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Recent research by Parks,
Schneider, and colleagues demon-
strates that brain states during ro-
dent sleep can be predicted from
neural activity on millisecond and
micrometer scales. These findings
contradict the traditional view that
defines sleep by brain-wide oscilla-
tions. Instead, this work posits that
nonoscillatory activity governs differ-
ent brain states.
A key challenge of neuroscience is to dis-
criminate different brain states, such as
wakefulness and sleep, with high spatio-
temporal resolution. However, what are
the unique characteristics that define
sleep [1]? At the behavioral level, sleep is
well defined as a periodically recurring
and fully reversible state of reduced mobil-
ity, decreased arousal, lowered sensory
awareness, and reduced responsiveness.
At the neurophysiological level, the answer
is more complex. Mammalian sleep is typ-
ically divided into multiple distinct stages:
while rapid eye movement (REM) sleep
is mainly defined by indirect electrophysio-
logical markers (eye movements and mus-
cle atonia), non-REM (NREM) sleep is
hallmarked by the presence of cardinal
sleep oscillations in surface electroen-
cephalography (EEG) recordings, such as
slow waves (<4 Hz) or sleep spindles
(~11–16 Hz). Specifically, the presence of
slow waves is the defining feature of
deep NREM sleep, which is therefore
also termed ‘slow wave sleep’ (SWS).
Typically, sleep is staged in 30-s seg-
ments, a practice that dates back to early
EEG recordings when 30 s of EEG were
printed per page. Even now, this historical
convention prevails, given its convenience
for visual inspection and manual sleep
staging. Hence, the rich neurophysiologi-
cal recordings during natural sleep, which
often accumulate to millions of individual
data points in modern multichannel re-
cordings, are condensed into a highly
discretized, low-dimensional trace: the
hypnogram (Figure 1, top).

In a recent article, Parks, Schneider et al.
[2] questioned the classic sleep-stage def-
initions. By combining high-resolution,
large-scale electrophysiological record-
ings in mice (encompassing spikes and
local field potentials up to 7 kHz) from up
to ten brain regions with decoding ap-
proaches (convolutional neural networks;
CNN), they demonstrate that the momen-
tary sleep stage can be correctly predicted
from neural activity on the timescale of 1–
10 ms (a fraction of the slow wave cycle)
and from very small patches of cortex
(100 μm; the fraction of what a typical
EEG electrode covers). One key implica-
tion of these findings is that slow waves
are not even necessary to identify SWS.
Critically, classification performance was
on par with human expert raters, who typi-
cally achieve ~80% inter-rater reliability. In
sum, these findings stand in stark contrast
to the classic conceptualization of sleep
based on brain-wide sleep oscillations.
Given that the CNN correctly classified
brain states for a very broad range of fre-
quencies that spanned four orders of
magnitude, the authors conclude that the
embedding of the momentary brain state
is inherently nonoscillatory in nature and,
hence, does not rely on the presence of
cardinal sleep oscillations.

Nonoscillatory activity, also termed aperiodic
or scale-free activity (for the lack of a defining
periodicity), is themain source of human and
rodent EEG background activity, but has
often been discarded as ‘noise’, partly be-
cause historically, tools and concepts were
Trend
lacking to fully grasp its significance [3].
The key characteristic of EEG background
activity is that it follows a 1/frequency (1/fx)
scaling law, where spectral power linearly
declines as a function of frequency when
visualized in log-log space (Figure 1, bottom
right). This relationship between frequency
and power often remains constant and
scales over many orders of magnitude [4].
Given that scaling laws characterize self-
organized dynamical systems, concepts
from dynamical systems theory may offer
valuable tools to understand how brain ac-
tivity self-organizes during sleep. While scal-
ing laws have long been suspected in the
sleeping brain, technical limitations of earlier
experimental setups hindered the ability to
record sufficient neural activity to test some
of the theoretical predictions.

While the relationship to power scaling
laws was not made explicit in the article
by Parks, Schneider et al., the correct
state classification over a broad range of
frequencies points toward this intriguing
possibility. By establishing these principles
that define the spatiotemporal organization
of the sleeping rodent brain, the results
open new avenues to also study human
sleep, for which neural recordings at the
same fine-grained spatiotemporal resolu-
tion are not (yet) feasible. In fact, several re-
cent studies that capitalize on new tools to
quantify nonoscillatory activity [5], demon-
strated that 1/f scaling in lower frequencies
(up ~50 Hz) reliably discriminates different
brain states, irrespective of the presence
of sleep oscillations [6] (Figure 1). A key ad-
vantage of this approach is that 1/f activity
can be quantified for every brain state,
which proves beneficial for studying states
that are not characterized by oscillations.
One such example is human REM sleep,
which has also been termed ‘paradoxical
sleep’ for its nonoscillatory, wake-like EEG
activity. In line with the idea that 1/f scaling
reflects neural excitability [7], a recent
study demonstrated that human REM
sleep contributes to the overnight recali-
bration of nonoscillatory activity, which
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Figure 1. Defining brain states across spatiotemporal scales during sleep. In a recent publication,
Parks, Schneider et al. [2] combined high-resolution, large-scale electrophysiological recordings in mice with
decoding approaches, and examined the ability to predict momentary brain states during sleep based on
neural activity at fine spatial and temporal scales. The figure illustrates how these findings might translate to
human electroencephalography (EEG). Traditionally, sleep is considered a global brain state and is defined by
the hypnogram (top row), which constitutes a low-dimensional abstraction of the underlying scalp EEG activity
(second row). Sleep is typically staged in 30-s segments, mainly based on the presence of sleep oscillations,
such as slow waves (dark blue, third row). Rows 3–5 zoom in on slow wave sleep (SWS) on increasingly
shorter timescales. Parks, Schneider et al. examined even higher temporal resolutions. Their findings
demonstrate that, in mice, the momentary sleep state can be detected from very short (ms resolution) and
local (μm resolution) recordings [2], a fraction of what is typically considered necessary to define sleep. Among
the key implications is that it might be possible to detect slow wave sleep from neural activity without notable
oscillations (fifth row, center panel; the gray dots highlight the data points that are magnified in the bottom
row). This nonoscillatory activity constitutes the main source of EEG background activity and displays an
inverse relationship between frequency and power, which scales across many orders of magnitude, from
milliseconds to minutes. An intriguing hypothesis for future work is that the identified spatiotemporal scaling
can be extrapolated to human EEG activity based on state-specific scaling laws (fifth row, right panel, broken
lines) [5–8]. This approach might help reach a better understanding of the neural dynamics of mammalian
sleep. Abbreviation: REM, rapid eye movement.
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predicted the success of overnight mem-
ory consolidation [8].

In sum, the findings by Parks, Schneider
et al. provide a fresh perspective on the
neurophysiological substrates that define
brain states in mice, which opens multiple
new avenues for future research. One ex-
citing direction relates to the notion that
854 Trends in Neurosciences, November 2024, Vol. 47, No
sleep not only constitutes a global phe-
nomenon, but might also occur locally,
with different brain areas drifting in and
out of distinct sleep stages at different
times [9]. While local sleep dynamics (as
indexed by sleep oscillations) have previ-
ously been observed [10], the automated
classification approach now enables a
more nuanced perspective. It will be of
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interest to understand how sleep oscilla-
tions in concert with nonoscillatory brain
states jointly exert the benefits of sleep
on cognitive and mental functions. Last,
we foresee that the application of machine
learning tools for automated brain state
classification might help to illuminate the
neurophysiological principles underlying
altered brain states, such as coma or
anesthesia, which are also characterized
by ample slow wave activity. Ultimately,
these advances might pave the way to
addressing the fundamental question of
why we spend one-third of our lives asleep.
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