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Multiple Intrinsic Timescales Govern Distinct Brain States
in Human Sleep
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Human sleep exhibits multiple, recurrent temporal regularities, ranging from circadian rhythms to sleep stage cycles and neuronal
oscillations during nonrapid eye movement sleep. Moreover, recent evidence revealed a functional role of aperiodic activity, which
reliably discriminates different sleep stages. Aperiodic activity is commonly defined as the spectral slope y of the 1/frequency (1/fX)
decay function of the electrophysiological power spectrum. However, several lines of inquiry now indicate that the aperiodic com-
ponent of the power spectrum might be better characterized by a superposition of several decay processes with associated timescales.
Here, we determined multiple timescales, which jointly shape aperiodic activity using human intracranial electroencephalography.
Across three independent studies (47 participants, 23 female), our results reveal that aperiodic activity reliably dissociated sleep
stage-dependent dynamics in a regionally specific manner. A principled approach to parametrize aperiodic activity delineated
several, spatially and state-specific timescales. Lastly, we employed pharmacological modulation by means of propofol anesthesia
to disentangle state-invariant timescales that may reflect physical properties of the underlying neural population from state-specific
timescales that likely constitute functional interactions. Collectively, these results establish the presence of multiple intrinsic time-
scales that define the electrophysiological power spectrum during distinct brain states.
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Significance Statement

Sleep is characterized by prominent temporal regularities. In this study, we unveil a previously unrecognized principle that
governs neural activity during human sleep. Our results shed light on the existence of a set of intrinsic timescales that
fundamentally define the current state of the sleeping brain. These timescales serve as indicators of both physiological
and functional interactions within the underlying neural population. Through pharmacological modulation, we differentiated
state-specific functional interactions from state-invariant timescales, suggesting that the latter may reflect the inherent
physical properties of the neural population at play.
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oscillations (Rasch and Born, 2013; Nir and de Lecea, 2023). Slow
oscillations (<1.25 Hz) or sleep spindles (12-16 Hz) characterize
nonrapid eye movement (non-REM) sleep in humans and

Introduction
It has long been recognized that distinct temporal signatures
delineate different brain states. Sleep follows multiple temporal

regularities, ranging from circadian rhythms to sleep cycles to sleep
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rodents, while theta activity (4-10 Hz) dominates rodent REM
sleep. While these periodic signatures are highly conserved across
species during non-REM sleep (van Schalkwijk et al., 2023), REM
sleep remained a conundrum since human REM sleep exhibits
wake-like, desynchronized (“paradoxical”) electroencephalogra-
phy (EEG) activity (Siegel, 2011). It was only recently recognized
that aperiodic activity contains rich information about the cur-
rent brain state (He et al., 2010; Lendner et al., 2020) and reliably
discriminates wakefulness and REM sleep (Lendner et al., 2020;
Kozhemiako et al., 2022). Aperiodic activity can be approximated
by a 1/fX relationship (Miller et al., 2009), where the spectral
slope, specifying the “steepness” of the 1/f* power spectrum,
ranges from —2 to —4 (Colombo et al,, 2019; Lendner et al,
2020). In some instances, the slope might systematically change
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after a “bend” in the power spectrum, also referred to as a spectral
knee (Miller et al.,, 2009; Gao et al., 2020). To date, multiple
approaches to estimate aperiodic activity have been introduced
(Gerster et al., 2022). Popular tools model aperiodic activity by
either a first-degree polynomial or one or two Lorentzian func-
tions (Miller et al., 2009; Gao et al., 2017; Donoghue et al,
2020), which can include the estimation of a spectral knee.
Recent findings showed that this spectral knee corresponds to a
time constant, which is also referred to as an intrinsic neural
timescale (Murray et al., 2014; Gao et al., 2020). Here, we employ
the term spectral knee and intrinsic neural timescale inter-
changeably to refer to the definition in the frequency or time
domain.

Intrinsic neural timescales have been observed on various spa-
tiotemporal scales (Soltani et al., 2021; Wolff et al., 2022). To
date, there is no consensus on how timescales should be best
approximated (Fig. 1), and their functional relevance for beha-
vior and the current brain state is not very well understood.
One explanation suggests that timescales reflect temporal inte-
gration windows over which behaviorally relevant information
(such as working memory) can be integrated (Wasmuht et al.,
2018; Soltani et al., 2021; Wolff et al., 2022). In line with this
idea, timescales typically become longer in the higher-order asso-
ciation cortex compared with primary sensory cortices (Murray
et al.,, 2014).

A major caveat when estimating aperiodic activity is that
fitting in different frequency ranges yielded vastly different or
even contradicting results depending on whether the fit included
lower (e.g., 1-50 Hz) or higher frequencies (e.g., 30-50 Hz;
Colombo et al, 2019; Miskovic et al., 2019; Lendner et al,
2020; Bodizs et al, 2021). To date, it remains unknown why
the ~30-50 Hz range [initially proposed by Gao et al. (2017)]
is particularly well suited to discriminate different brain states.
The observed frequency dependence could potentially be attrib-
uted to the fact that the electrophysiological power spectrum can-
not be adequately approximated by a single 1/f relationship.
Instead, it appears to be governed by multiple distinct power law-
like relationships, which are systematically separated by several
spectral knees. In line with this consideration, Miller et al.
(2009) reported that the power spectrum exhibited multiple spec-
tral knees. Specifically, they reported a knee at ~75 Hz where the
slope changed from —2.5 to —4. Therefore, it is plausible to con-
sider that additional timescales may represent an organizing
principle that varies according to the brain state.

Here, we investigate how the precise fitting range of aperiodic
activity relates to the current brain state. We introduce a principled
approach on how aperiodic activity can be estimated when the
number of spectral knees is unknown. We then demonstrate that
aperiodic activity is shaped by multiple spectral knees (reflecting
intrinsic neural timescales) that are either state-invariant or
state-dependent.

Materials and Methods

Participants

Study 1. We obtained intracranial recordings from 15 pharmacore-
sistant epilepsy patients (35.0+11.1 years; mean +SD; nine females)
who underwent presurgical monitoring with implanted depth electrodes
(Ad-Tech Medical Instrument), which were placed stereotactically to
localize the seizure onset zone. All patients were recruited from the
University of California Irvine Medical Center. Electrode placement
was exclusively dictated by clinical considerations, and all patients pro-
vided written informed consent to participate in the study. Participant
selection was based on magnet resonance imaging (MRI) confirmed elec-
trode placement in the medial temporal lobe (MTL) and prefrontal
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cortex (PFC). We only included patients where one seizure-free night
was available. The study was not preregistered. All procedures were
approved by the Institutional Review Board (IRB) at the University of
California (protocol number, 2014-1522) and conducted in accordance
with the sixth Declaration of Helsinki. This dataset was also included
in a subset of the analyses reported in Lendner et al. (2023).

Study 2. The dataset included intracranial recordings from 20 pharma-
coresistant epilepsy patients (30.7 + 9.4 years; mean + SD; 11 female) who
had subdural electrode arrays placed on the brain surface of the lateral fron-
tal, temporal, and parietal cortical areas for the localization of seizure foci.
These arrays were composed of circular platinum electrodes with 2.3 mm
diameter exposed, at 1 cm interelectrode distance (center-to- center).
All patients participated in a purely voluntary manner, after providing
informed written consent, under experimental protocols approved by
the IRB of the University of Washington (12193). All patient data were
anonymized according to IRB protocol, in accordance with Health
Insurance Portability and Accountability Act mandate. These data origi-
nally appeared in the manuscript “Power-Law Scaling in the Brain
Surface Electric Potential” published in PLoS Computational Biology in
2009 (Miller et al.,, 2009) and made publicly available here (Miller, 2019).

Study 3. Twelve patients with intractable epilepsy participated in this
study (26.6 +13.2 years; mean+SD; three females), which were also
included in Lendner et al. (2020). Data were collected during the explan-
tation of the intracranial electrodes from induction of anesthesia up to
the point of their removal. All patients received total intravenous anes-
thesia with propofol and remifentanil at the University Hospital of
Oslo. All patients were placed back on their usual antiepileptic medica-
tion before the procedure. All participants or their parents provided
informed written consent according to the local ethics committee guide-
lines (Regional Committees for Medical and Health Research Ethics in
Oslo case number 2012/2015; extension 2012/2015-8) and the sixth
Declaration of Helsinki.

Experimental design and procedures

Study 1: sleep monitoring. We recorded a full night of sleep for every
participant. Recordings typically started ~8:00-10:00 P.M. and lasted for
~10-12 h. Only nights that were seizure-free were included in the anal-
ysis. Polysomnography was collected continuously. We recorded from all
available intracranial electrodes. In order to facilitate sleep staging based
on established polysomnography criteria, we also recorded scalp EEG,
which typically included recordings from electrodes Fz, Cz, C3, C4,
and Oz according to the international 10-20 system. Electrooculogram
(EOG) was recorded from four electrodes, which were placed around
the right and left outer canthi. All available artifact-free scalp electrodes
were low-pass filtered at 50 Hz, demeaned and detrended, downsampled,
and referenced against the average of all clean scalp electrodes. EOGs
were typically bipolar referenced to obtain one signal per eye. A surrogate
electromyogram signal was derived from electrodes in immediate prox-
imity to the neck or skeletal muscles, by high-pass filtering either the
electrocardiogram or EEG channels above 40 Hz. Sleep staging was car-
ried out according to Rechtschaffen and Kales guidelines by trained per-
sonnel in 30 s segments (Rechtschaffen and Kales, 1968).

Study 2: fixation. Participants were asked to keep their eyes open and
maintain fixation on an “X” on the wall 3 m away, for several minutes
(17927 s, mean = SEM). They were instructed to remain motionless
and keep their eyes open, blinking if they needed to.

Study 3: anesthetic management. Data were collected in the operat-
ing room during the explantation of the intracranial electrodes from
induction of anesthesia up to the point of their removal. The awake state
was defined as time before start of propofol; anesthesia was defined as the
time after loss of consciousness (unresponsiveness to verbal commands
assessed by study personnel and attending anesthesiologist). All patients
received a premedication with 3.75-7.5 mg midazolam (Dormicum).
Propofol (Propolipid, Fresenius Kabi) and remifentanil (Ultiva,
GlaxoSmithKline) were administered by computer-controlled infusion
pumps (B Braun Perfusor Space) using a target-controlled infusion
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program (Schnider for propofol and Minto for remifentanil) in order to
achieve plasma concentrations sufficient for anesthesia and analgesia.
Prior to start of anesthesia, all patients received an infusion of Ringer’s
acetate (5 ml/kg) to prevent hypotension during anesthesia induction,
as well as 3-5 ml 1% lidocaine intravenously to prevent pain during pro-
pofol injection. All patients were preoxygenated with 100% oxygen and
received the nondepolarizing muscle-relaxant cisatracurium for intuba-
tion (Nimbex, GlaxoSmithKline). After intubation, the inspiratory oxy-
gen fraction was reduced to 40%.

Intracranial EEG data acquisition

All electrophysiological data in Study 1 was acquired using a 256-channel
Nihon Kohden recording system (model JE120A), analog filtered at
0.01 Hz, and digitally sampled at 5,000 Hz. Study 2 recorded at the bed-
side with Neuroscan Synamps 2 amplifiers (Compumedics Neuroscan),
in parallel with a clinical recording system (XLTEK or Nicolet-BMSI).
The signal was digitally sampled at 10,000 Hz (Subjects 1-4; subse-
quently downsampled to 1,000 Hz) or 1,000 Hz (Subjects 5-20). Data
in Study 3 were recorded on a Natus NicoletOne system with a
128-channel capacity and a digitization rate of 1,024 Hz for up to 64
or 512 Hz for up to 128 channels.

Image data acquisition and electrode reconstruction

Electrode reconstruction was typically performed based on anonymized
postoperative computer tomography scans and presurgical MRI scans,
which were routinely acquired during clinical care. MRI scans were
typically 1 mm isotropic. For Studies 1/3, we employed the approach out-
lined by Stolk et al. (2018). The details regarding electrode reconstruction
for Study 2, including brain shift correction following the craniotomy,
can be found in detail here (Miller, 2019). In all instances, electrodes
were warped onto the Montreal Neurological Institute template brain
to facilitate visualization in a common space.

Quantification and data analysis

Preprocessing. Study 1. In every subject, we selected all artifact-free
available electrodes in the MTL (N=150) and PFC (N=348), which
were then demeaned, detrended, notch-filtered at 60 Hz and its harmon-
ics, bipolar referenced to its immediate lateral neighboring electrode, and
finally downsampled to 500 Hz. Then all resulting traces were manually
inspected, and noisy, epileptic, and artifact-contaminated channels were
excluded. Data were epoched into 30-s-long, nonoverlapping segments
according to the hypnogram.

Study 2. All available, artifact-free electrodes (N=1,142) that were
included in the publicly available dataset were included in the study.
Data were re-referenced to bipolar pairs (nearest neighbors; N=1,973),
demeaned, detrended, and notch-filtered at 60 Hz and its harmonics.
Given that these recordings were relatively short, we epoched the record-
ings into 4-s-long segments with 75% overlap.

Study 3. All artifact-free available neocortical electrodes were
included (N=632). We did not include electrodes in the archicortex,
given that MTL electrode placement was inconsistent at the group level
and precluded subsequent group analyses. Data were demeaned;
detrended; notch-filtered at 50 Hz and its harmonics; if necessary, bipo-
lar referenced to its immediate lateral neighboring electrode; and down-
sampled to 512 Hz (for subjects that were sampled at 1,024 Hz). Data
were epoched into 10-s-long segments.

Spectral analysis. Spectral estimates were calculated by means of mul-
titaper spectral analyses as implemented in FieldTrip (Oostenveld et al.,
2011) based on discrete prolate spheroidal sequences in up to 143 logarith-
mically spaced bins between 0.25 and 181 Hz, depending on the available
trial length. We adjusted the temporal and spectral smoothing to approx-
imately match a +2 Hz frequency smoothing. Notch-filtered frequencies
were interpolated. Spectral estimates across several channels within a
region were either averaged or approximated by the first principal compo-
nent, which yielded equivalent results. Aperiodic estimates were then
extracted for every channel as outlined below.

Estimation of aperiodic activity. Aperiodic activity was estimated
from three complementary approaches (compare Fig. 1), polynomial
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fitting, FOOOF fitting and iterative fitting. We did not consider alterna-
tive approaches, such as IRASA (Wen and Liu, 2016), given the potential
sensitivity to noise characteristics and aliasing (Chaoul and Siegel, 2021),
which might bias the detection of additional high-frequency knees.

Polynomial fitting: To estimate the spectral slope in different frequency
bands, we utilized first-degree polynomial (linear) fitting in log-log space,
thus yielding an instantaneous spectral exponent (slope, y) and offset
(y-axis intercept, c), for a given fitting range. EEG spectra were fitted using
variable endpoints (from a fixed starting point at 0.5 Hz up to 128 Hz,
17 logarithmically spaced bins), variable starting points (from 0.5 Hz to
a fixed endpoint at 128 Hz, 17 logarithmically spaced bins), and a fixed
bandwidth with varying center frequencies [0.5 to 128 Hz; +1 octave
(oct.); 17 logarithmically spaced bins] or in comparable ranges (e.g.,
30-50 Hz; e.g., for illustration in Fig. 1Ciii) based on previous reports
(Gao et al., 2017; Lendner et al., 2020).

FOOOF fitting: In order to obtain estimates of aperiodic activity, we
employed the FOOOF algorithm (Donoghue et al., 2020). EEG spectra
were fitted in variables ranges, e.g., linearly spaced from 1 to 100 Hz.
Aperiodic activity was defined by its slope parameter y, the y-intercept c,
and a constant k (reflecting the knee parameter) as follows (Eq. 1):

aperiodic fit = 10 * (1

1
k+ /0

The relationship of the knee parameter k and the knee frequency f\ is given
by the following (Eq. 2):

fi =k, )

The timescale in the frequency domain can be calculated from the knee fre-
quency fy as follows (Eq. 3):

1
Tk mx fi© 3)
Numerical approximation by iterative fitting: While a linear fit does not
assume any spectral knees, the FOOOF algorithm models the knee param-
eter as a Lorentzian function with one spectral knee. In order to model ape-
riodic activity with multiple knees and without the need to predefine the
number of expected spectral knees, we implemented an iterative fitting
procedure (outlined in Fig. 3B). We employed logarithmically scaled, mul-
titapered power spectra with >>100 bins to obtain reliable estimates for the
subsequent analyses. To attenuate the effect of oscillatory peaks, we first
smoothed the spectrogram with a pseudo-Gaussian (three passes of a slid-
ing average). Smoothing left the 1/f structure unchanged, while it markedly
reduced oscillatory activity (Fig. 3Bi). In order to account for the impact of
residual oscillatory peaks after smoothing, we rejected identified points as
outlined below that were in close proximity (+1/4 oct.; compare Fig. 3Biv).
Next, we locally fit the spectrum within first-degree polynomials between
the boundaries defined by f; and f,, thus yielding N (number of predefined
center bins) local fits with y-intercept ¢ and slope parameter y (Fig. 3Bii).
We then identified frequencies where the aperiodic activity did not change
and was similar to the aperiodic activity at neighboring frequencies, thus
defining a minimal basis set of aperiodic parameters that captured the
power spectrum. Note that this approach does not identify oscillations,
which are characterized by a peak in the spectrum (rapid rise and decay
within a few Hertz), thus biasing linear fits. Algorithmically, this was
achieved by assessing the parameters c and y, which defined a set of spectral
states in a 2D space across all N linear fits (Fig. 3Biii). This 2D represen-
tation was then visualized as a corresponding spectral trajectory,
which was defined as the Euclidean distance between neighboring points
Pey and pe1y41. We then defined locally stable spectral estimates as
the local minima (peak detection on the inverted signal) of the spectral
trajectory (Fig. 3Biv), thus identifying frequencies where parameters
c and y remained stable. Sequential basins that occurred within a narrow
frequency band (+1/4 oct.; gray-shaded box in Fig. 3Biv) were excluded
to further discount the influence of oscillatory activity. Next, we median-
averaged all estimates for ¢ and y within a window w (e.g., *+1/2 oct;
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fit bandwidth) to obtain the minimal basis set of parameters that defined
the aperiodic activity. Then we evaluated the polynomial for the averaged
parameters at all local minima (Fig. 3Bv), yielding a set of local fits.
Finally, we defined the spectral knees as the intersections of the different
fitted lines (projected to the nearest point on the smoothed spectrum;
Fig. 3Bv,vi). Lastly, we merged adjacent detections that had the same
slope parameter y or were smaller than w. All spectra were initially
fitted with the following parameters: f; = 1 Hz; f, =150 Hz; smoothing
factor =1/2 oct.; and fit bandwidth =+1/2 oct. In the case that parameters
did not converge, the smoothing factor and fit bandwidth were lowered to
match, e.g., a third or quarter oct.

Estimating the timescale from the autocorrelation function in the time
domain: For illustration purposes, we employed three complementary
approaches to extract the timescale 7 from the autocorrelation function
(Murray et al,, 2014; Raut et al., 2020; Wolft et al., 2022). The autocorre-
lation function was fitted with an exponential function (Eq. 4), where A
reflected the amplitude, B the offset, At the time lag, and 7 the timescale as
follows:

—At
expontential fit = A % |:expT + B]. 4)

Alternatively, the temporal delay T was defined as the time it took for the
signal to decay by 50%. Lastly, we fitted the autocorrelation with a
half-Gaussian (alternatively, spline fits have been employed; Raut et al.,
2020) and defined the timescale 7 as the full-width at half-maximum
(FWHM) of the fitted curve.

Simulation of aperiodic activity and validation

We simulated EEG power spectra with two spectral knees to validate the
iterative fitting procedure. The EEG power spectrum was modeled as the
product of two Lorentzian functions and a noise term (Eq. 5). The frequen-
cies f were logarithmically spaced between 0.5 and 256 Hz with a lower
slope parameter y;, that was half of the upper slope xi (e.g., 3 and 6),
the offset ¢ was set to 2, and the knee parameter k defined the lower
knee (see Equation 2; range = 20-3000; corresponding to ~2.5-14.5 Hz),
while £}, defined the upper knee frequency (range 50-100 Hz). The noise
term & was scaled by a 1/f factor. To account for the difference in noise in
simulations as compared with empirical recordings, the smoothing factor
and bandwidth were lowered to match, e.g., a third or quarter oct. as out-
lined above as follows:

1
k+fx) 1
Tram
1+ (&
<fh>
Across all iterations, the different parameter combinations, and noise lev-
els, we modeled >400.000 spectra. The observed parameters for the low
and high spectral knees were then correlated (Spearman rank correlation)
against the ground truth model parameters. Across 1,000 iterations, we
also obtained a surrogate distribution by shuffling the observed estimates

200 times. The observed correlation coefficients were then z-scored relative
to surrogate distribution.

10€ %

PSD = (5)

Statistical analysis

Unless stated otherwise, we employed two-tailed paired ¢ tests and
repeated-measure analysis of variance. We used FDR correction
(Fig. 2C) or cluster-based permutation tests to correct for multiple com-
parisons as implemented in FieldTrip (Monte Carlo method; 1,000 iter-
ations) based on either paired ¢ tests or F tests. Clusters were formed
across frequencies (e.g., Figs. 2B, 31,]) by thresholding the statistical tests
at p<0.05. A permutation distribution was then created by randomly
shuffling condition labels. Correlations with the hypnogram were
assessed by means of Spearman rank correlations analogous to
Lendner et al. (2020), where wake corresponded to 0, NREM sleep to
1-4, and REM to 5. Correlation values were transformed into z-scores
as outlined below. Where applicable, we also employed random block
swapping to obtain a surrogate distribution. The permutation p value
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was obtained by comparing the cluster statistic to the random permuta-
tion distribution. The clusters were considered significant at p <0.05
(two-sided for t tests, one-sided for F tests). In addition, we used bino-
mial tests to infer if the observed number of outcomes across all observa-
tions was significant (e.g., the presence of spectral knee in Figs. 4E, 5E;
yes/no probability, 0.5). In one instance (Fig. 2C), p values across several
tests were combined by turning each p value into a z-score using the
inverse normal cumulative distribution function. The resulting z-scores
were then combined. The resulting combined p values were then obtained
from the normal cumulative distribution function (Stouffer et al., 1949).

Moreover, we employed linear correlations (e.g., Figs. 1D, 2E).
Correlation values were transformed into t values using the following
formula (Eq. 6):

. r*+/N—2 ©)
BV -l

T values were then transformed into z values as deviations from the
standard normal (Gaussian) distribution with the lower tail probability
equal to the ¢ statistics with the given degrees of freedom (Fig. 2B). Z val-
ues were considered significant at z=+1.96, corresponding to an uncor-
rected two-tailed p value of 0.05. Effect sizes were quantified by means of
Cohen’s d (t tests) or eta squared (F tests). To obtain effect sizes for clus-
ter tests, we calculated the effect size separately for all frequencies and
averaged across all data points in the cluster.

Results

To test if aperiodic temporal regularities govern distinct brain
states during sleep, we recorded whole-night intracranial EEG
(iEEG) from 15 pharmacoresistant epilepsy patients who under-
went presurgical evaluation (Fig. 1A) with electrodes implanted
in the MTL (N =150) and PFC (N = 348). Notably, grand-average
power spectra exhibited prominent region-specific differences
across the different sleep stages (Fig. 1B). Visually, these spectra
exhibited multiple distinct oscillatory peaks and spectral knees
that separated frequency ranges where the spectral slope exhib-
ited a characteristic 1/frequency decay function (Fig. 1C).
Depending on the precise fit range, positive, negative, or no asso-
ciations can be observed (Fig. 1D). For example, the spectral
slope at 2 Hz (£1 oct.) correlated positively with the hypnogram
(Spearman rho = 0.55; single-subject MTL example; group-level
results are reported in Fig. 2), while no association was observed
at 16 Hz (rho=0.01). For higher frequencies, negative correla-
tions were evident (e.g., in the previously employed ~30-50 Hz
band: rho = —0.54). These findings are strongly indicative of sev-
eral independent processes that jointly shape the electrophysio-
logical power spectra during different brain states. Given the
prominent spectral slope differences in the various frequency
bands in this example (0.5-1 Hz slope, —0.07; 20-45 Hz slope,
—2.65; 64-128 Hz slope, —3.85), we reasoned that the transition
points between the different frequency segments might be the
result of characteristic spectral knees of the power spectrum,
which correspond to intrinsic neural timescales (see Fig. 1E,F
for estimation in the time and frequency domain). In the time
domain, timescales are typically extracted from the autocorrela-
tion function by fitting an exponential, spline, or Gaussian func-
tion or by estimating the decay time that is necessary for a
reduction by a predefined factor (e.g., 0.5; see Materials and
Methods; Fig. 1E). In the frequency domain, the intuitive
approach is to quantify the spectral knee, which can be approx-
imated by, e.g., the peak of the first differential of the spectrum or
by a Lorentzian fit (Fig. 1F). The time constant of the Lorentzian
function directly corresponds to the constant of the exponential
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Nonuniform distribution of electrophysiological aperiodic activity during sleep. A, Intracranial electrode placement (N = 15 subjects; 498 bipolar electrode pairs) in the MTL (N = 150;

top panel) and PFC (N = 348; bottom panel). B, Grand-average power spectral densities (PSD) for the MTL (dark shading) and PFC (light shading) in the wake state (blue; top panel), NREM (red;
center) and REM sleep (green; bottom panel). Note the overall flatter PSD slope on the MTL across different states as well as the presence of multiple bends at various frequencies.
C, Approximation of aperiodic activity (dark red) of the PSD (black; example spectrum from the MTL). i, FOOOF fit of a Lorentzian function with a time constant (knee parameter).
ii, Linear fit across the PSD from 2 to 128 Hz. i, Linear fit from 30 to 50 Hz. iv, Linear fit with varying center frequencies (+1 oct.); three example fits (center, 2, 16, and 128 Hz) are shown.
D, Correlation of the hypnogram (top trace) and smoothed linear slope fits (demeaned estimates; colored traces) at various center frequencies (from 2 to 128 Hz; MTL, single-subject example; for
group data, see Fig. 2B). The same color conventions as in panel C, iv. Note that most fits are significantly correlated (note, the sign flip) with the hypnogram (right; Spearman rho; *p < 0.05 as
obtained from a surrogate distribution; 1,000 iterations; random block swapping procedure). E, lllustration of different approaches to estimate intrinsic timescales in the time domain. Note, in
neural systems, the ground truth is typically unknown. The timescale of the autocorrelation function (ACF; exponential decay; black) can be quantified as the time constant 7 (red). Alternative
approaches for timescale estimation include the time lag at FWHM (assuming a spline or Gaussian fit to the ACF; blue) or a signal reduction by 50% (r = 0.5; green). F, Estimation of intrinsic
timescales in the frequency domain. The characteristic spectral knee of the PSD (gray) reflects the time constant tau 7 (red) but can also be quantified as the peak of the differential (magenta) or
the intersect of two linear slope fits (orange; as outlined in panel G). G, The present rationale to illustrate the proposed approach: linear fits to the lower frequencies (purple) and higher
frequencies (green) of the PSD (gray). The knee was then defined as the projection to the nearest point on the PSD of their respective crossover point (intersect; orange). Note, this approach
implies that the identified frequency (intersect method) will be below the frequency as defined by the exponent 7. Note that the ground truth is not known and, hence, both methods constitute
valid approximations of where the spectral knee occurs. H, This approach can be extended to spectra with multiple knees (the same conventions as in panel G).

decay function per the Wiener-Khinchin theorem (Gao et al,,
2020). Critically, while previous work indicated the presence of
only one or two spectral knees, the correlation analysis of
frequency- (%1 oct.) and time-resolved slope estimates (entire
night; 30 s segments) with the hypnogram (compare Fig. 1D) is
indicative of multiple bends in the power spectrum (spectral
knees) that cannot be estimated using conventional methods.
Here, we outline how iterative spectral fitting can be employed
to numerically approximate the spectrum with multiple spectral
knees, without the need to predefine the number of expected
knees. This was achieved by estimating spectral segments where
the power spectrum followed a distinct 1/f distribution. The spec-
tral knee was then defined as the projection of the crossover point
of two linear fits to the nearest point on the spectrum (Fig. 1G;
outlined and validated in detail in Fig. 3). This approach enables
capturing two or more spectral knees, which are indicating mul-
tiple, simultaneously present timescales (Fig. 1H).

Neural aperiodic activity is region- and state-specific

To demonstrate the presence of multiple, brain state-dependent
spectral knees, we first employed first-degree polynomial (linear)
fitting with multiple different fit characteristics (Fig. 2A4). All
power spectra were fit using a variety of parameters, either keep-
ing the starting point constant (variable endpoints), parametri-
cally varying the starting point (keeping the endpoint

constant), or fitting different center frequencies (in a one oct.-
wide band). This analysis was conducted separately for MTL
and PFC in 30 s segments as defined by the hypnogram. The
time-resolved (across the night) slope estimates in the various
frequency bands were then correlated with the hypnogram (anal-
ogous to Fig. 1D; Spearman rank correlation; sleep stages were
ranked as wake, NREMI1-4, REM). Correlation coefficients
were standardized by z-transformation (see Materials and
Methods) and compared by means of cluster-based permutation
testing. For the different fitting approaches, we observed several
significant clusters (Fig. 2B; cluster permutation tests based on
paired ¢ tests) that spanned multiple frequency bands (variable
end, Pos. Cluster 1 from 6 to 32 Hz, p=0.010; d=0.68; Pos.
Cluster 2 from 0.5 to 1 Hz, p=0.021; d=0.84; variable start,
Neg. Cluster 1 from 16 to 45 Hz, p <0.001; d =—1.03; different
center frequencies, Pos. Cluster 1 from 11 to 16 Hz, p=0.010;
d=0.96; Pos. Cluster 2 from 0.5 to 0.7 Hz, p=0.013; d=0.81;
Neg. Cluster 1 from 23 to 45 Hz, p <0.001; d=—1.05). Hence,
we combined and FDR-corrected the p values across the three
different approaches (Fig. 2C; Stouffer method; see Materials
and Methods). This analysis demonstrated that the spectral slope
in the frequency range ~20-45 Hz, and not across the entire
spectrum as expected from 1/fX process with one decay constant,
dissociated how MTL and PFC dynamics aligned with the hyp-
nogram (Fig. 2D). This effect is further illustrated in Figure 2E
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Dissociation of MTL and PFC
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Figure 2.  State-dependent aperiodic activity is region- and frequency-specific. A, lllustration of different linear fit ranges. i, Fit from a fixed 0.25 Hz starting point to variable endpoints. ii, Fit

from variable starting points to a fixed endpoint of 128 Hz. jii, Fit at variable center frequencies (+1 oct.). B, i, Correlation (z-scored; mean + SEM; N = 15) between the individual hypnograms
and spectral slopes (linear fits with variable ends) for the MTL (dark blue) and PFC (dark red). The gray-shaded area depicts the range of z=+1.96 (corresponding to an uncorrected, two-tailed
p > 0.05). Asterisks indicate the significant difference between the correlations in the MTL and PFC. Note that both correlations show a similar trend and that correlations remain nonsignificant
for endpoints at ~4 Hz. ji, Correlation between the hypnograms and spectral slope (linear fits with variable starting points; the same conventions as in the top panel). We observed a significant
difference between MTL and PFC correlation in the range from 16 to 45 Hz. Note that the PFC correlations in this frequency range exhibit a sign reversal, which indicate the presence of two
spectral features (at ~20 and ~64 Hz) that are specific to the PFC. iii, Correlation between the hypnograms and spectral slope (linear fits with varying center frequencies; the same conventions
as in the top panel). Note that correlations exhibit multiple sign reversals, which are similar between the MTL and PFC (e.g., at ~2 Hz) with the exception of a prominent dissociation in the range
from 23 to 45 Hz. €, Summary statistics across the observations in panel B. Uncorrected p values as a function of frequency for the comparison between MTL and PFC correlations to the
hypnogram (variable end in green; variable start in dark blue; different center bin in orange; the gray line depicts the p < 0.05 threshold). p values were combined (using the Stouffer method;
black) and FDR-corrected for multiple comparisons (* indicates corrected p < 0.05). Across all different fits, MTL and PFC differed significantly in the range from 16 to 45 Hz. D, Comparison of the
spectral slope in the MTL and PFC for different center frequencies (illustrated for 1, 32 and 64 Hz) during wakefulness at the group level (dots indicate individual participants). Note that the PFC
slope was steeper at ~32 Hz (£1 oct.) in all participants, but not in the other two bins. E, Further illustration of the dissociation between MTL and PFC dynamics for a single subject. Top row,
Hypnogram. Center row, Demeaned spectral slope (A refer to difference to the mean; center fit, 2 Hz 1 oct.) highlights positively correlated aperiodic fits between the MTL and PFC. Bottom

row, In contrast, the demeaned spectral slope (Aslope) at higher frequencies (center fit, 45 Hz + 1 oct.) reveals opposite effects in the MTL and PFC, hence a negative correlation.

(single-subject example) highlighting aligned spectral slopes
(demeaned for illustration purposes) for a 2 Hz center frequency
bin, while the slope at 45 Hz exhibited a striking antiphasic pat-
tern. Collectively, this set of findings demonstrated that aperiodic
activity as quantified by the spectral slope systematically varies as
a function of frequency. As a control analysis, we altered the
numerical encoding of the hypnogram (wake—REM—N1-4),
which yielded comparable results (variable end, Pos. Cluster 1
from 4 to 45 Hz, p <0.001; d=0.94; Pos. Cluster 2 from 0.5 to
2 Hz, p=0.003; d=1.05; variable start, Neg. Cluster 1 from 22
to 45 Hz, p <0.001; d = —1.45; different center frequencies, Pos.
Cluster 1 from 0.5 to 1.4 Hz, p <0.001; d=1.17; Pos. Cluster 2
from 11 to 16 Hz, p=0.016; d=0.98; Pos. Cluster 3 from 3 to
4 Hz, p=0.030; d=0.81; Neg. Cluster 1 from 23 to 45 Hz, p<
0.001; d=—1.36; combined p<0.05 in the range from 16 to
64 Hz). This observation then raises the question why only cer-
tain frequency bands correlated with the hypnogram. One possi-
bility was that the dissociation between MTL and PFC in a
narrow frequency range was the result of two additional spectral
knees at ~16-23 and ~45 Hz.

Multiple spectral knees shape 1/f activity

Next, we addressed the question if the differences in spectral
slope between brain states could be the result of additional, pre-
viously unidentified spectral knees in the ~20-45 Hz frequency

range. Since typical approaches only estimate one or two spectral
knees (Fig. 3A), we devised an iterative fitting procedure that did
not predefine the number of expected knees (Fig. 3B; see
Materials and Methods). In brief, we iteratively fitted the spec-
trum in many possible frequency bands and identified the ranges
where the spectral slope remained constant (corresponding to
the basins in Fig. 3B). Spectral knees were then defined as the
intersection of linear fits of two adjacent frequency segments
(in which the spectral slope remained constant), i.e., identifying
the frequency where the slope changed. Oscillations (as indicated
by distinct peaks arising over the 1/f decay function) were atten-
uated by smoothing the power spectrum (leaving the 1/f function
intact) and excluding multiple sequential basins (within +1/4
oct.). This approach yielded a set of fits and spectral knees
(Fig. 3Bvi). To validate this approach, we simulated power spec-
tra (modeled as two Lorentzian functions; see Materials and
Methods) with varying parameters for upper and lower spectral
knees in presence of 1/f noise (Fig. 3C). The simulated spectra
were then iteratively fitted, and the observed knee frequencies
were correlated against the model knee frequencies (as ground
truth; Fig. 3D). The observed correlations were z-scored relative
to a surrogate distribution. We observed that both low- and high-
frequency knees can be reliably recovered (Fig. 3E; low-frequency
knee, average z=11.35; p <0.0001; high-frequency knee, average
z=4.93; p=0.0050). Given the different spectral knee definitions
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Numerical approximation of multiple intrinsic timescales
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Figure 3.  Numerical approximation of intrinsic timescales in the frequency domain. A, An exemplary power spectrum (PSD) and the respective Lorentzian fit (red; FOOOF model; with knee
frequency highlighted as the red dot) indicate the presence of a low-frequency spectral knee (arrow) as well as discrete peaks (e.g., spindle oscillations at ~14 Hz). Overall, the power spectrum is
well approximated by the aperiodic estimate (red), but clear deviations are evident, in particular for higher frequencies (red arrows), which might be indicative of additional spectral knees. The
inset depicts the current approach to iteratively fit the spectrum to obtain a set of parameters (optimized fit in light red). B, Numerical approximation of different spectral knees with iterative
spectral fitting: (i) spectral smoothing attenuates oscillatory peaks (arrow) but leaves the /£ decay function constant. Note that this step does not fully remove all oscillatory bumps, hence
requiring an additional subsequent selection step (compare panel iv). i, The aperiodic activity is then linearly fitted for every frequency segment (log—log scale) by a first-degree polynomial
using a one oct.-wide frequency band (in red; 8 exemplary fits out of 136 are shown). iii, Representation of the fit estimates in a 2D coordinate system (slope and intercept), color-coded by the
center frequency of the respective bin (in blue; from 0.5 to 180 Hz). Red arrows indicate two (out of multiple) potential local minima where the fit parameters remain constant (termed basins
and as algorithmically defined in iv). iv, Euclidean distance between adjacent data points (compare panel iii). Periods where spectral fits remain constant were identified as local minima close to
zero (red crosses). Note that sequential basins that occurred within a narrow frequency band (1/4 oct.; blue arrows indicate rejected points within the gray-shaded box) were excluded. In this
example, basins (blue arrows) between 10 and 30 Hz were excluded (gray-shaded box), since they reflected the spindle oscillation and its harmonic. v, The spectrum was then fitted using the
parameters at the local minima across all available frequencies. Spectral knees were then identified as the intersects of two linear fits, projected onto the nearest point on the smoothed curve (as
illustrated in Fig. 16). vi, Finally, the identified linear fits were linearly extended to span the entire range between obtained knee frequencies to define a reduced set of parameters, which best
describe the power spectrum. €, Simulated PSDs (see Materials and Methods) with multiple spectral knees for lower (left) and higher frequencies (right). D, Numerical approximation of time-
scales. Left, Example of one iteration (out of 1,000), which examined each modeled low-frequency knee parameter once. Note, the timescale of simulated spectra was defined by parameter 7,
while the knee was approximated by the intersect method (compare Fig. 1F). Overall, a high correlation (rho = 0.98) between simulations and estimates was observed. Right, Surrogate dis-
tributions. Observed correlations were then z-scored relative to the surrogate distribution (note the observed value is outside of the displayed rho = +0.5 range). E, Distribution of z-scored
correlations for the low-frequency (left) and high-frequency knees (right) reveals consistent z-scores >1.96 (two-tailed p < 0.05; ***p < 0.005), hence indicating that spectral knees can be well
approximated using iterative fitting. F, Left, Distribution of all observed spectral slopes estimates per region (MTL and PFC). Note, the bimodal distribution and the consistency for slope values
close to 0, which reflect the spectrum prior to the first knee. Top right, Statistical comparison of the PSD slope prior to the first knee (dots depict individual participants). Bottom right, Statistical
comparison of the PSD slope after the first knee reveals overall flatter slopes in the MTL than PFC (quantification of the effect in Fig. 1B). G, Goodness-of-fit of the power spectrum using the
iterative fitting approach. The inset depicts individual average observations; no difference between MTL and PFC spectra was observed. H, Distribution of observed knee parameters. Additional
peaks in the range >20 Hz indicate the presence of additional spectral knees. /, State-specific distribution (normalized density) of MTL spectral knees in log spacing reveals distinct peaks at ~45
and ~75 Hz. J, The same analysis for all PFC contacts indicates additional knees at ~20 and ~65 Hz.

in the model parameter and numerical approximation (as  spectrum and corresponds to ~0.2 oct.). However, the highly
outlined in detail in Fig. 1E,F), the observed values were system-  significant correlations for lower and higher spectral knees
atically lower than the model parameters (note, the offset is  (Fig. 1E) indicated that characteristic spectral knees were success-
approximately constant across the logarithmically scaled  fully approximated.
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Subsequently, we iteratively fitted all power spectra during
sleep. We observed that spectral slopes were generally flatter
in the MTL than in the PFC (Fig. 3F) after the first knee
(t(14y=4.83; p=0.0003; d=1.25 MTL, -2.34+0.08; PFC,
—2.92 £0.06; mean + SEM). Prior to the first knee, spectra in
both regions were almost flat and did not differ (f(;4)=0.19;
p=0.8494; d=0.05; MTL, —0.29+0.02; PFC, —0.29+0.01;
mean + SEM). Overall, goodness-of-fit (quantified by the
explained variance R*) were high (MTL, R®=0.9950.001;
PFC, R*=0.995+0.002; median+SEM) and did not differ
between both regions (f(;4)=0.28; p=0.7830; d=0.07). While
the majority of spectra (across participants and electrodes) exhib-
ited a low-frequency knee (~2-3 Hz; no differences between
regions, t(14y=—1.72; p=0.1081; d=—-0.44; MTL, 2.0£0.4 Hz;
PFC, 2.4 + 0.7 Hz; mean * SD), we also observed additional spec-
tral knees in various higher frequencies (Fig. 3H). On average,
we observed three knees per region-of-interest (MTL, 3.0 +0.1;
PFC, 3.0 +0.1; median + SEM; t(14)=0.69; p=0.4985; d=0.18).
Specifically, additional spectral knees were observed at ~45 and
~75 Hz in the MTL (Fig. 3I) and at ~20 and ~65 Hz (Fig. 3))
in the PFC. Critically, these spectral knees were brain state-
dependent in the MTL (Cluster 1 from 34 to 54 Hz, p=0.009;
#*=0.20; Cluster 2 from 4 to 13 Hz, p=0.035; #* = 0.28; cluster
permutation tests based on F tests) and PFC (Cluster 1 from 4
to 40 Hz, p<0.001; #*=0.48; Cluster 2 from 50 to 79 Hz,
p <0.001; #°=0.25), hence dissociating different sleep states
from wakefulness in both regions. Visually, the high-frequency
peak in the MTL at ~75 Hz appears more prominent than the
high-frequency PFC peak; however, it is critical to highlight
that both only reflect peaks of the underlying distribution.
Multiple scenarios are conceivable that might explain this appar-
ent difference and include underlying anatomical or region-
specific biophysical differences, as well as true differences in
knee variability or spatial sampling in different cortical areas.
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In sum, the numerical approximation of spectral knees fur-
ther supports the idea that the aperiodic power spectrum is not
uniform but differs as a function of frequency and brain state.
Critically, our iterative fitting approach recovers spectral knees
at ~20 Hz (in the PFC) and ~45 Hz (in the MTL), which explains
why the slope fits in the 20 to 45 Hz frequency range dissociates
MTL and PFC brain state-dependent dynamics (compare
Fig. 2C).

Multiple neural timescales govern different cortical states
during sleep

Having validated our approach with simulated data, we next
sought to recover spectral knees in empirical data. As a validation
dataset, we obtained resting-state iEEG data recorded from sub-
dural grid electrodes (electrocorticography) from 20 participants
during central fixation (Fig. 4A). Previously, Miller and col-
leagues (Miller et al., 2009; Miller, 2019) employed this dataset
to test if electrical brain activity follows a 1/f scaling law. They
found that the spectral slope steepened from approximately
—2.5 to —4 after a spectral knee at 77 + 14 Hz (mean + SD; range
~40 to ~120 Hz), which implied the existence of an intrinsic
timescale at ~2-4 ms. Critically, the authors did not assess any
potentials “knees” below <20 Hz and did not analyze electrodes
that exhibited a discernible oscillatory peak in the power spec-
trum. Here, we reanalyzed the dataset using iterative fitting. In
line with our previous analyses, we observed that the spectrum
was not well approximated by a Lorentzian function with one
spectral knee (Fig. 4B). Iterative fitting demonstrated that the
spectral slope was almost flat prior to a first knee at ~4 Hz
(—0.33 £0.05; median + SEM) and in the range from -2 to —5
for higher frequencies (Fig. 4C). Overall goodness-of-fit was
high as to be expected from iterative fitting to facilitate detection
of spectral knees (Fig. 4D; R*=0.986 +0.001; median + SEM),
indicating that the aperiodic spectrum was successfully captured.
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Figure 4.  Validation of aperiodic estimates. A, Electrode coverage (N = 20; 1,973 bipolar pairs). B, Grand-average PSD (black) and aperiodic activity (red; FOOOF model). C, Distribution of all
obtained PSD slopes analogous to Figure 3F. D, Overall goodness-of-fit was high (R? > 0.99). E, Left, Distribution of spectral knees. Right, At the group level, distinct peaks were evident at 4, 56,
and 83 Hz (all p < 0.003, binomial tests) after subtraction of the exponential decay function to facilitate peak detection.
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In addition to a low-frequency knee (at ~4 Hz; knee present in
18/20 participants; p=0.0004; binomial test), we observed two
additional knees (Fig. 4E) at ~56 Hz (p=0.0026; 17/20 partici-
pants) and ~83 Hz (p=0.0004; 18/20 participants) that were
highly comparable with the estimates that were initially reported
by Miller et al. (77 +14 Hz; mean+SD; 95% CI, 49-105 Hz).
Slight deviations can be accounted for by differences in spectral
estimation (single taper with linear spacing in Miller et al., while
multitapers with logarithmic spacing were employed here), the
underlying fitting approach as well as inclusion of all available
electrodes (without visually preselecting electrodes devoid of oscil-
lations). Moreover, the identified peaks in Study 1 (~65/75 Hz)
were also within a similar range and were obtained from a similar
patient group suffering from pharmacoresistant focal epilepsy.
The slight differences with respect to the precise peak frequency
might potentially be the result of different cognitive states
(fixation vs spontaneous wakefulness before/after sleep) or elec-
trode coverage (depth electrodes vs grid electrodes). In line
with previous findings, the spectrum was steeper after
the identified high-frequency knee at ~ 80 Hz (t(;0)=3.08;
p =0.0061; d=0.69; before knee, —2.71 + 0.09; after knee, —3.50
+0.15; median+SEM). In sum, this set of findings further
substantiates the idea that iterative fitting can recover spectral
knees and replicates the presence of multiple characteristic time-
scales in human iEEG.

Propofol anesthesia dissociates state-invariant from
state-dependent timescales

Lastly, we addressed the question whether the observed spectral
knees are brain state-dependent or brain state-independent.
If the spectral knees were independent of the underlying brain
state, then the most parsimonious explanation for their presence
would entail the presence of a characteristic timescale that
indexes physiologic properties of underlying neuronal popula-
tion, such as postsynaptic currents or conduction delays
(Freeman and Zhai, 2009; He et al., 2010; Buzsaki et al., 2012).
In contrast, brain state-dependent spectral knees might poten-
tially imply second-order temporal organizing principles, such
as network connectivity or temporal integration (Shinn et al.,
2023).

To disentangle state-invariant from state-dependent neural
timescales, we recorded iEEG in a separate sample of 12 partici-
pants during electrode explantation under general anesthesia
with propofol (Fig. 5A). Recordings were obtained continuously
in the operating room until the electrodes were physically
removed, hence encompassing both wakefulness and general anes-
thesia. All participants received propofol as the anesthetic agent
(see Materials and Methods for clinical management). In line
with previous reports, we observed a strong modulation of the
power spectrum during anesthesia (Fig. 5B). The spectral slope
was steeper during anesthesia for both the slope in lower frequen-
cies (before the first knee; 11y ="7.68; p < 0.0001; d = 2.22; wakeful-
ness, —0.25+0.03; anesthesia, —0.50 +0.03; median + SEM) and
higher frequencies (after the first knee; #;;)=3.74; p=0.0033;
d=1.08; wakefulness, —2.75+0.16; anesthesia, —4.00+0.26;
median + SEM; Fig. 5C). The overall goodness-of-fit was high
and did not differ between both states (Fig. 5D, wakefulness,
R*=0.978 £0.003; anesthesia, R*=0.973+0.003; median + SEM;
ta1y=1.98; p=0.0729; d=0.57). Critically, iterative fitting estab-
lished the presence of spectral knees at ~5 Hz (wakefulness, in
12/12 participants; p =0.0005; anesthesia, in 10/12 participants;
p =0.0386; binomial test) and ~75 Hz (wakefulness, in 12/12 par-
ticipants; p =0.0005; anesthesia, in 11/12 participants; p =0.0063;

J. Neurosci., October 16, 2024 - 44(42):0171242024 - 9

binomial test) in both states (Fig. 5E). The knee peak frequencies
did not differ between both states (Fig. 5G; first knee, t(;9) = —0.35;
p=0.7334; d=-0.11; second knee, t;;=-1.15 p=02741;
d = —0.33). Collectively, this set of findings demonstrates that
spectral knees at ~5 Hz (wakefulness, 5.17 + 0.17 Hz; anesthesia,
5.36 £0.45 Hz; mean = SEM) and ~75 Hz (wakefulness, 76.25 +
1.63 Hz; anesthesia, 79.33+2.00 Hz; mean+SEM) are brain
state-independent and similar knees can be observed using depth
electrodes (Study 1/3; compare Fig. 31,]) as well as subdural grid
electrodes (Study 2; Fig. 4E), implying that these might capture
physiologic time constants that are inherent to the underlying neu-
ronal population and not affected by anesthesia.

Discussion

Sleep is characterized by a variety of temporal regularities rang-
ing from days (circadian rhythms) to hours (sleep cycles) and to
(sub)seconds (e.g., sleep oscillations). In addition to these well-
established temporal regularities, (1) the present findings provide
evidence that neural timescales separate several 1/f decay
processes that index the current brain state. (2) Specifically, the
previously employed 30-50 Hz range (Gao et al, 2017;
Lendner et al., 2020) largely (but not completely) avoids the spec-
tral knees at 20 and 45 Hz. Hence, while this frequency range was
adept at discriminating different sleep stages (Lendner et al.,
2020; Kozhemiako et al., 2022), a range between 20 and 45 Hz
might be even more optimal since it avoids the spectral knees
all together. The inclusion of the low-frequency spectral knee
in the estimation of the spectral slope also explains previous
contradictory evidence of aperiodic activity in sleep (Colombo
et al,, 2019; Miskovic et al., 2019; Hohn et al., 2023; Rosenblum
et al., 2023). Our results indicate that the presence of spectral
knees should guide the parameter selection for estimation of
the spectral slope, which might be brain state- and region-
specific. (3) Spectral knees predicted the systematic variation in
the 1/f spectral slope between the MTL and PFC, which poten-
tially reflects the distinct structural composition between the
three- and six-layered cortex. (4) The proposed approximation
did not misidentify oscillatory peaks as knees (such as spindles),
demonstrating that this approach successfully separated aperi-
odic from oscillatory activity.

The neurophysiological basis of aperiodic activity

Recently, several analytical approaches were introduced to better
characterize neural oscillations and aperiodic activity (Wen and
Liu, 2016; Donoghue et al, 2020; Kosciessa et al., 2020).
Previously, aperiodic activity has often been discarded as “noise,”
but emerging evidence suggests that it contains rich information
(Voytek et al., 2015; Podvalny et al., 2021; Waschke et al., 2021;
Pfeffer et al., 2022). Aperiodic activity exhibits a 1/fX scaling beha-
vior and is sometimes also termed nonoscillatory or scale-free
activity (He et al., 2010; Donoghue et al., 2020).

To date, our understanding of the physiological mechanisms
underlying aperiodic activity remains limited (Buzsaki et al.,
2012; Kramer and Chu, 2023). Computational modeling has pro-
posed that aperiodic activity could reflect neural excitability (Gao
et al.,, 2017; Chini et al., 2021). This concept has sparked a recent
surge of studies aiming to infer microscale properties from mac-
roscale recordings (Ahmad et al., 2022). Emerging evidence,
including in vivo calcium imaging (Lendner et al., 2023), optoge-
netic (Chini et al., 2021), and pharmacological (Colombo et al.,
2019; Lendner et al., 2020) manipulations, has provided support
for this notion. Most studies assume that aperiodic activity is only
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Figure 5.

Modulation of intrinsic timescales during medically induced unconsciousness. 4, Electrode coverage (N = 12; 632 bipolar pairs). B, Grand-average PSDs during wakefulness (blue)

and propofol anesthesia (red). C, Left, Distribution of PSD slopes as obtained from iterative fitting in the wake state (blue) and under anesthesia (red) again reveals a bimodal distribution with
flatter (i) and steeper (i) spectral slopes (compare panel F). Center, Statistical quantification of the slope prior to the first knee indicated steeper PSD slopes during anesthesia. Right, Statistical
quantification of the slope after the first knee further confirmed steeper PSD slopes during anesthesia. D, Overall goodness-of-fit did not differ between both states and, again, was close to 1,
thus indicating that spectra can be well approximated by iterative spectral fitting. E, Left, Distribution of spectral knees during wakefulness (blue) and under anesthesia (red) relative to the
exponential decay function (black). Right, Individual peak detection reveals consistent low- (~5 Hz) and high-frequency (~75 Hz) spectral knees. F, Statistical quantification of the low (left) and

the high (right) knees demonstrated comparable estimates in both states.

characterized by one decay function with a fixed exponent.
However, inconsistent state discrimination for varying frequency
ranges (i.e., from 1 to 45 vs 30 to 45 Hz; Colombo et al., 2019;
Miskovic et al., 2019; Lendner et al., 2020) implied that the 1/f
spectral slope might not be uniform across the entire power
spectrum.

Here, we demonstrate that the correlation of aperiodic activity
with the sleep hypnogram varies across different frequency
bands. This dependence is explained by the fact that the 1/f decay
function is not constant. Iterative fitting revealed multiple and
state- and region-dependent spectral knees that impact 1/f char-
acteristics, i.e., a flatter spectrum in the MTL than PFC in the
~20-45 Hz range (compare Fig. 3). The limited spatial coverage
of iEEG recordings cannot fully resolve whether the identified
spectral knees can be detected everywhere in the cortex. In the
present study, the majority of electrodes targeted the MTL and
PFC, where we observed a surprising consistency across different

arousal states. It is critical to highlight that the precise peak fre-
quency might depend on electrode placement as exemplified by
differences between MTL and PFC in Study 1 (compare Fig. 3L])
or the variability that was observed in Study 2 (compare
Fig. 4E), where large subdural electrode grid arrays were
employed in contrast to the stereotactically placed depth elec-
trodes. This regional dependency was further supported by the
observation of flatter power spectra in subcortical regions, such
as the basal ganglia (Wiest et al, 2023; Bush et al, 2024).
Specifically, Bush et al. (2024) reported that subcortical regions
do not exhibit an aperiodic knee, thus raising the intriguing possi-
bility that knees may arise from the fine-grained anatomical struc-
ture of the cerebral cortex. Hence, the present findings may
provide a window to infer (sub)cellular properties from large-scale,
intracranial neural mass signals. Moreover, several recent studies
demonstrated that low-frequency spectral knees can also be
obtained from scalp EEG and may vary as a function of a sleep
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stage (Lendner et al., 2022; Ameen et al., 2024). However, the sen-
sitivity of scalp EEG to muscle artifacts may preclude a reliable
detection of high-frequency knees from scalp EEG.

The functional role of aperiodic neural timescales and its
behavioral relevance

The concept of intrinsic neural timescales refers to the character-
istic time constants over which neurons exhibit correlated activ-
ity (Voytek and Knight, 2015; Wolff et al., 2022). At the cellular
level, timescales also refer to the decay constants of different
receptors and ion channels (Fourcaud and Brunel, 2002;
Moreno-Bote and Parga, 2005; Parisien et al., 2008). To date, it
remains unclear how cellular- and population-based timescales
are related.

Neural timescales are commonly regarded as hierarchically
structured temporal integration windows (Murray et al., 2014).
Conversely, it had been observed that the association cortex
exhibits longer timescales than the sensory cortex (Gao et al.,
2020; Cusinato et al., 2023). In line with these theoretical consid-
erations, longer timescales in the prefrontal association cortex
predicted better memory retention (Wasmuht et al., 2018; Gao
et al, 2020) or integration of task-relevant information
(Spitmaan et al., 2020; Zeraati et al., 2023).

Neural timescales are often inferred from the signal autocor-
relation function, which typically identifies timescales in the
range from 100 to 400 ms at the level of single-unit activity
(Murray et al., 2014), while EEG timescales are ~10-fold faster
(Gao et al., 2020). In the frequency domain, these timescales cor-
respond to a spectral knee between ~0.4 and 1.6 Hz (unit activ-
ity) and ~4 and 16 Hz (EEG activity). However, in the frequency
domain, spectral knees in human EEG have also been described
as low as ~1-2 Hz (He et al., 2010; Gao et al., 2020) and up to
~20 Hz (Robinson et al., 2001, 2011; Chaoul and Siegel, 2021).
Moreover, it has long been recognized that the power spectrum
exhibits at least one additional characteristic bend at ~75 Hz
(Miller et al., 2009).

To date, the physiology of these time constants is not very well
understood, but it is likely that different timescales index distinct
properties of the underlying population (Freeman and Zhai,
2009; Buzsdki et al., 2012). For example, certain timescales reflect
static physical properties (e.g., synaptic currents or dendritic low-
pass filtering; Robinson et al., 2001; Freeman and Zhai, 2009;
Miller et al., 2009; Buzsdki et al., 2012). Here, we observed three
timescales, which are well within the range of different receptor
decay constants. AMPA receptor currents exhibit a decay func-
tion of ~2 ms (Hestrin et al., 1990; Sah et al., 1990), while
GABA , receptors have longer time constants of up to ~10 ms
(Salin and Prince, 1996; Gupta et al., 2000; Fourcaud and
Brunel, 2002). The longest time constants are reported for
NMDA receptors with up to ~150 ms (Fourcaud and Brunel,
2002; Moreno-Bote and Parga, 2005; Parisien et al., 2008).
While cellular properties do not directly map onto neural mass
signals (Buzsdki et al., 2012; Einevoll et al., 2013), computation
models may bridge the gap between cellular properties and
large-scale neural signatures.

Here, we demonstrate relatively consistent spectral knees at
~1-5 Hz (~30-160 ms timescale) and at ~65-75 Hz (~2-3 ms
timescale), which were also evident during pharmacologically
induced unconsciousness and, therefore, may reflect physical
properties. While we did observe highly comparable estimates
across all three studies for low- and high-frequency knees, the
current experiments cannot resolve their precise biophysical ori-
gin, and future experiments need to determine if these knees
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might rather be the result of functional interactions. In contrast
to the low- and high-frequency knees, timescales at ~20-45 Hz
(~4-8 ms) were brain state-dependent and region-specific
(~45 Hz more prevalent in the MTL, while ~20 Hz was more
prevalent in the PFC).

Conclusions

Collectively, our findings provide compelling evidence that the
electrophysiological power spectrum is shaped by multiple con-
current aperiodic processes. These processes are characterized
by distinct time constants (knees), which act as systematic deflec-
tion points influencing the spectral slope. Notably, some of these
time constants persist during general anesthesia, potentially
indexing physical properties of the underlying neural population.
Our results offer an explanation for why aperiodic activity within
the frequency range of ~20-45 Hz serves as an effective discrimi-
nator of different sleep stages and reconcile seemingly contradic-
tory findings, which were largely obtained from fits that
encompassed either the high- (>45 Hz) or the low-frequency
knee (<20 Hz), thus distorting the estimates. In sum, these
findings demonstrate that various aspects of aperiodic activity,
including timescales and decay functions, contain rich informa-
tion about the current brain state.
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