡. The outcome 𝑜𝑡 ∈ {0,1} consists of the observed cue validity, where 0 = blue invalid 164 
or orange valid and 1 = blue valid or orange invalid. The choice, 𝑦𝑡, is given by a softmax function of 𝑥𝑡 with 165 
a free parameter, 𝛽, to model how rationally participants follow their prior estimates. The free parameters 166 
𝜆, 𝜎, and 𝑣0 indicate the (inverse) volatility update rate, the observation noise, and the initial volatility. c, 167 
Single subject example of best cue (true contingency; blue), cue choice (𝑦𝑡, orange), outcome (𝑜𝑡; yellow), 168 
and estimated prior (𝑥𝑡; purple) across trials. Note that the estimated prior closely tracked reversals in the 169 
true contingency. d, Estimated latent prior of chosen cue according to confidence judgments (left), block 170 
type (middle), and cue accuracy according to prior strength during informative blocks (right). Violin plots 171 
show the median, interquartile range (IQR), and ±1.5 𝐼𝑄𝑅.  172 

 173 
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Priors increase the influence of cue information during motion decisions 174 

Having validated the estimated prior, we examined whether participants integrated the 175 

prior into their visual decisions. We performed a trial-wise regression analysis on motion 176 

accuracy and reaction time, with prior strength and cue validity interaction as a predictor. 177 

Additionally, a random intercept for each participant was included to account for individual 178 

differences in performance. The interaction effect was statistically significant for both 179 

accuracy, (Fig. 2a; t(6004) = 10.19; f2 = .019) and reaction time (Fig. 2b; p < .001; t(6004) 180 

= -7.19; f2 = .011). Hence, the behavioral benefit of valid cues increased when the prior 181 

was high for both accuracy (𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐴𝐶𝐶 = 𝐴𝐶𝐶𝐻𝑖𝑔ℎ,𝑉𝑎𝑙𝑖𝑑 − 𝐴𝐶𝐶𝐿𝑜𝑤,𝑉𝑎𝑙𝑖𝑑; 𝑀𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = 4.1%, 182 

SD = 6.6%) and reaction time (𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑅𝑇 = 𝑅𝑇𝐿𝑜𝑤,𝑉𝑎𝑙𝑖𝑑 − 𝑅𝑇𝐻𝑖𝑔ℎ,𝑉𝑎𝑙𝑖𝑑;  𝑀𝑏𝑒𝑛𝑒𝑓𝑖𝑡 =  16 ms, 183 

SD = 27 ms). Conversely, invalid cues incurred an increased behavioral cost when the 184 

prior was high for both accuracy (𝐶𝑜𝑠𝑡𝐴𝐶𝐶 = 𝐴𝐶𝐶𝐻𝑖𝑔ℎ,𝐼𝑛𝑣𝑎𝑙𝑖𝑑 − 𝐴𝐶𝐶𝐿𝑜𝑤,𝐼𝑛𝑣𝑎𝑙𝑖𝑑; 𝑀𝑐𝑜𝑠𝑡 = 4.1%; 185 

SD = 9.1%) but not for reaction time (𝐶𝑜𝑠𝑡𝑅𝑇 = 𝑅𝑇𝐻𝑖𝑔ℎ,𝑖𝑛𝑣𝑎𝑙𝑖𝑑 − 𝑅𝑇𝐿𝑜𝑤,𝐼𝑛𝑣𝑎𝑙𝑖𝑑; 𝑀𝑐𝑜𝑠𝑡 = -7 ms; 186 

SD = 29 ms). These analyses indicate that participants adaptively used the cue 187 

information during their decision-making, relying on it more when their latent prior was 188 

high and sensory evidence was confirmatory. After validating that the task promoted the 189 

flexible use of priors in visual decisions across trials, we next examined individual 190 

differences in prior integration. 191 

 192 

Individual differences reveal rigid and flexible prior integration 193 

To test individual differences in how priors are integrated, we correlated the costs, 194 

benefits, and validity modulation in both accuracy and reaction time. First, when priors 195 

were strong, the modulation of validity in accuracy (Δ𝐴𝐶𝐶 = 𝐴𝐶𝐶𝐻𝑖𝑔ℎ,𝑉𝑎𝑙𝑖𝑑 −196 

𝐴𝐶𝐶𝐻𝑖𝑔ℎ,𝐼𝑛𝑣𝑎𝑙𝑖𝑑) was negatively associated with the modulation of reaction time (Fig. 2c; 197 

Δ𝑅𝑇 = 𝑅𝑇𝐻𝑖𝑔ℎ,𝑉𝑎𝑙𝑖𝑑 − 𝑅𝑇𝐻𝑖𝑔ℎ,𝐼𝑛𝑣𝑎𝑙𝑖𝑑; r = -.79, p < .001). This indicates that participants who 198 

were more biased to judge the motion direction toward the cue also responded faster 199 

when the cue was valid. We will denote the variance along this shared dimension as 200 

confirmation bias. Additionally, the costs in accuracy (𝐶𝑜𝑠𝑡𝐴𝐶𝐶) were positively correlated 201 

with the reaction time benefits (Fig. 2d; 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑅𝑇; r = .67, p < .001), reflecting individual 202 

differences in the speed-accuracy trade-off. Specifically, participants who made faster 203 
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decisions when the cue was valid made more mistakes when the cue was invalid. The 204 

variance along this shared dimension will be denoted as speed-accuracy trade-off. In 205 

sum, these correlations indicate that participants employ distinct strategies to integrate 206 

priors into visual decisions. This raises the question of whether and how these strategies 207 

are associated with sensory and action representations.  208 

 209 

 210 

Fig. 2 | Priors induce confirmation biases and speed-accuracy trade-offs. a, Accuracy (ACC) of motion 211 
choice as a function of cue validity and prior strength (subject-level median split into high and low trials). 212 
Green and red arrows illustrate the group-level behavioral benefit (𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐴𝐶𝐶) and cost (𝐶𝑜𝑠𝑡𝐴𝐶𝐶) of high 213 
prior when compared to low prior trials within the same cue validity, respectively. Black arrows indicate the 214 
behavioral modulation of high prior trials depending on cue validity (𝛥𝐴𝐶𝐶). b, Same conventions as in 215 
panel (a) but for reaction time (RT). c, Correlation between the difference in accuracy for high prior trials 216 
when the cue was valid and invalid (𝛥𝐴𝐶𝐶 = 𝐴𝐶𝐶𝐻𝑖𝑔ℎ,𝑉𝑎𝑙𝑖𝑑 − 𝐴𝐶𝐶𝐻𝑖𝑔ℎ,𝐼𝑛𝑣𝑎𝑙𝑖𝑑) and the difference in reaction 217 
time for the same conditions (𝛥RT, excluding incorrect trials). d, Correlation between the benefit in reaction 218 
time (𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑅𝑇 = 𝑅𝑇𝐿𝑜𝑤,𝑉𝑎𝑙𝑖𝑑  − 𝑅𝑇𝐻𝑖𝑔ℎ,𝑉𝑎𝑙𝑖𝑑) and the cost in accuracy (𝐶𝑜𝑠𝑡𝐴𝐶𝐶 = 𝐴𝐶𝐶𝐿𝑜𝑤,𝐼𝑛𝑣𝑎𝑙𝑖𝑑 −219 
𝐴𝐶𝐶𝐻𝑖𝑔ℎ,𝐼𝑛𝑣𝑎𝑙𝑖𝑑).  220 

 221 
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Priors distinctively stabilize sensory and action information 222 

To investigate how priors affect sensory and action information during visual decision-223 

making, both uni- and multivariate analyses of high-density EEG recordings were 224 

employed. To investigate whether priors modulate the total activation of channels, a 225 

cluster-based permutation test across channels and time was used to compare the event-226 

related potential (ERP) of the data time-locked to the RDK onset and reaction time (RT) 227 

for each prior strength (high, low) and cue validity (valid, invalid) condition (see 228 

Supplementary Figure 1). However, no statistically significant clusters across time and 229 

channels were observed before or after RDK onset when comparing high versus low prior 230 

in each validity condition. Therefore, a multivariate decoding approach was applied to test 231 

if priors affect channel covariance.  232 

Before assessing how priors modulate sensory and action information, we first 233 

decoded both the sensory (left or right motion) and the action information (left or right 234 

button response) from high-density EEG in a time-resolved manner (Fig. 3a/b). All 235 

decoding analyses relied on a Linear Discriminant Analysis13, a dimensionality reduction 236 

method that finds a linear combination of features (channels) to maximize the separation 237 

between classes (left/right motion or choice) while minimizing the within-class variance. 238 

To avoid training biases, we employed a 10-fold cross-validation with balanced training 239 

samples regarding the decoded feature (action or sensory), the prior strength (high, low), 240 

and the cue validity (valid, invalid).  241 

Across participants, single-trial true class probabilities  (TCP) of testing samples 242 

were significantly decoded above chance after stimulus presentation for sensory (p = 243 

.041, 𝑡𝑐̅𝑙𝑢𝑠𝑡𝑒𝑟 = 2.77; d = .78; cluster-based permutation test) and action information (p = 244 

.001, 𝑡𝑐̅𝑙𝑢𝑠𝑡𝑒𝑟 = 3.48; d = 1.25; cluster-based permutation test), as well as reaction time 245 

(psensory = .004, 𝑡𝑐̅𝑙𝑢𝑠𝑡𝑒𝑟 = 3.40; d = .95; paction = .001, 𝑡𝑐̅𝑙𝑢𝑠𝑡𝑒𝑟 = 4.59; d = 1.62; cluster-based 246 

permutation test). Additionally, for action, we observed a cluster even before the RDK 247 

onset, [-.020 s .086 s], p = .047, 𝑡𝑐̅𝑙𝑢𝑠𝑡𝑒𝑟 = 2.44, d = .63; cluster-based permutation test), 248 

suggesting that the cue already influences the action information before sensory 249 

processing. 250 

Having demonstrated that sensory and action information can be decoded, we 251 

tested whether prior strength modulates sensory or action information. TCP differences 252 
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between weak and strong priors were compared for each validity condition. As no 253 

statistically significant differences were found (see Supplementary Figure 2), we 254 

determined whether prior strength modulates the temporal evolution of sensory and 255 

action information over the trial. To examine how sensory and action information evolve 256 

over time, we assessed the temporal cross-generalization of the decoding algorithm by 257 

training it at each time step and testing it across all time steps. First, the generalization of 258 

sensory and action information was compared to chance level across all trials. We 259 

observed a statistically significant generalization above chance for action information 260 

during the entire trial (p = .005, 𝑡𝑐̅𝑙𝑢𝑠𝑡𝑒𝑟 = 1.36; d = .30) but not for sensory information 261 

(Fig. 3d/f). These results suggest that priors might differentially impact sensory and action 262 

information according to their relative strength.  263 

To investigate the effect of prior strength irrespective of their validity. We estimated 264 

the common effect of prior strength by summing up the differences in TCP between high 265 

and low for both validity conditions (Fig. 3c). Strong prior exhibited an enhanced 266 

generalization of pre-stimulus sensory information (p = .043, 𝑡𝑐̅𝑙𝑢𝑠𝑡𝑒𝑟 = 1.60; d = .36), but 267 

not of action information (Fig. 3e/g). Specifically, the decoded sensory information at the 268 

end of the cue presentation (p = .03, 𝑡𝑐̅𝑙𝑢𝑠𝑡𝑒𝑟 = -3.75; d = .96) and during the delay period 269 

(p = .048, 𝑡𝑐̅𝑙𝑢𝑠𝑡𝑒𝑟 = -2.53; d = .59) reliably generalized across the trial (Fig. 3i). These 270 

results establish that stronger priors increase the stability of pre-stimulus sensory 271 

representation. 272 

Together, these results reveal that priors stabilize action and sensory information 273 

in distinct ways. Notably, the analyses did not compare how prior validity influences these 274 

effects. This raises the question of whether differences in how priors affect sensory and 275 

action representations depend on whether the prior information is confirmed. 276 
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 277 
Fig. 3 | Stronger priors enhance the generalization of pre-stimulus sensory activity. a, Average true 278 
class probability (TCP) of action (left/right button response) or sensory (left or right motion) for each time 279 
point across subjects. All decoding analyses were run using a linear discriminant analysis on the data from 280 
257 EEG channels across trials, 10-fold cross-validation, and balancing the trials according to the decoded 281 
feature, the prior strength, and cue validity using an oversampling procedure. Data was smoothed with a 282 
Gaussian-weighted average over 100 ms window for visualization only. Shaded areas indicate standard 283 
deviation.  b, Same as (a) but for data locked to the response. c, To estimate the common effect of prior 284 
strength irrespective of validity, the low prior condition matrix was subtracted from the high prior condition 285 
matrix for both valid (V) and invalid (IV) conditions, and the resulting differences were summed for each 286 
subject. d, Average generalization performance of action decoding across time for all trials and f, sensory 287 
decoding. e, Estimated common effect of prior strength for each training and test time for action and g, 288 
sensory decoding. For all time generalization matrices, red contours indicate statistically significant 289 
generalization times using a cluster-based permutation test. Black contours indicate the cluster with the 290 
highest t-value if none were statistically significant. h, Average TCP of action information across all testing 291 
times for every pre-stimulus training time. Top lines indicate the time points of significant clusters when 292 
testing differences between high and low prior trials using a cluster-based permutation test. i, Same as (h) 293 
but for sensory decoding.  294 
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Effects of prior validity on neural generalization 295 

On the behavioral level, the effect of strong priors depended on its validity. Individual 296 

differences in confirmation bias showed faster and more accurate decisions for valid cues, 297 

as well as slower and less accurate decisions for invalid cues (Fig. 2c). Additionally, 298 

individual differences in speed-accuracy trade-offs showed that faster decisions for valid 299 

cues also resulted in impaired accuracy for invalid cues (Fig. 2d). It is unclear whether 300 

these behavior effects are reflected in the modulation of neural information by 301 

(dis)confirmatory evidence. We therefore investigated whether and how confirmation bias 302 

and speed-accuracy trade-offs are correlated with the tuning of neural information by prior 303 

validity (Fig. 4a).  304 

First, we tested whether the generalization of sensory or action information differs 305 

between valid and invalid trials when priors were strong. This method isolates the effects 306 

of confirmed versus unconfirmed priors, clarifying how information is tuned over time. 307 

Specifically, it determines whether expected sensory and action information is sharpened 308 

(𝑇𝐶𝑃𝑉𝑎𝑙𝑖𝑑,𝐻𝑖𝑔ℎ > 𝑇𝐶𝑃𝐼𝑛𝑣𝑎𝑙𝑖𝑑,𝐻𝑖𝑔ℎ) or dampened (𝑇𝐶𝑃𝐼𝑛𝑣𝑎𝑙𝑖𝑑,𝐻𝑖𝑔ℎ > 𝑇𝐶𝑃𝑉𝑎𝑙𝑖𝑑,𝐻𝑖𝑔ℎ). While 309 

sensory information displayed no significant tuning effects, a significant dampening of 310 

expected action information was observed (Fig. 4b/f; p = .033, 𝑡𝑐̅𝑙𝑢𝑠𝑡𝑒𝑟 = -1.36; d = .30) 311 

that was most pronounced for pre-stimulus activity. Furthermore, we compared the mean 312 

TCP across all training and test times between valid and invalid trials for each prior 313 

strength and decoded feature (Fig. 4c/g). Congruent with the time-resolved analysis, 314 

there was only a statistically significant validity effect for action information when priors 315 

were strong (p = .008, t(19) = 2.98, d = .667). These results suggest that a strong prior 316 

induced action dampening, particularly during pre-stimulus activity, while sensory 317 

information was not consistently altered across participants. 318 

 319 

Neural tuning dynamics is linked to behavior 320 

Having investigated whether and how neural information changes across participants, we 321 

tested whether variability in participants’ neural tuning were associated with their 322 

behavioral performance. Since action was dampened but sensory processing was not 323 

(Fig. 4c/g), we examined how action dampening, (𝑇𝐶𝑃𝐼𝑛𝑣𝑎𝑙𝑖𝑑,𝐻𝑖𝑔ℎ − 𝑇𝐶𝑃𝑉𝑎𝑙𝑖𝑑,𝐻𝑖𝑔ℎ) and 324 
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sensory sharpening, (𝑇𝐶𝑃𝑉𝑎𝑙𝑖𝑑,𝐻𝑖𝑔ℎ − 𝑇𝐶𝑃𝐼𝑛𝑣𝑎𝑙𝑖𝑑,𝐻𝑖𝑔ℎ) correlated with confirmation bias and 325 

speed-accuracy trade-offs across participants (Fig. 4a).  326 

For the confirmation bias, we identified a statistically significant positive correlation 327 

cluster between the dampening of pre-stimulus action information before the button 328 

response (p = .041, 𝑟̅𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = -.44). In contrast, a negative correlation cluster emerged 329 

that extended the generalization of pre-stimulus sensory sharpening to the delay and 330 

stimulus presentation (p = .014, 𝑟̅𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = -.48). These findings indicate that participants 331 

who dampened pre-stimulus action information before their motor response exhibited 332 

greater confirmation bias, while those with stronger sensory sharpening showed less 333 

confirmation bias.  334 

For the speed-accuracy trade-off (Fig. 4e/i), significant clusters were only 335 

observed in the correlation with sensory tuning. Specifically, the sharpening of the pre-336 

stimulus sensory information that generalizes to post-stimulus activity was negatively 337 

correlated with the speed-accuracy trade-off (p = .043, 𝑟̅𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = -.43), indicating a focus 338 

on accuracy. In contrast, the sharpening of post-stimulus sensory information to pre-339 

stimulus activity was positively correlated (p = .023, 𝑟̅𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = .49), suggesting a focus on 340 

speed. These findings reveal that speed-accuracy trade-offs are predicted by the 341 

dynamics of sensory tuning.  342 

Collectively, these results demonstrate that action dampening is linked to stronger 343 

reliance on the prior information, while dynamic sensory tuning reflects the balance of 344 

costs and benefits of prior integration.  345 
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 346 
Fig. 4 | Dissociable behavioral correlates of action dampening and sensory sharpening. a, Analysis 347 
strategy to trace the temporal evolution of the behavioral effects of action dampening and sensory 348 
sharpening. b, Grand-mean difference between the cross-temporal generalization of valid and invalid high 349 
prior trials (𝑇𝐶𝑃𝐻𝑖𝑔ℎ,𝑉𝑎𝑙𝑖𝑑 − 𝑇𝐶𝑃𝐻𝑖𝑔ℎ,𝐼𝑛𝑣𝑎𝑙𝑖𝑑) for each training and test time point. c, Grand-mean TCP over all 350 
training and testing times ([-1, 1] s) for each condition. d, Correlation of average cross-temporal action 351 
dampening with participant’s behavior modulation (transformed behavior from Fig. 2 c) and e, with 352 
participant’s speed-accuracy trade-off (transformed behavior from Fig. 2 d). f–i, display the same results 353 
as the panels (b–e) but for sensory-like activity. Red contours indicate statistically significant generalization 354 
times (cluster-based permutation test, p < .05). Black contours highlight non-significant clusters with the 355 
highest t-value.  356 
 357 

Discussion 358 

Our study reveals how prior expectations influence action and sensory information 359 

processes during visual decisions. Behaviorally, prior expectations induced both rigid 360 

confirmation bias and flexible speed-accuracy trade-offs, reflecting distinct strategies for 361 

handling uncertainty. Neurally, strong priors increased the stability of pre-stimulus 362 

sensory information, while action information remained stable regardless of prior strength. 363 

By integrating behavioral and neural data, we observed that confirmation biases were 364 
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linked to increased action dampening, while flexibly integrating priors when faced with 365 

new evidence was associated with a dynamic sensory tuning process. These findings 366 

suggest that prior expectations differentially modulate action and sensory processing, 367 

while driving a dynamic sensory tuning that supports flexible decision-making. 368 

 369 

Priors distinctively stabilize sensory and action neural information 370 

The central observation of the present study is that neural mechanisms that support the 371 

emergence of stable neural representations of sensory and action dynamics findings are 372 

distinct. We observed that external prior information (cue information) introduced a stable 373 

and long-lasting choice bias, characterized by a stable neural representation as revealed 374 

by significant temporal cross-decoding, which emerged already prior to onset of the 375 

sensory stimulus. Our results further suggest that this bias was largely independent of 376 

cue validity, thus, further contributing to stabilizing the neural representation of the 377 

ensuing action.   378 

In contrast to action, sensory information was stabilized in a context-dependent 379 

manner. We observed that the neural representation of pre-stimulus sensory information 380 

was boosted when the prior was strong, but not when the prior was weak. This context-381 

dependent stability of sensory information is well aligned with sensory templates in the 382 

early visual cortex14,15, where confirmatory evidence might further strengthen the 383 

preexisting representation. Likewise, it is conceivable that confirmed prior expectations 384 

(esp. in states of high confidence) decrease neural variability within16,17 or across spatial 385 

sites18–20. In sum, even though representations of prior information are abundant in early 386 

sensory as well as motor-related brain areas21, priors seem to differentially impact 387 

sensory and action information processing.  388 

By linking neural and behavioral data, our results demonstrate that confirmation 389 

biases are linked to increased dampening of action representations as well as reduced 390 

sensory sharpening. In contrast, dynamic sensory tuning is associated with, and 391 

potentially contributing to, speed-accuracy trade-offs. These observations can be further 392 

conceptualized by previous theoretical accounts. For example, cancellation theories 393 

suggest a prioritization of unexpected over expected information. This prediction is 394 

consistent with the action dampening observed in the current study. Here, action 395 
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dampening was associated with confirmation biases. Previous studies have also linked 396 

confirmation biases to motor preparation22,23. These considerations are also fully 397 

compatible with a biased starting point of the evidence accumulation process24,25. In 398 

addition, confirmation biases have also been explained by biased evidence 399 

accumulation26,27. Computationally, confirmation biases have been shown to benefit 400 

hierarchical inference28 and have been linked to overweighting categorical information 401 

during continuous perceptual inference29. By linking confirmation biases with neural 402 

information tuning, the present study offers a possible mechanistic explanation that 403 

connects evidence accumulation studies to perceptual prediction theories.  404 

In addition to cancellation theories, the Opposing Process Theory8 proposes that 405 

sensory information is initially sharpened by prior expectations that can be subsequently 406 

dampened if bottom-up processing signals conflict with prior expectations. In line with this 407 

theory, we observed that sharpening of pre-stimulus sensory information predicted faster 408 

decisions when the prior was confirmed but at the cost of less accurate decisions when 409 

the prior was disconfirmed. In contrast, dampening sensory information during the 410 

stimulus presentation benefitted task accuracy by overriding the prior when it was 411 

disconfirmed but resulted in slower reaction times. Hence, our present results also 412 

provide supporting evidence for the Opposing Process Theory in balancing speed and 413 

accuracy during visual decisions. In sum, the present results reconcile and dissociate 414 

several previous theoretical and empirical findings and indicate that neural 415 

implementations of priors differentially impact sensory and motor processes. These 416 

considerations raise the question of how different perceptual prediction theories can be 417 

reconciled or co-exist. 418 

A central question—and a key conflict in existing literature—is whether sensory 419 

processes sharpen or dampen expected information6,8. Our results are incompatible with 420 

one central prior coding scheme and rather suggest that independent coding schemes 421 

exist for the sensory and action domains. Critically, our behavioral results confirm that 422 

each scheme has a differential impact on behavioral performance. These findings raise 423 

an important question: Are the differences between action and sensory domain inherent, 424 

or are they shaped by the task demands? 425 

 426 
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Inherit or functional differences between sensory and action domains 427 

Many accounts of perceptual decision-making characterize sensory and action coding as 428 

parallel processes, where sensory evidence accumulation and motor preparation occur 429 

simultaneously30. Under this view, sensory evidence continuously flows from sensory to 430 

motor areas. While several lines of inquiry provided convincing evidence supporting 431 

concurrent action integration in motor areas of humans31 as well as monkeys32,33, recent 432 

findings challenged this view. For example, intracranial recordings in patients with 433 

epilepsy revealed effector-independent evidence accumulation signals across diverse 434 

perceptual decision tasks34. In addition, perceptual decisions seem to be formed before 435 

action preparation when evidence must be fully integrated before forming a motor plan35. 436 

Complementary results from large-scale neural recordings in mice further demonstrate 437 

that sensory integration in premotor neural populations operates in a parallel fashion but 438 

transitions sharply to an orthogonal action execution subspace once evidence 439 

accumulation is completed36. These findings across studies and species indicate that 440 

sensory evidence accumulation and action execution are inherently distinct processes 441 

during perceptual decision-making.  442 

While sensory and motor processing are widely supported to occur in relative 443 

isolation, the distinctive impact of prior information in these domains might be functional. 444 

Under a Bayesian Decision Theory perspective, the posterior belief (i.e., the final choice) 445 

depends on the prior information and its likelihood (i.e., the current sensory evidence). 446 

Under this view, both sensory evidence and prior information influence the perceptual 447 

choice, and thereby, the ensuing action execution. However, as in most experimental 448 

designs, only the sensory input can provide immediate additional evidence to update the 449 

posterior belief. It is possible that a dynamic neural tuning of predictive information only 450 

occurs when it is decision-relevant. Congruent with this idea, prior-induced sensory 451 

modulations were only observed when the feature was goal-directed37,38. Similarly, 452 

dampening of predictive information may occur when the information is not needed to 453 

update the posterior, such as with action information in most perceptual tasks. These 454 

considerations explain why cancellation theories are prevalent in the action and motor 455 

literature.  456 

 457 
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Limitations 458 

Our study raises considerations that can be explored in future research. First, to 459 

experimentally distinguish the formation of a choice variable from the action execution, 460 

future studies could exploit experimental designs that prevent the formation of action 461 

plans with variable sensory-to-response mappings, such as in Sandhaeger et al.39. 462 

Second, participants had to choose between two cues, introducing an additional level of 463 

uncertainty, particularly due to the inherent exploration-exploitation trade-off when 464 

learning under stochastic regimes40. The influence of priors during exploratory behavior 465 

may differ from their effects during exploitation, enhancing variability in how priors affect 466 

sensory tuning. Finally, a sensory sharpening was not consistently observed across 467 

participants, raising questions about the timescales of priors and their impact on 468 

perceptual processes5. Shorter timescales may introduce greater individual variability, 469 

while longer timescales yield more homogeneous results. In support of this hypothesis, 470 

sensory sharpening has been reported only after extended task exposure41, with 471 

expectation suppression similarly observed following prolonged training42. Additionally, 472 

the consolidation of prior information during sleep may account for persistent predictions 473 

in early visual areas43. Longer-term priors, such as the statistics of natural environment, 474 

may optimize sensory processing through mechanisms consistent with efficient coding 475 

theories6,44. In contrast, volatile environments or tasks with shorter timescales require 476 

learning a hierarchical structure, which may increase individual variability.  477 

 478 

Conclusion 479 

This study demonstrates that priors can be integrated rigidly or flexibly. Confirmation 480 

biases (a rigid tendency to rely on cues) was linked to increased dampening of action 481 

information and reduced sensory sharpening. In contrast, speed-accuracy trade-offs (i.e., 482 

more flexible prior influence) were attributed to a dynamic sensory tuning mechanism, 483 

adjusted based on whether sensory evidence was confirmatory. While sustained 484 

sharpening of sensory information predicted faster responses when the prior was 485 

confirmed, dampening of expected sensory information upon disconfirmatory evidence 486 

overrode the prior; thus, leading to correct decisions. These findings support recent 487 
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theories of predictive processing and suggest that dynamically tuning prior sensory 488 

information according to current evidence is essential for flexible decision-making. 489 

 490 

Method 491 

Participants 492 

20 healthy volunteers (10 females, 20 to 31 years) participated in this study and were 493 

recruited from the student community. All participants had normal vision and no 494 

photosensitive epilepsy, claustrophobia, color blindness, or other neurological disorders. 495 

19 participants were right-handed. Participants provided informed written consent to 496 

participate in the study and were paid for their participation according to their 497 

performance. This study was approved by the Ethics Committee of the Medical Faculty 498 

Tübingen (protocol number 049/2020B02) and conducted in accordance with the 499 

Declaration of Helsinki.  500 

 501 

Experimental Design 502 

Before the main task, the motion coherence threshold was estimated through QuestPlus, 503 

an adaptive psychometric method45,46 to yield 75% accuracy. The motion stimuli 504 

consisted of a sequence of moving white dots (size: .06 visual angle; density: 16.7 505 

dots/degree; velocity: .03 visual angle/second; lifetime: 12 frames) inside a circular area, 506 

centered on a fixation cross, with a diameter of 2.5 visual angle degrees, on a black 507 

background. Most dots moved in random directions, while a small subset (up to 20%) 508 

coherently moved either to the left or right. Participants were seated 120 cm from a 28” 509 

LED screen (60 Hz, 2560x1440 px) in a dark, magnetically and acoustically shielded 510 

room. Participants were instructed to respond by pressing the buttons on two response 511 

boxes (one for each hand). All stimuli were presented using PsychToolbox for 512 

MATLAB47,48. 513 

 514 

Behavioral Task 515 

The behavioral task combines reversal learning and a random dot motion discrimination 516 

task. Each trial contained three main decisions: cue choice, confidence, and motion 517 
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direction, respectively. The main trial events were interleaved with fixation crosses, as 518 

shown in Fig. 1a. The start of the trial was self-paced. The cue identity was established 519 

by distinct colors (blue or orange). Immediately after the cue choice, participants rated 520 

their confidence that it would be valid. The cue direction was displayed for 300 ms, and 521 

its validity was probabilistically determined according to an underlying pseudo-522 

randomized structure (see true contingency in Fig. 1c). Participants were familiarized with 523 

the main task with 15 training trials, in which no validity reversals occurred. 524 

Cues within informative blocks had validities of 80% and 30%. The best cue was 525 

pseudo-randomized across informative blocks, such that the same cue was never the 526 

best on three consecutive informative blocks. Non-informative blocks had both cue 527 

validities set at 30%. Cue validity for single trials was pseudo-randomized to have an 528 

exponential moving average of the past 5 trials around the target probability (±15%). An 529 

informative block lasted between 15 and 30 trials. Switching from an informative block to 530 

a non-informative block occurred before 30 trials if a successful learning criterion was 531 

matched (exponential moving average of the accuracy for the past 10 cue choices above 532 

80%) after the 15th trial in the block. Each non-informative block lasted 15 trials. 533 

Participants completed a maximum of 320 trials. 534 

 535 

Reward Structure 536 

At the end of each trial, participants received two rewards: one for the motion judgment 537 

and another for the cue choice. For correct motion responses, 10 points were assigned. 538 

For incorrect motion responses, 10 points were deducted. The reward for the cue choice 539 

depended on the confidence reported earlier in the trial. If participants did not respond 540 

within the time limit, a negative reward was assigned (-20 points), and the trial was 541 

terminated. The reward of the cue choice was dependent on the actual validity of the cue 542 

and the confidence rated by the participant on a particular trial. Reward values were 543 

estimated based on a proper scoring rule49, in which participants received 10 points if 544 

their confidence was high or 8 points if their confidence was low, while they lost 9 points 545 

if their confidence was high or 4 points if their confidence was low. 546 
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Behavioral Modeling 547 

The latent prior strength of the optimal cue across trials was modeled using a variant of 548 

the Kalman Filter50, the Volatile Kalman Filter12 (VKF). In brief, its generative model 549 

assumes that the two hidden Markov chains, in which the latent prior indicates the optimal 550 

cue for a given trial, 𝑥𝑡, diffuses over time according to the hidden (inverse) volatility of 551 

the environment, 𝑧𝑡, such that 𝑥𝑡 = 𝑁(𝑥𝑡|𝑥𝑡−1, 𝑧𝑡
−1). In its turn, 𝑧𝑡 is given by its previous 552 

values and evolves dynamically according to a multiplicative diffusion noise, 𝑧𝑡 =553 

𝑧𝑡−1𝜖𝑡(𝜆). 𝜖𝑡 is defined as a rescaled beta distribution such that 𝜖𝑡 ∈ [0, (1 − 𝜆)−1], and 554 

0 < 𝜆 < 1. Therefore, the free parameter 𝜆 controls the diffusion of the volatility. On the 555 

first trial, the inverse mean of 𝑧𝑡 is given by a free parameter 𝑣0. The choice, 𝑦𝑡, is defined 556 

as a softmax function of the difference between the latent prior for each cue with a 557 

decision exploration (free) parameter β:  558 

𝑦𝑡 =
1

1 + exp (−𝛽(𝑥𝑡 − (1 − 𝑥𝑡)))
. 559 

The outcome of a given trial, 𝑜𝑡 ∈ {0,1}, is given by 𝑜𝑡 = Bernoulli(𝜎(𝑥𝑡)), where 560 

𝜎(𝑥𝑡) = 1/1 + 𝑒−𝑥𝑡. In our case, we assume that the cue validity of each trial provides 561 

evidence for a mutually exclusive state of whether blue is currently the best cue such that 562 

𝑜𝑡 = {
0, if the chosen cue was blue (invalid) or orange (valid),

1, if the chosen cue was blue (valid) or orange (invalid).
 563 

For the subsequent analysis, we used the prior of the chosen cue being the best, 564 

prior = 𝑥𝑡 ⋅ 𝕀(chosen cue = Blue) + (1 − 𝑥𝑡) ⋅ 𝕀(chosen cue = Orange), where 𝕀(⋅) equals 565 

1 if the condition inside is true and 0 otherwise. The prior was then categorized into low 566 

and high using a subject-level median split. 567 

 568 

Model Fitting and Comparison 569 

To evaluate the performance of the VKF, we consider three alternative learning models: 570 

the Rescorla-Wagner51 (RW), the Kalman Filter50 (KF), and the Hierarchical Gaussian 571 

Filter52,53 (HGF). While the KF and the HGF models account for volatilities in the 572 

environment, the RW model does not. A softmax function with a free temperature 573 

parameter, β, was used as a response model for all learning models as described for the 574 

VKF.  575 
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The models were fit and compared (Supplementary Figure 3) with a hierarchical 576 

Bayesian inference approach based on variational Bayes54, in which fitted parameters 577 

are assumed to be drawn from a normal distribution based on the group-level statistics 578 

and the model identity is considered a random effect. To estimate the subject-level 579 

posterior, a Laplace approximation was used.  580 

 581 

EEG Data Acquisition and Preprocessing 582 

Electrophysiological (EEG) data were continuously recorded with 257 scalp electrodes 583 

with a 1000 Hz sampling rate and an online reference at Cz (Electrical Geodesics, Inc.). 584 

The data were preprocessed using the FieldTrip55 toolbox for Matlab by applying a 585 

bandpass Butterworth filter (0.3 to 40 Hz), demeaning, and re-referencing to the common 586 

average. Trials with muscle artifacts were visually identified and excluded. Eye and 587 

muscle artifacts were manually removed using Independent Component Analysis. The 588 

data were down-sampled to 500 Hz, epoched from -1000 to 1000 ms relative to the RDK 589 

onset, and z-scored using the trial-wise mean and standard deviation from the -400 to 0 590 

ms interval relative to the cue presentation. 591 

 592 

Univariate Analysis 593 

Time-locked responses were calculated per participant and electrode by averaging 594 

across different experimental conditions relative to the onset of the motion stimulus or 595 

relative to response onset. Differences between event-related potentials (ERPs) were 596 

assessed using cluster-based permutation statistics as implemented in FieldTrip55.  597 

 598 

Multivariate Analysis 599 

Decoding of action (left or right button press) or sensory-like activity (left or right motion) 600 

was performed on 257 channels using a Linear Discriminant Analysis13,56 using the 601 

MVPA-Light57 toolbox for Matlab. In all decoding analyses, we performed a 10-fold cross-602 

validation procedure balancing the selected feature (action or sensory), the prior strength 603 

(low or high), and the cue validity (valid or invalid) across the training samples, but not 604 

the testing samples, in each fold by upsampling. The true class probability (TCP) of testing 605 

samples was estimated based on the multivariate distribution for the training fold. 606 
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To compare the evolution of decoded signals, we performed a time generalization 607 

analysis across all time points and trials, resulting in a 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 × 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 TCP 608 

matrix per participant. Then, this matrix was averaged across conditions, resulting in a 609 

𝑇𝐶𝑃𝑝𝑟𝑖𝑜𝑟,𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 matrix with 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 per participant. For each decoded feature, 610 

the common effect of having a high prior (Fig. 3 c) is defined by 611 

 612 

Common effect = [TCPHigh, Valid − TCPInvalid, Low] + [TCPInvalid, High − TCPInvalid, Low], 613 

 614 

isolating the effect of having a high prior regardless of the validity of the cue. 615 

The tuning (sharpening if positive, dampening if negative) of the decoded signals 616 

was defined as the difference between the valid and invalid conditions within high prior 617 

trials (Fig. 4 a),  618 

 619 

Tuning = [TCPHigh, Valid − TCPHigh, Invalid]. 620 

 621 

The sensory sharpening and action dampening for each training and test time were 622 

then correlated with the behavioral modulation and speed-accuracy trade-offs. To capture 623 

the individual differences (Fig. 1 c/d), the participant’s values of the two correlated 624 

features were projected into their regression line, capturing their shared variance along a 625 

single dimension. This procedure was repeated for response-locked 𝑇𝐶𝑃𝑝𝑟𝑖𝑜𝑟,𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 data.  626 

 627 

Statistical Analysis 628 

Unless stated otherwise, we employed paired t-tests. All electrophysiological recordings 629 

were assessed using cluster-based permutation tests as implemented in FieldTrip55 that 630 

were based on paired t-tests. Clusters were determined across space and time (univariate 631 

analyses) or across time (multivariate analyses) by summing t-values within the 632 

thresholded cluster. The observed cluster was compared to a surrogate distribution 633 

(10.000 shuffles) where condition labels were randomly permuted between groups. Effect 634 

sizes were quantified using Cohen’s d.  635 

 636 
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Data and code availability 637 

All data and custom code used for analyses are available from the corresponding author 638 

upon request. Preprocessing of EEG data and cluster-based permutation tests were 639 

performed using Fieldtrip55 toolbox for Matlab and decoding analysis where performed 640 

using the MVPA-Light57 toolbox for Matlab.   641 
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